Pub Date : 2024-09-02DOI: 10.1177/10775463241276242
Jie Liu, Fei Ding, Jingzheng Wang, Jinhe Zhang, Jianguo Wu
A novel uncertainty propagation method based on manifold learning and optimal polynomial model is proposed to quantify and analyze the dynamic uncertainties of the nonlinear feedback control system. To deal with the multiple objectives and constraints of the nonlinear control problem, a barrier Lyapunov-function-based nonlinear filtered backstepping controller is developed and applied to active suspension system to obtain superior ride comfort performance under limited structural constraints. Considering the errors in the production, manufacturing, and assembly, the probability density function is employed to quantify the structural parameter uncertainties in the nonlinear control system. Moreover, to reveal the dynamic propagation mechanism of uncertainties in the system with nonlinearity, the manifold learning method is proposed to reduce the dimensionality of the dynamic system to avoid the complexity of uncertainty propagation. Simultaneously, data-driven optimal polynomial model is utilized to accurately approximate the internal mechanism of nonlinear filtered backstepping control system. Based on that, the response uncertainties of the nonlinear control system are accurately and quickly quantified through dynamic moment information and uncertain fluctuation space. Finally, an active suspension system with nonlinearities and uncertainties is developed to verify the effectiveness of the controller with improved ride comfort and better handling safety and the superiority of the framework in terms of efficiency and accuracy of the dynamic uncertainty propagation analysis for nonlinear control problem.
{"title":"Dynamic uncertainty propagation analysis framework for nonlinear control problem based on manifold learning and optimal polynomial method and its application on active suspension system","authors":"Jie Liu, Fei Ding, Jingzheng Wang, Jinhe Zhang, Jianguo Wu","doi":"10.1177/10775463241276242","DOIUrl":"https://doi.org/10.1177/10775463241276242","url":null,"abstract":"A novel uncertainty propagation method based on manifold learning and optimal polynomial model is proposed to quantify and analyze the dynamic uncertainties of the nonlinear feedback control system. To deal with the multiple objectives and constraints of the nonlinear control problem, a barrier Lyapunov-function-based nonlinear filtered backstepping controller is developed and applied to active suspension system to obtain superior ride comfort performance under limited structural constraints. Considering the errors in the production, manufacturing, and assembly, the probability density function is employed to quantify the structural parameter uncertainties in the nonlinear control system. Moreover, to reveal the dynamic propagation mechanism of uncertainties in the system with nonlinearity, the manifold learning method is proposed to reduce the dimensionality of the dynamic system to avoid the complexity of uncertainty propagation. Simultaneously, data-driven optimal polynomial model is utilized to accurately approximate the internal mechanism of nonlinear filtered backstepping control system. Based on that, the response uncertainties of the nonlinear control system are accurately and quickly quantified through dynamic moment information and uncertain fluctuation space. Finally, an active suspension system with nonlinearities and uncertainties is developed to verify the effectiveness of the controller with improved ride comfort and better handling safety and the superiority of the framework in terms of efficiency and accuracy of the dynamic uncertainty propagation analysis for nonlinear control problem.","PeriodicalId":17511,"journal":{"name":"Journal of Vibration and Control","volume":"22 1","pages":""},"PeriodicalIF":2.8,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142208071","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-02DOI: 10.1177/10775463241273019
Gangfeng Wang, Wanting Wang, Xuefeng Suo, Teng Du, Di Wang, Xiang Liu
The harsh working environment in the mining area has put strict requirements for the suspension system performance of mining dump trucks. To improve the anti-pitch and anti-roll ability of tri-axle mining dump trucks, a new type of hydraulically interconnected suspension system is proposed, including the left-right wheel interconnection in front axle and X-cross interconnection in mid-rear axle (X-HIS). The parameter sensitivity of X-HIS is analyzed, and the significant parameters are optimized. Specifically, a vehicle mechanical-hydraulic coupling model is established based on impedance matrix transfer method. The objective functions are obtained by combining the road spectral density matrix, and accuracy of the model is verified by the accumulator pressure experiment of the mining dump truck. Subsequently, the Morris method is applied to analyze the sensitivity of suspension parameters to the bounce, pitch, and roll modes vibration. The results indicate that the sensitive parameters are the initial pressure and volume of the front accumulator, the inner diameter of damping hole, the initial pressure of mid-rear accumulator, and the area ratio of upper and lower chamber of cylinder. The Pareto solution set shows that there is no conflict between the anti-pitch and anti-roll capabilities of X-HIS. The optimized X-HIS improves the ride comfort and anti-roll ability of the vehicle and balances the anti-pitch performance.
{"title":"Multi-objective parameter optimization of a novel hydraulically interconnected suspension for tri-axle mining dump trucks","authors":"Gangfeng Wang, Wanting Wang, Xuefeng Suo, Teng Du, Di Wang, Xiang Liu","doi":"10.1177/10775463241273019","DOIUrl":"https://doi.org/10.1177/10775463241273019","url":null,"abstract":"The harsh working environment in the mining area has put strict requirements for the suspension system performance of mining dump trucks. To improve the anti-pitch and anti-roll ability of tri-axle mining dump trucks, a new type of hydraulically interconnected suspension system is proposed, including the left-right wheel interconnection in front axle and X-cross interconnection in mid-rear axle (X-HIS). The parameter sensitivity of X-HIS is analyzed, and the significant parameters are optimized. Specifically, a vehicle mechanical-hydraulic coupling model is established based on impedance matrix transfer method. The objective functions are obtained by combining the road spectral density matrix, and accuracy of the model is verified by the accumulator pressure experiment of the mining dump truck. Subsequently, the Morris method is applied to analyze the sensitivity of suspension parameters to the bounce, pitch, and roll modes vibration. The results indicate that the sensitive parameters are the initial pressure and volume of the front accumulator, the inner diameter of damping hole, the initial pressure of mid-rear accumulator, and the area ratio of upper and lower chamber of cylinder. The Pareto solution set shows that there is no conflict between the anti-pitch and anti-roll capabilities of X-HIS. The optimized X-HIS improves the ride comfort and anti-roll ability of the vehicle and balances the anti-pitch performance.","PeriodicalId":17511,"journal":{"name":"Journal of Vibration and Control","volume":"58 1","pages":""},"PeriodicalIF":2.8,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142208072","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-31DOI: 10.1177/10775463241272934
TJ Prasanna Kumar, K Sivajibabu, B Durga Prasad
This study explores the potential of nanoresonator systems composed of coupled nanotubes with graphene nanoparticles for enhancing the performance of acoustic liners in aircraft engines. The objective of this study is to develop an analytical model and predict its behavior under various conditions. The acoustic liners consist of perforated metal sheets and honeycomb cavities, which are essential for noise reduction in aircraft engines. The model is tested for variations in natural frequency, mode number (m), size effects (e0a), viscous constant (C), temperature (T), localness factor (L), and stiffness constant (K). A hybrid deep neural network–based white shark algorithm (DNN-WSA) is used to predict and optimize the performance of nanoresonator-coupled nanotube systems. Four theories were compared, such as wave propagation theory, nonlocal elasticity theory, polynomial eigenvalue approach, and governing equations with respect to natural frequencies in nanoresonator-coupled nanotube systems. The wave propagation theory yielded the lowest natural frequency, which was selected for detailed analysis. The optimized values of size effect of 2 nm, temperature of 5 K, and frequency of 1.971975 THz were obtained. When C = 0.3, K = 10, T = 300, and L = 10×e−9, the root mean square error (RMSE) value is 0.8421, which indicates improved predictive performance as it continues to decrease. The study’s findings showed that changes in viscous constants impact natural frequencies, while size effects have a minor influence. Temperature variations also affect natural frequencies, with higher temperatures leading to higher frequencies. The optimized model demonstrates enhanced predictive performance, which contributes to a better understanding of nanoresonator systems and their application in noise reduction for aircraft engines.
{"title":"Thermo-elastic vibration analysis and optimization of a nanoresonator composed of a coupled nanotube system for acoustic liner application using the hybrid deep neural network–based white shark algorithm","authors":"TJ Prasanna Kumar, K Sivajibabu, B Durga Prasad","doi":"10.1177/10775463241272934","DOIUrl":"https://doi.org/10.1177/10775463241272934","url":null,"abstract":"This study explores the potential of nanoresonator systems composed of coupled nanotubes with graphene nanoparticles for enhancing the performance of acoustic liners in aircraft engines. The objective of this study is to develop an analytical model and predict its behavior under various conditions. The acoustic liners consist of perforated metal sheets and honeycomb cavities, which are essential for noise reduction in aircraft engines. The model is tested for variations in natural frequency, mode number (m), size effects (e<jats:sub>0</jats:sub>a), viscous constant (C), temperature (T), localness factor (L), and stiffness constant (K). A hybrid deep neural network–based white shark algorithm (DNN-WSA) is used to predict and optimize the performance of nanoresonator-coupled nanotube systems. Four theories were compared, such as wave propagation theory, nonlocal elasticity theory, polynomial eigenvalue approach, and governing equations with respect to natural frequencies in nanoresonator-coupled nanotube systems. The wave propagation theory yielded the lowest natural frequency, which was selected for detailed analysis. The optimized values of size effect of 2 nm, temperature of 5 K, and frequency of 1.971975 THz were obtained. When C = 0.3, K = 10, T = 300, and L = 10×e<jats:sup>−9</jats:sup>, the root mean square error (RMSE) value is 0.8421, which indicates improved predictive performance as it continues to decrease. The study’s findings showed that changes in viscous constants impact natural frequencies, while size effects have a minor influence. Temperature variations also affect natural frequencies, with higher temperatures leading to higher frequencies. The optimized model demonstrates enhanced predictive performance, which contributes to a better understanding of nanoresonator systems and their application in noise reduction for aircraft engines.","PeriodicalId":17511,"journal":{"name":"Journal of Vibration and Control","volume":"82 1","pages":""},"PeriodicalIF":2.8,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142208076","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-31DOI: 10.1177/10775463241273027
Hamid Reza Marzban, Atiyeh Nezami
In this investigation, a novel framework is devised to study an important category of fractional-order systems. The fractional Vieta–Lucas functions (FVLFs) and a hybrid of the block-pulse functions (BPFs) with the mentioned functions are introduced. The advantages of the proposed basis are clarified and a novel integral operator is further constructed based on the Riemann–Liouville integral operator. An innovative spectral collocation methodology is introduced. By utilizing the new fractional basis, the principal problem is changed into a simple optimization one containing unspecified parameters. The developed discretization scheme is robust and produces very satisfactory results for constrained complex physical systems containing delays. Four benchmark problems are examined to verify the capability of the method. The experimental outputs certify the exactness and usefulness of the new methodology.
{"title":"A hybrid of the fractional Vieta–Lucas functions and its application in constrained fractional optimal control systems containing delay","authors":"Hamid Reza Marzban, Atiyeh Nezami","doi":"10.1177/10775463241273027","DOIUrl":"https://doi.org/10.1177/10775463241273027","url":null,"abstract":"In this investigation, a novel framework is devised to study an important category of fractional-order systems. The fractional Vieta–Lucas functions (FVLFs) and a hybrid of the block-pulse functions (BPFs) with the mentioned functions are introduced. The advantages of the proposed basis are clarified and a novel integral operator is further constructed based on the Riemann–Liouville integral operator. An innovative spectral collocation methodology is introduced. By utilizing the new fractional basis, the principal problem is changed into a simple optimization one containing unspecified parameters. The developed discretization scheme is robust and produces very satisfactory results for constrained complex physical systems containing delays. Four benchmark problems are examined to verify the capability of the method. The experimental outputs certify the exactness and usefulness of the new methodology.","PeriodicalId":17511,"journal":{"name":"Journal of Vibration and Control","volume":"2 1","pages":""},"PeriodicalIF":2.8,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142208075","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-30DOI: 10.1177/10775463241275793
Xinhao Zhang, Mingjing Geng, Caiyou Zhao, Qiang Yi, Ping Wang, Tao Lu
Steel-spring floating slab track is widely used in special vibration-damping sections of urban rail transit because of its good vibration-damping performance. However, in engineering practice, bottlenecks such as the nature of elastic wave coupling with environmental media and elastic wave modulation have not yet been established as theoretical analysis and experimental measurement methods. In this paper, based on the energy generalized variational principle of the physical properties of elastic waves, a joint analytical model of the three-dimensional steel-spring floating slab track periodic structure is established. The dispersion curves and eight bandgap characteristics in the complex domain are obtained. It is verified that the vibration acceleration response of the track structure is caused by the intersection of the dispersion curve and the load moving line. And the bandgap can effectively suppress the Doppler phenomenon.
{"title":"Vibration wave propagation and band-gap effects in floating slab track: Theoretical analysis and experimental measurements","authors":"Xinhao Zhang, Mingjing Geng, Caiyou Zhao, Qiang Yi, Ping Wang, Tao Lu","doi":"10.1177/10775463241275793","DOIUrl":"https://doi.org/10.1177/10775463241275793","url":null,"abstract":"Steel-spring floating slab track is widely used in special vibration-damping sections of urban rail transit because of its good vibration-damping performance. However, in engineering practice, bottlenecks such as the nature of elastic wave coupling with environmental media and elastic wave modulation have not yet been established as theoretical analysis and experimental measurement methods. In this paper, based on the energy generalized variational principle of the physical properties of elastic waves, a joint analytical model of the three-dimensional steel-spring floating slab track periodic structure is established. The dispersion curves and eight bandgap characteristics in the complex domain are obtained. It is verified that the vibration acceleration response of the track structure is caused by the intersection of the dispersion curve and the load moving line. And the bandgap can effectively suppress the Doppler phenomenon.","PeriodicalId":17511,"journal":{"name":"Journal of Vibration and Control","volume":"72 4 1","pages":""},"PeriodicalIF":2.8,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142208077","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-30DOI: 10.1177/10775463241273046
Yuan-Yuan Li, Yuan-Xin Li
This article investigates the fuzzy event-triggered asymptotic tracking control of nonlinear systems with full state constraints. First, to approximate unknown nonlinearity, the fuzzy logic system is employed. Second, the “explosion of complexity” issue is tackled by developing an improved dynamic surface technique. Additionally, a new Barrier Lyapunov function is introduced to make sure state constraints are not violated. Particularly, an efficient dynamic event-triggered control scheme is presented by introducing an auxiliary dynamic variable, which can not only greatly save communication resources but also achieve asymptotic tracking. Ultimately, validations are illustrated through two simulation examples.
{"title":"Dynamic event-triggered adaptive fuzzy asymptotic tracking of constrained nonlinear systems with applications","authors":"Yuan-Yuan Li, Yuan-Xin Li","doi":"10.1177/10775463241273046","DOIUrl":"https://doi.org/10.1177/10775463241273046","url":null,"abstract":"This article investigates the fuzzy event-triggered asymptotic tracking control of nonlinear systems with full state constraints. First, to approximate unknown nonlinearity, the fuzzy logic system is employed. Second, the “explosion of complexity” issue is tackled by developing an improved dynamic surface technique. Additionally, a new Barrier Lyapunov function is introduced to make sure state constraints are not violated. Particularly, an efficient dynamic event-triggered control scheme is presented by introducing an auxiliary dynamic variable, which can not only greatly save communication resources but also achieve asymptotic tracking. Ultimately, validations are illustrated through two simulation examples.","PeriodicalId":17511,"journal":{"name":"Journal of Vibration and Control","volume":"64 1","pages":""},"PeriodicalIF":2.8,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142208078","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This paper develops a completely distributed cooperative tracking control scheme for underactuated unmanned surface vessels (USVs), which is potential to perform formation tracking or transformation with local position information and partial parameter adjustment. In light of the designed edge weights and the underlying topology, each USV is capable of asymptotically tracking the reference signals generated by the virtual leader while ensuring collision-free performance throughout the entire formation process. Specifically, for each follower, a completely distributed extended state observer (ESO) is constructed to estimate the leader states, only using the self-velocity and relative position of neighbors, regardless of the velocity of neighbors and the global information of topology. Then, the energy factor is designed according to the relative displacement of neighbors, and we assign the energy factor to the edges of the local digraph of each follower to form the local weight net. The weight force generated by the local weight net enables the follower to track the leaders with preset formation configuration and avoid collisions as well. Thus, the formation security can be enhanced. Finally, theoretical analysis and numerous simulation examples are carried out to illustrate the effectiveness of the proposed scheme.
{"title":"Completely distributed collision-free cooperative control for underactuated unmanned surface vessels with edge weighted interaction","authors":"Yuzhou Song, Bing Huang, Jianming Miao, Cheng Zhu, Jiayuan Zhuang","doi":"10.1177/10775463241271859","DOIUrl":"https://doi.org/10.1177/10775463241271859","url":null,"abstract":"This paper develops a completely distributed cooperative tracking control scheme for underactuated unmanned surface vessels (USVs), which is potential to perform formation tracking or transformation with local position information and partial parameter adjustment. In light of the designed edge weights and the underlying topology, each USV is capable of asymptotically tracking the reference signals generated by the virtual leader while ensuring collision-free performance throughout the entire formation process. Specifically, for each follower, a completely distributed extended state observer (ESO) is constructed to estimate the leader states, only using the self-velocity and relative position of neighbors, regardless of the velocity of neighbors and the global information of topology. Then, the energy factor is designed according to the relative displacement of neighbors, and we assign the energy factor to the edges of the local digraph of each follower to form the local weight net. The weight force generated by the local weight net enables the follower to track the leaders with preset formation configuration and avoid collisions as well. Thus, the formation security can be enhanced. Finally, theoretical analysis and numerous simulation examples are carried out to illustrate the effectiveness of the proposed scheme.","PeriodicalId":17511,"journal":{"name":"Journal of Vibration and Control","volume":"5 1","pages":""},"PeriodicalIF":2.8,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142208079","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-29DOI: 10.1177/10775463241276645
Meng Wang, Anbo Tang, Nenggang Xie, Haiyang Pan
Support matrix machine (SMM) is an innovative classifier that accepts matrix as inputs to make full use of the structure information between matrices. However, SMM aims at constructing two parallel hyperplanes to segment different types of samples, which makes the model inflexible and sensitive to the impact of noise, resulting in poor performance on complex data classification. Given this consideration, a novel parametric-margin projection twin support matrix machine (PPTSMM) is proposed in this paper. PPTSMM introduces the additional regularization term, which is the parametric-margin between the projected centers of the two classes, and the separability of projected classes based on the parametric-margin rather than unit distance. Meanwhile, the slack vector is employed for reformulating the within-class least square loss in PPTSMM, which address the time-consuming matrix inverse operation to reduce the complexity of calculations. Two kinds of roller bearing fault signals are used to analysis the performance of PPTSMM, and the analysis results indicate that PPTSMM is effective to reduce the impact of noise and computation time in fault diagnosis of roller bearing.
{"title":"Parametric-margin projection twin support matrix machine and its application in fault diagnosis of roller bearing","authors":"Meng Wang, Anbo Tang, Nenggang Xie, Haiyang Pan","doi":"10.1177/10775463241276645","DOIUrl":"https://doi.org/10.1177/10775463241276645","url":null,"abstract":"Support matrix machine (SMM) is an innovative classifier that accepts matrix as inputs to make full use of the structure information between matrices. However, SMM aims at constructing two parallel hyperplanes to segment different types of samples, which makes the model inflexible and sensitive to the impact of noise, resulting in poor performance on complex data classification. Given this consideration, a novel parametric-margin projection twin support matrix machine (PPTSMM) is proposed in this paper. PPTSMM introduces the additional regularization term, which is the parametric-margin between the projected centers of the two classes, and the separability of projected classes based on the parametric-margin rather than unit distance. Meanwhile, the slack vector is employed for reformulating the within-class least square loss in PPTSMM, which address the time-consuming matrix inverse operation to reduce the complexity of calculations. Two kinds of roller bearing fault signals are used to analysis the performance of PPTSMM, and the analysis results indicate that PPTSMM is effective to reduce the impact of noise and computation time in fault diagnosis of roller bearing.","PeriodicalId":17511,"journal":{"name":"Journal of Vibration and Control","volume":"7 1","pages":""},"PeriodicalIF":2.8,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142207956","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-29DOI: 10.1177/10775463241271779
Li Li, Chen Jia
This study presents a new fault-tolerant preview tracking control (FTPTC) method using linear fractional representation (LFR) with regard to discrete-time linear parameter-varying (LPV) systems. To achieve preview tracking performance, a design strategy for a stable controller with integral, fault estimation, and preview actions is adopted. First, a fault estimation methodology for an LPV/LFR system with an actuator failure and external interference is developed utilizing the state observer approach. Next, based on the obtained fault estimation information, an equivalent augmented model including future information on reference signals, is developed, which converts preview tracking control (PTC) problem to a stabilization problem. Less conservative stability conditions for LPV have developed. Lastly, we performed two instances to validate the efficiency of the control approach that was proposed.
{"title":"Robust fault-tolerant preview control of linear parameter-varying discrete-time systems","authors":"Li Li, Chen Jia","doi":"10.1177/10775463241271779","DOIUrl":"https://doi.org/10.1177/10775463241271779","url":null,"abstract":"This study presents a new fault-tolerant preview tracking control (FTPTC) method using linear fractional representation (LFR) with regard to discrete-time linear parameter-varying (LPV) systems. To achieve preview tracking performance, a design strategy for a stable controller with integral, fault estimation, and preview actions is adopted. First, a fault estimation methodology for an LPV/LFR system with an actuator failure and external interference is developed utilizing the state observer approach. Next, based on the obtained fault estimation information, an equivalent augmented model including future information on reference signals, is developed, which converts preview tracking control (PTC) problem to a stabilization problem. Less conservative stability conditions for LPV have developed. Lastly, we performed two instances to validate the efficiency of the control approach that was proposed.","PeriodicalId":17511,"journal":{"name":"Journal of Vibration and Control","volume":"46 1","pages":""},"PeriodicalIF":2.8,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142208080","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-28DOI: 10.1177/10775463241272813
Wei Li, Huailiang Zhang, Wei Qu, Zihan Liu, Qingqing Yang
This paper studies the dynamic response of a pipe conveying pulsating fluid under random vibration. Its nonlinear equation of motion is first developed using the method of Newton. The method of Galerkin is then used to discretize the equation of motion into a system of ordinary differential equations. Afterwards, the statistical moments and mean peak values of the displacement and velocity responses of the pipe are obtained using an efficient Monte Carlo simulation (MCS) method based on the explicit time-domain method (ETDM). Furthermore, the displacement-sensitive and velocity-sensitive locations of the pipe are obtained for different boundary conditions. The impacts of the fluid, random vibration, and structural parameters on the mean peak value of the dynamic response of the pipe are finally analyzed. The obtained results provide a reference for better understanding the dynamic characteristics of pulsating fluid transport pipes under random vibration and for accurately designing pipe structures.
{"title":"Dynamic response of a pipe conveying pulsating fluid under random vibration","authors":"Wei Li, Huailiang Zhang, Wei Qu, Zihan Liu, Qingqing Yang","doi":"10.1177/10775463241272813","DOIUrl":"https://doi.org/10.1177/10775463241272813","url":null,"abstract":"This paper studies the dynamic response of a pipe conveying pulsating fluid under random vibration. Its nonlinear equation of motion is first developed using the method of Newton. The method of Galerkin is then used to discretize the equation of motion into a system of ordinary differential equations. Afterwards, the statistical moments and mean peak values of the displacement and velocity responses of the pipe are obtained using an efficient Monte Carlo simulation (MCS) method based on the explicit time-domain method (ETDM). Furthermore, the displacement-sensitive and velocity-sensitive locations of the pipe are obtained for different boundary conditions. The impacts of the fluid, random vibration, and structural parameters on the mean peak value of the dynamic response of the pipe are finally analyzed. The obtained results provide a reference for better understanding the dynamic characteristics of pulsating fluid transport pipes under random vibration and for accurately designing pipe structures.","PeriodicalId":17511,"journal":{"name":"Journal of Vibration and Control","volume":"14 1","pages":""},"PeriodicalIF":2.8,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142208082","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}