Pub Date : 2015-04-01DOI: 10.1109/ITW.2015.7133145
Anxiao Jiang, Yue Li, Jehoshua Bruck
There are two fundamental approaches for error correction. One approach is to add external redundancy to data. The other approach is to use the redundancy inside data, even if it is only the residual redundancy after a data compression algorithm. The first approach, namely error-correcting codes (ECCs), has been studied actively over the past seventy years. In this work, we explore the second approach, and show that it can substantially enhance the error-correction performance. This work focuses on error correction of texts in English as a case study. It proposes a scheme that combines language-based decoding with ECC decoding. Both analysis and experimental results are presented. The scheme can be extended to content-based decoding for more types of data with rich structures.
{"title":"Error correction through language processing","authors":"Anxiao Jiang, Yue Li, Jehoshua Bruck","doi":"10.1109/ITW.2015.7133145","DOIUrl":"https://doi.org/10.1109/ITW.2015.7133145","url":null,"abstract":"There are two fundamental approaches for error correction. One approach is to add external redundancy to data. The other approach is to use the redundancy inside data, even if it is only the residual redundancy after a data compression algorithm. The first approach, namely error-correcting codes (ECCs), has been studied actively over the past seventy years. In this work, we explore the second approach, and show that it can substantially enhance the error-correction performance. This work focuses on error correction of texts in English as a case study. It proposes a scheme that combines language-based decoding with ECC decoding. Both analysis and experimental results are presented. The scheme can be extended to content-based decoding for more types of data with rich structures.","PeriodicalId":174797,"journal":{"name":"2015 IEEE Information Theory Workshop (ITW)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2015-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116341843","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2015-04-01DOI: 10.1109/ITW.2015.7133131
Ling Liu, Yanfei Yan, Cong Ling
Polar lattices have been proved to be able to achieve the strong secrecy capacity of the Mod-Λs additive white Gaussian noise (AWGN) wiretap channel. In this work, we propose an explicit shaping scheme and extend polar lattice coding to the genuine Gaussian wiretap channel. This shaping technique is based on discrete lattice Gaussian distribution, which leads to a binary asymmetric channel at each level for the multilevel lattice codes. The construction of polar codes for an asymmetric channel can be converted to that for a related symmetrized channel, and it turns out that this symmetrized channel is equivalent to a scaled Λ/Λ' channel in lattice coding in terms of polarization. By employing the asymmetric polar coding technique, we construct an AWGN-good lattice and a secrecy-good lattice with optimal shaping simultaneously.
{"title":"Secrecy-good polar lattices with optimal shaping for the Gaussian wiretap channels","authors":"Ling Liu, Yanfei Yan, Cong Ling","doi":"10.1109/ITW.2015.7133131","DOIUrl":"https://doi.org/10.1109/ITW.2015.7133131","url":null,"abstract":"Polar lattices have been proved to be able to achieve the strong secrecy capacity of the Mod-Λs additive white Gaussian noise (AWGN) wiretap channel. In this work, we propose an explicit shaping scheme and extend polar lattice coding to the genuine Gaussian wiretap channel. This shaping technique is based on discrete lattice Gaussian distribution, which leads to a binary asymmetric channel at each level for the multilevel lattice codes. The construction of polar codes for an asymmetric channel can be converted to that for a related symmetrized channel, and it turns out that this symmetrized channel is equivalent to a scaled Λ/Λ' channel in lattice coding in terms of polarization. By employing the asymmetric polar coding technique, we construct an AWGN-good lattice and a secrecy-good lattice with optimal shaping simultaneously.","PeriodicalId":174797,"journal":{"name":"2015 IEEE Information Theory Workshop (ITW)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2015-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127920320","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2015-04-01DOI: 10.1109/ITW.2015.7133120
T. Javidi, Y. Kaspi, Himanshu Tyagi
We consider the estimation of a standard Gaussian random variable under an observation attack where an adversary may add a zero mean Gaussian noise with variance in a bounded, closed interval to an otherwise noiseless observation. A straightforward approach would entail either ignoring the attack and simply using an optimal estimator under normal operation or taking the worst-case attack into account and using a minimax estimator that minimizes the cost under the worst-case attack. In contrast, we seek to characterize the optimal tradeoff between the MSE under normal operation and the MSE under the worst-case attack. Equivalently, we seek a minimax estimator for any fixed prior probability of attack. Our main result shows that a unique minimax estimator exists for every fixed probability of attack and is given by the Bayesian estimator for a least-favorable prior on the set of possible variances. Furthermore, the least-favorable prior is unique and has a finite support. While the minimax estimator is linear when the probability of attack is 0 or 1, our numerical results show that the minimax linear estimator is far from optimal for all other probabilities of attack and a simple nonlinear estimator does much better.
{"title":"Gaussian estimation under attack uncertainty","authors":"T. Javidi, Y. Kaspi, Himanshu Tyagi","doi":"10.1109/ITW.2015.7133120","DOIUrl":"https://doi.org/10.1109/ITW.2015.7133120","url":null,"abstract":"We consider the estimation of a standard Gaussian random variable under an observation attack where an adversary may add a zero mean Gaussian noise with variance in a bounded, closed interval to an otherwise noiseless observation. A straightforward approach would entail either ignoring the attack and simply using an optimal estimator under normal operation or taking the worst-case attack into account and using a minimax estimator that minimizes the cost under the worst-case attack. In contrast, we seek to characterize the optimal tradeoff between the MSE under normal operation and the MSE under the worst-case attack. Equivalently, we seek a minimax estimator for any fixed prior probability of attack. Our main result shows that a unique minimax estimator exists for every fixed probability of attack and is given by the Bayesian estimator for a least-favorable prior on the set of possible variances. Furthermore, the least-favorable prior is unique and has a finite support. While the minimax estimator is linear when the probability of attack is 0 or 1, our numerical results show that the minimax linear estimator is far from optimal for all other probabilities of attack and a simple nonlinear estimator does much better.","PeriodicalId":174797,"journal":{"name":"2015 IEEE Information Theory Workshop (ITW)","volume":"60 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2015-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"114901698","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2015-04-01DOI: 10.1109/ITW.2015.7133139
R. Bustin, R. Schaefer, H. Poor, S. Shamai
This work examines the properties of “good” codes for the scalar Gaussian wiretap channel that achieve the maximum level of equivocation. Specifically, the minimum mean-square error (MMSE) behavior of these codes is explored as a function of the signal-to-noise ratio (SNR). It is first shown that reliable decoding of the codeword at the legitimate receiver and at the eavesdropper, conditioned on the transmitted message, is a necessary and sufficient condition for an optimally secure code sequence. Moreover, it is observed that a stochastic encoder is required for any code sequence with rate below the channel point-to-point capacity. Then, for code sequences attaining the maximum level of equivocation, it is shown that their codebook sequences must resemble “good” point-to-point, capacity achieving, code sequences. Finally, it is shown that the mapping over such “good” codebook sequences that produces a maximum equivocation code must saturate the eavesdropper. These results support several “rules of thumb” in the design of capacity achieving codes for the Gaussian wiretap.
{"title":"On MMSE properties of optimal codes for the Gaussian wiretap channel","authors":"R. Bustin, R. Schaefer, H. Poor, S. Shamai","doi":"10.1109/ITW.2015.7133139","DOIUrl":"https://doi.org/10.1109/ITW.2015.7133139","url":null,"abstract":"This work examines the properties of “good” codes for the scalar Gaussian wiretap channel that achieve the maximum level of equivocation. Specifically, the minimum mean-square error (MMSE) behavior of these codes is explored as a function of the signal-to-noise ratio (SNR). It is first shown that reliable decoding of the codeword at the legitimate receiver and at the eavesdropper, conditioned on the transmitted message, is a necessary and sufficient condition for an optimally secure code sequence. Moreover, it is observed that a stochastic encoder is required for any code sequence with rate below the channel point-to-point capacity. Then, for code sequences attaining the maximum level of equivocation, it is shown that their codebook sequences must resemble “good” point-to-point, capacity achieving, code sequences. Finally, it is shown that the mapping over such “good” codebook sequences that produces a maximum equivocation code must saturate the eavesdropper. These results support several “rules of thumb” in the design of capacity achieving codes for the Gaussian wiretap.","PeriodicalId":174797,"journal":{"name":"2015 IEEE Information Theory Workshop (ITW)","volume":"68 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2015-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130132320","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2015-04-01DOI: 10.1109/ITW.2015.7133122
Yatao Bian, Alexey Gronskiy, J. Buhmann
MAXCUT defines a classical NP-hard problem for graph partitioning and it serves as a typical case of the symmetric non-monotone Unconstrained Submodular Maximization (USM) problem. Applications of MAXCUT are abundant in machine learning, computer vision and statistical physics. Greedy algorithms to approximately solve MAXCUT rely on greedy vertex labelling or on an edge contraction strategy. These algorithms have been studied by measuring their approximation ratios in the worst case setting but very little is known to characterize their robustness to noise contaminations of the input data in the average case. Adapting the framework of Approximation Set Coding, we present a method to exactly measure the cardinality of the algorithmic approximation sets of five greedy MAXCUT algorithms. Their information contents are explored for graph instances generated by two different noise models: the edge reversal model and Gaussian edge weights model. The results provide insights into the robustness of different greedy heuristics and techniques for MAXCUT, which can be used for algorithm design of general USM problems.
{"title":"Greedy MaxCut algorithms and their information content","authors":"Yatao Bian, Alexey Gronskiy, J. Buhmann","doi":"10.1109/ITW.2015.7133122","DOIUrl":"https://doi.org/10.1109/ITW.2015.7133122","url":null,"abstract":"MAXCUT defines a classical NP-hard problem for graph partitioning and it serves as a typical case of the symmetric non-monotone Unconstrained Submodular Maximization (USM) problem. Applications of MAXCUT are abundant in machine learning, computer vision and statistical physics. Greedy algorithms to approximately solve MAXCUT rely on greedy vertex labelling or on an edge contraction strategy. These algorithms have been studied by measuring their approximation ratios in the worst case setting but very little is known to characterize their robustness to noise contaminations of the input data in the average case. Adapting the framework of Approximation Set Coding, we present a method to exactly measure the cardinality of the algorithmic approximation sets of five greedy MAXCUT algorithms. Their information contents are explored for graph instances generated by two different noise models: the edge reversal model and Gaussian edge weights model. The results provide insights into the robustness of different greedy heuristics and techniques for MAXCUT, which can be used for algorithm design of general USM problems.","PeriodicalId":174797,"journal":{"name":"2015 IEEE Information Theory Workshop (ITW)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2015-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131706519","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2015-04-01DOI: 10.1109/ITW.2015.7133171
Ryan Gabrys, H. M. Kiah, O. Milenkovic
We continue our study of a new family of asymmetric Lee codes that arise in the design and implementation of emerging DNA-based storage systems and systems which use parallel string transmission protocols. The codewords are defined over a quaternary alphabet, although the results carry over to other alphabet sizes, and have symbol distances dictated by their underlying binary representation. Our contributions include deriving new bounds for the size of the largest code in this metric based on Delsarte-like linear programming methods and describing new constructions for non-linear asymmetric Lee codes.
{"title":"Asymmetric Lee distance codes: New bounds and constructions","authors":"Ryan Gabrys, H. M. Kiah, O. Milenkovic","doi":"10.1109/ITW.2015.7133171","DOIUrl":"https://doi.org/10.1109/ITW.2015.7133171","url":null,"abstract":"We continue our study of a new family of asymmetric Lee codes that arise in the design and implementation of emerging DNA-based storage systems and systems which use parallel string transmission protocols. The codewords are defined over a quaternary alphabet, although the results carry over to other alphabet sizes, and have symbol distances dictated by their underlying binary representation. Our contributions include deriving new bounds for the size of the largest code in this metric based on Delsarte-like linear programming methods and describing new constructions for non-linear asymmetric Lee codes.","PeriodicalId":174797,"journal":{"name":"2015 IEEE Information Theory Workshop (ITW)","volume":"57 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2015-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125124912","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2015-04-01DOI: 10.1109/ITW.2015.7133151
Shashank Vatedka, N. Kashyap
The basic problem of secure bidirectional relaying involves two users who want to exchange messages via an intermediate “honest-but-curious” relay node. There is no direct link between the users; all communication must take place via the relay node. The links between the user nodes and the relay are wireless links with Gaussian noise. It is required that the users' messages be kept secure from the relay. In prior work, we proposed coding schemes based on nested lattices for this problem, assuming that the channel gains from the two user nodes to the relay are identical. We also analyzed the power-rate tradeoff for secure and reliable message exchange using our coding schemes. In this paper, we extend our prior work to the case when the channel gains are not necessarily identical, and are known to the relay node but perhaps not to the users. We show that using our scheme, perfect secrecy can be obtained only for certain values of the channel gains, and analyze the power-rate tradeoff in these cases. We also make similar observations for our strongly-secure scheme.
{"title":"Nested lattice codes for secure bidirectional relaying with asymmetric channel gains","authors":"Shashank Vatedka, N. Kashyap","doi":"10.1109/ITW.2015.7133151","DOIUrl":"https://doi.org/10.1109/ITW.2015.7133151","url":null,"abstract":"The basic problem of secure bidirectional relaying involves two users who want to exchange messages via an intermediate “honest-but-curious” relay node. There is no direct link between the users; all communication must take place via the relay node. The links between the user nodes and the relay are wireless links with Gaussian noise. It is required that the users' messages be kept secure from the relay. In prior work, we proposed coding schemes based on nested lattices for this problem, assuming that the channel gains from the two user nodes to the relay are identical. We also analyzed the power-rate tradeoff for secure and reliable message exchange using our coding schemes. In this paper, we extend our prior work to the case when the channel gains are not necessarily identical, and are known to the relay node but perhaps not to the users. We show that using our scheme, perfect secrecy can be obtained only for certain values of the channel gains, and analyze the power-rate tradeoff in these cases. We also make similar observations for our strongly-secure scheme.","PeriodicalId":174797,"journal":{"name":"2015 IEEE Information Theory Workshop (ITW)","volume":"48 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2015-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129228137","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2015-04-01DOI: 10.1109/ITW.2015.7133158
O. Kosut
Point-to-point channel coding is studied in the finite blocklength regime. Many existing converse bounds involve an optimization over a distribution on the channel output. This paper provides a method for generating good, if not optimal, output distributions. In particular, given any candidate output distribution, a “boosting” procedure is given that constructs a new distribution which improves the converse bound derived from the divergence spectrum. For discrete memoryless channels, it is shown that using the i.i.d. capacity-achieving output distribution as an initial guess in this procedure results in an output distribution that is good enough to derive the third-order coding rate for most channels. The finite blocklengths bounds are then applied to the Z channel.
{"title":"Boosting output distributions in finite blocklength channel coding converse bounds","authors":"O. Kosut","doi":"10.1109/ITW.2015.7133158","DOIUrl":"https://doi.org/10.1109/ITW.2015.7133158","url":null,"abstract":"Point-to-point channel coding is studied in the finite blocklength regime. Many existing converse bounds involve an optimization over a distribution on the channel output. This paper provides a method for generating good, if not optimal, output distributions. In particular, given any candidate output distribution, a “boosting” procedure is given that constructs a new distribution which improves the converse bound derived from the divergence spectrum. For discrete memoryless channels, it is shown that using the i.i.d. capacity-achieving output distribution as an initial guess in this procedure results in an output distribution that is good enough to derive the third-order coding rate for most channels. The finite blocklengths bounds are then applied to the Z channel.","PeriodicalId":174797,"journal":{"name":"2015 IEEE Information Theory Workshop (ITW)","volume":"93 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2015-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124656294","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2015-04-01DOI: 10.1109/ITW.2015.7133156
Xishuo Liu, S. Draper
Many code constraints can be represented using factor graphs. By relaxing these factorable coding constraints to linear constraints, it is straightforward to form a decoding optimization problem. Furthermore, by pairing these factor graphs with the alternating directions method of multipliers (ADMM) technique of large-scale optimization, one can develop distributed algorithms to solve the decoding optimization problems. However, the non-trivial part has always been developing an efficient algorithm for the subroutines of ADMM, which directly relates to the geometries of the relaxed coding constraints. In this paper, we focus on summarizing existing results and distilling insights to these problems. First, we review the ADMM formulation and geometries involved in the subroutines. Next, we present a linear time algorithm for projecting onto an ℓ1 ball with box constraints.
{"title":"ADMM decoding of error correction codes: From geometries to algorithms","authors":"Xishuo Liu, S. Draper","doi":"10.1109/ITW.2015.7133156","DOIUrl":"https://doi.org/10.1109/ITW.2015.7133156","url":null,"abstract":"Many code constraints can be represented using factor graphs. By relaxing these factorable coding constraints to linear constraints, it is straightforward to form a decoding optimization problem. Furthermore, by pairing these factor graphs with the alternating directions method of multipliers (ADMM) technique of large-scale optimization, one can develop distributed algorithms to solve the decoding optimization problems. However, the non-trivial part has always been developing an efficient algorithm for the subroutines of ADMM, which directly relates to the geometries of the relaxed coding constraints. In this paper, we focus on summarizing existing results and distilling insights to these problems. First, we review the ADMM formulation and geometries involved in the subroutines. Next, we present a linear time algorithm for projecting onto an ℓ1 ball with box constraints.","PeriodicalId":174797,"journal":{"name":"2015 IEEE Information Theory Workshop (ITW)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2015-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126468479","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2015-04-01DOI: 10.1109/ITW.2015.7133143
Q. Zhang, S. Kadhe, Mayank Bakshi, S. Jaggi, A. Sprintson
We consider reliable and secure communication of information over a multipath network. A transmitter Alice sends messages to the receiver Bob in the presence of a hidden adversary Calvin. The adversary Calvin can both eavesdrop and jam on (possibly non-identical) subsets of transmission links. The goal is to communicate reliably (intended receiver can understand the messages) and secretly (adversary cannot understand the messages). Two kinds of jamming, additive and overwrite, are considered. Additive jamming corresponds to wireless network model while overwrite jamming corresponds to wired network model and storage systems. The multipath network consists of C parallel links. Calvin can both jam and eavesdrop any zio number of links, can eavesdrop (but not jam) any zi/o number of links, and can jam (but not eavesdrop) any zo/i number of links. We present the first “complete” information-theoretic characterization of maximum achievable rate as a function of the number of links that can be jammed and/or eavesdropped for equal and unequal link capacity multipath networks under additive and overwrite jamming in the large alphabet regime. Our achievability and converse proofs require non-trivial combination of information theoretic and coding theoretic ideas and our achievability schemes are computationally efficient. The PHaSE-Saving techniques1 are used for achievability while a “stochastic” singleton bound is obtained for converse.
{"title":"Talking reliably, secretly, and efficiently: A “complete” characterization","authors":"Q. Zhang, S. Kadhe, Mayank Bakshi, S. Jaggi, A. Sprintson","doi":"10.1109/ITW.2015.7133143","DOIUrl":"https://doi.org/10.1109/ITW.2015.7133143","url":null,"abstract":"We consider reliable and secure communication of information over a multipath network. A transmitter Alice sends messages to the receiver Bob in the presence of a hidden adversary Calvin. The adversary Calvin can both eavesdrop and jam on (possibly non-identical) subsets of transmission links. The goal is to communicate reliably (intended receiver can understand the messages) and secretly (adversary cannot understand the messages). Two kinds of jamming, additive and overwrite, are considered. Additive jamming corresponds to wireless network model while overwrite jamming corresponds to wired network model and storage systems. The multipath network consists of C parallel links. Calvin can both jam and eavesdrop any zio number of links, can eavesdrop (but not jam) any zi/o number of links, and can jam (but not eavesdrop) any zo/i number of links. We present the first “complete” information-theoretic characterization of maximum achievable rate as a function of the number of links that can be jammed and/or eavesdropped for equal and unequal link capacity multipath networks under additive and overwrite jamming in the large alphabet regime. Our achievability and converse proofs require non-trivial combination of information theoretic and coding theoretic ideas and our achievability schemes are computationally efficient. The PHaSE-Saving techniques1 are used for achievability while a “stochastic” singleton bound is obtained for converse.","PeriodicalId":174797,"journal":{"name":"2015 IEEE Information Theory Workshop (ITW)","volume":"49 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2015-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"114868561","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}