首页 > 最新文献

Journal of Virology最新文献

英文 中文
The GP2a 91/97/98 amino acid substitutions play critical roles in determining PRRSV tropism and infectivity but do not affect immune responses. GP2a 91/97/98 氨基酸取代在决定 PRRSV 的滋养和感染性方面起着关键作用,但并不影响免疫反应。
IF 4 2区 医学 Q2 VIROLOGY Pub Date : 2025-03-12 DOI: 10.1128/jvi.00048-25
Ming Qiu, Shuai Li, Shubin Li, Zhe Sun, Hong Lin, Shuai Yang, Meng Cui, Yuejia Qiu, Wenhao Qi, Xiuling Yu, Shaobin Shang, Kegong Tian, François Meurens, Jianzhong Zhu, Nanhua Chen

Porcine reproductive and respiratory syndrome virus (PRRSV) isolates share a restricted cellular tropism. Marc-145 cells derived from African green monkey are one of the few cell lines supporting PRRSV propagation in vitro and are commonly used for PRRS vaccine development. However, currently prevalent PRRSV isolates display different Marc-145 cell tropism while the exact determinant is not clarified yet. In this study, we identified for the first time that the 91/97/98 amino acid (aa) substitutions in GP2a of PRRSV play critical roles in determining Marc-145 adaptation. Specifically, multiple series of chimeric viruses were constructed based on four PRRSV infectious clones including Marc-145 adaptive HP-PRRSV-2 strain and Marc-145 non-adaptive NADC34-like PRRSV-2, NADC30-like PRRSV-2, and PRRSV-1 strains. The GP2a 91/97/98 aa substitutions are a sufficient and necessary determinant in NADC34-like and NADC30-like PRRSV-2, a sufficient but not necessary determinant in HP-PRRSV-2, a necessary but not sufficient determinant in PRRSV-1, respectively. In addition, the GP2a substitutions also influenced PRRSV infectivity in PAMs and piglets. Noticeably, the GP2a substitutions did not significantly affect the levels of neutralizing antibodies, porcine T follicular helper (Tfh) cells, and PRRSV-specific IFNγ secreting cells. Overall, our results not only provide new insights into PRRSV tropism and infectivity but also will facilitate PRRS vaccine development.

Importance: Prevalent PRRSV isolates present different cell tropisms in vitro. Clarifying the exact determinant of PRRSV tropism is crucial for PRRSV isolation and vaccine development. By constructing chimeric viruses based on four representative PRRSV infectious clones, we identified for the first time that the 91/97/98 amino acid substitutions in GP2a play critical but distinct roles in determining Marc-145 cell tropism for different PRRSV strains. The GP2a 91/97/98 amino acid substitutions also affect PRRSV infectivity in PAMs and piglets but do not influence immune responses. This study not only deciphers an exact determinant of PRRSV tropism and infectivity but also has guiding significance for PRRS vaccine development.

{"title":"The GP2a 91/97/98 amino acid substitutions play critical roles in determining PRRSV tropism and infectivity but do not affect immune responses.","authors":"Ming Qiu, Shuai Li, Shubin Li, Zhe Sun, Hong Lin, Shuai Yang, Meng Cui, Yuejia Qiu, Wenhao Qi, Xiuling Yu, Shaobin Shang, Kegong Tian, François Meurens, Jianzhong Zhu, Nanhua Chen","doi":"10.1128/jvi.00048-25","DOIUrl":"https://doi.org/10.1128/jvi.00048-25","url":null,"abstract":"<p><p>Porcine reproductive and respiratory syndrome virus (PRRSV) isolates share a restricted cellular tropism. Marc-145 cells derived from African green monkey are one of the few cell lines supporting PRRSV propagation <i>in vitro</i> and are commonly used for PRRS vaccine development. However, currently prevalent PRRSV isolates display different Marc-145 cell tropism while the exact determinant is not clarified yet. In this study, we identified for the first time that the 91/97/98 amino acid (aa) substitutions in GP2a of PRRSV play critical roles in determining Marc-145 adaptation. Specifically, multiple series of chimeric viruses were constructed based on four PRRSV infectious clones including Marc-145 adaptive HP-PRRSV-2 strain and Marc-145 non-adaptive NADC34-like PRRSV-2, NADC30-like PRRSV-2, and PRRSV-1 strains. The GP2a 91/97/98 aa substitutions are a sufficient and necessary determinant in NADC34-like and NADC30-like PRRSV-2, a sufficient but not necessary determinant in HP-PRRSV-2, a necessary but not sufficient determinant in PRRSV-1, respectively. In addition, the GP2a substitutions also influenced PRRSV infectivity in PAMs and piglets. Noticeably, the GP2a substitutions did not significantly affect the levels of neutralizing antibodies, porcine T follicular helper (Tfh) cells, and PRRSV-specific IFNγ secreting cells. Overall, our results not only provide new insights into PRRSV tropism and infectivity but also will facilitate PRRS vaccine development.</p><p><strong>Importance: </strong>Prevalent PRRSV isolates present different cell tropisms <i>in vitro</i>. Clarifying the exact determinant of PRRSV tropism is crucial for PRRSV isolation and vaccine development. By constructing chimeric viruses based on four representative PRRSV infectious clones, we identified for the first time that the 91/97/98 amino acid substitutions in GP2a play critical but distinct roles in determining Marc-145 cell tropism for different PRRSV strains. The GP2a 91/97/98 amino acid substitutions also affect PRRSV infectivity in PAMs and piglets but do not influence immune responses. This study not only deciphers an exact determinant of PRRSV tropism and infectivity but also has guiding significance for PRRS vaccine development.</p>","PeriodicalId":17583,"journal":{"name":"Journal of Virology","volume":" ","pages":"e0004825"},"PeriodicalIF":4.0,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143605447","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Induction of mitochondrial damage via the CREB3L1/miR-34c/COX1 axis by porcine epidemic diarrhea virus infection facilitates pathogenicity.
IF 4 2区 医学 Q2 VIROLOGY Pub Date : 2025-03-12 DOI: 10.1128/jvi.00591-24
Hangao Xie, Ting Xiong, Jinlian Guan, Yin Han, Haixia Feng, Fei Xu, Sixuan Chen, Jiahui Li, Ziwei Xie, Dingxiang Liu, Ruiai Chen

Porcine epidemic diarrhea virus (PEDV) is a primary cause of viral diarrhea in neonatal piglets, leading to substantial economic losses in the swine industry globally. It primarily targets epithelial cells of the small intestine, compromising intestinal function and resulting in the death of affected animals. As mitochondria are essential for maintaining gut health, this study investigates the effects of PEDV infection on mitochondrial function in small intestinal epithelial cells and its subsequent impacts. Using small RNA sequencing, fluorescence in situ hybridization, dual luciferase reporter assay, gene overexpression, and silencing experiments, we investigated the mitochondrial structural and functional impairments induced by PEDV infection in jejunum epithelial cells of piglets and characterized the regulatory pattern of miRNAs in mitochondria of jejunum epithelial cells during PEDV infection. The results indicate that PEDV infection leads to the upregulation and mitochondrial localization of the nuclear-encoded microRNA, miR-34c, which in turn suppresses COX1 expression. The activation of the miR-34c/COX1 axis diminishes mitochondrial complex III, IV, and V activities, depletes ATP, lowers mitochondrial oxygen consumption, induces mitochondrial depolarization, increases the accumulation of mitochondrial reactive oxygen species (mtROS), and stimulates mitophagy. Furthermore, we confirm that CREB3L1 acts as an upstream transcription factor regulating the miR-34c/COX1 axis during PEDV infection, modulating mitochondrial damage in the epithelial cells of the jejunum. These findings demonstrate for the first time that PEDV infection activates the miR-34c/COX1 axis via the transcription factor CREB3L1 and regulates the nuclear-mitochondrial communication and mitochondrial fate, providing a new perspective on the pathogenesis of PEDV.IMPORTANCEThis study reveals the mechanism by which the porcine epidemic diarrhea virus (PEDV) disrupts mitochondrial function in piglets, enhancing viral pathogenicity. By demonstrating how PEDV infection upregulates miR-34c, leading to COX1 suppression and subsequent mitochondrial dysfunction, the research highlights a novel aspect of viral manipulation of host cellular mechanisms. These findings provide a deeper understanding of the PEDV pathogenesis and identify potential targets for therapeutic intervention, advancing efforts to mitigate the economic impact of PEDV on the swine industry.

{"title":"Induction of mitochondrial damage via the CREB3L1/miR-34c/COX1 axis by porcine epidemic diarrhea virus infection facilitates pathogenicity.","authors":"Hangao Xie, Ting Xiong, Jinlian Guan, Yin Han, Haixia Feng, Fei Xu, Sixuan Chen, Jiahui Li, Ziwei Xie, Dingxiang Liu, Ruiai Chen","doi":"10.1128/jvi.00591-24","DOIUrl":"10.1128/jvi.00591-24","url":null,"abstract":"<p><p>Porcine epidemic diarrhea virus (PEDV) is a primary cause of viral diarrhea in neonatal piglets, leading to substantial economic losses in the swine industry globally. It primarily targets epithelial cells of the small intestine, compromising intestinal function and resulting in the death of affected animals. As mitochondria are essential for maintaining gut health, this study investigates the effects of PEDV infection on mitochondrial function in small intestinal epithelial cells and its subsequent impacts. Using small RNA sequencing, fluorescence <i>in situ</i> hybridization, dual luciferase reporter assay, gene overexpression, and silencing experiments, we investigated the mitochondrial structural and functional impairments induced by PEDV infection in jejunum epithelial cells of piglets and characterized the regulatory pattern of miRNAs in mitochondria of jejunum epithelial cells during PEDV infection. The results indicate that PEDV infection leads to the upregulation and mitochondrial localization of the nuclear-encoded microRNA, miR-34c, which in turn suppresses COX1 expression. The activation of the miR-34c/COX1 axis diminishes mitochondrial complex III, IV, and V activities, depletes ATP, lowers mitochondrial oxygen consumption, induces mitochondrial depolarization, increases the accumulation of mitochondrial reactive oxygen species (mtROS), and stimulates mitophagy. Furthermore, we confirm that CREB3L1 acts as an upstream transcription factor regulating the miR-34c/COX1 axis during PEDV infection, modulating mitochondrial damage in the epithelial cells of the jejunum. These findings demonstrate for the first time that PEDV infection activates the miR-34c/COX1 axis via the transcription factor CREB3L1 and regulates the nuclear-mitochondrial communication and mitochondrial fate, providing a new perspective on the pathogenesis of PEDV.IMPORTANCEThis study reveals the mechanism by which the porcine epidemic diarrhea virus (PEDV) disrupts mitochondrial function in piglets, enhancing viral pathogenicity. By demonstrating how PEDV infection upregulates miR-34c, leading to COX1 suppression and subsequent mitochondrial dysfunction, the research highlights a novel aspect of viral manipulation of host cellular mechanisms. These findings provide a deeper understanding of the PEDV pathogenesis and identify potential targets for therapeutic intervention, advancing efforts to mitigate the economic impact of PEDV on the swine industry.</p>","PeriodicalId":17583,"journal":{"name":"Journal of Virology","volume":" ","pages":"e0059124"},"PeriodicalIF":4.0,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143605445","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A virus-like particle assembly system for probing the HIV-1 Gag-Pol dimerization domain: supporting evidence for reverse transcriptase involvement in protease activation by influencing Gag-Pol/Gag-Pol interaction.
IF 4 2区 医学 Q2 VIROLOGY Pub Date : 2025-03-12 DOI: 10.1128/jvi.02236-24
Shih-Han Hsieh, Kuo-Jung Huang, Chin-Tien Wang

HIV-1 protease (PR) activation is triggered by Gag-Pol dimerization. We previously reported that reverse transcriptase (RT) amino acid substitution mutations resulted in p66/51RT heterodimer instability associated with impaired PR activation, and that treatment with efavirenz (EFV, an RT dimerization enhancer) increased PR activation, suggesting RT involvement. However, the contribution of RT to PR activation via the promotion of Gag-Pol dimerization has not been corroborated. To determine whether RT/RT interaction affects Gag-Pol dimerization, RT amino acid substitution mutations known to impair PR activation were cloned into a p6gag-containing construct, Gagp6-Pol, which assembles and releases virus-like particles (VLPs) when PR is inactivated. To map domains involved in Gag-Pol/Gag-Pol interaction, the major Gag assembly domain, with or without additional p6*, PR, or integrase (IN) deletions, was removed from Gagp6-Pol. Resulting constructs were transiently expressed in HEK293T cells. Sucrose density gradient fractionation and electron microscopy results suggest that p6gag-containing RT could form VLPs with lower densities and smaller sizes compared to wild-type particles. RT-PCR results suggest that p6-RT is capable of viral RNA packaging. RT-destabilizing amino acid mutations associated with PR-mediated virus processing deficiencies were found to be capable of reducing Gagp6-Pol VLP yields and attenuating EFV enhancement of Gagp6-Pol VLP assembly. Our results support the proposal that impaired RT stability or RT/RT interaction can disrupt Gag-Pol/Gag-Pol interaction, leading to impaired PR activation. This Gagp6-Pol VLP assembly system offers a potential assay method for probing domains involved in Gag-Pol/Gag-Pol interaction.

Importance: HIV-1 protease (PR) activation for mediating virus particle processing is essential for virus infectivity. As part of our attempt to determine whether Gag-Pol dimerization triggers PR activation, we found that RT point mutations that impair RT heterodimer stability and virus particle processing markedly reduced VLP assembly efficiencies in a p6gag-containing Gag-Pol expression vector (designated Gagp6-Pol). Further, these unstable RT point mutations markedly inhibited the facilitating effect of an RT dimerization enhancer on Gagp6-Pol VLP assembly. Our data support the proposal that RT/RT interaction contributes to PR activation by promoting Gag-Pol/Gag-Pol interaction, thus suggesting that targeting Gag-Pol dimerization may serve as an alternative HIV/AIDS treatment strategy. A Gag-Pol VLP assembly assay might be usable for probing the potential impacts of Gag-Pol dimerization on PR activation.

{"title":"A virus-like particle assembly system for probing the HIV-1 Gag-Pol dimerization domain: supporting evidence for reverse transcriptase involvement in protease activation by influencing Gag-Pol/Gag-Pol interaction.","authors":"Shih-Han Hsieh, Kuo-Jung Huang, Chin-Tien Wang","doi":"10.1128/jvi.02236-24","DOIUrl":"https://doi.org/10.1128/jvi.02236-24","url":null,"abstract":"<p><p>HIV-1 protease (PR) activation is triggered by Gag-Pol dimerization. We previously reported that reverse transcriptase (RT) amino acid substitution mutations resulted in p66/51RT heterodimer instability associated with impaired PR activation, and that treatment with <i>efavirenz</i> (<i>EFV</i>, an RT dimerization enhancer) increased PR activation, suggesting RT involvement. However, the contribution of RT to PR activation via the promotion of Gag-Pol dimerization has not been corroborated. To determine whether RT/RT interaction affects Gag-Pol dimerization, RT amino acid substitution mutations known to impair PR activation were cloned into a p6gag-containing construct, Gagp6-Pol, which assembles and releases virus-like particles (VLPs) when PR is inactivated. To map domains involved in Gag-Pol/Gag-Pol interaction, the major Gag assembly domain, with or without additional p6*, PR, or integrase (IN) deletions, was removed from Gagp6-Pol. Resulting constructs were transiently expressed in HEK293T cells. Sucrose density gradient fractionation and electron microscopy results suggest that p6gag-containing RT could form VLPs with lower densities and smaller sizes compared to wild-type particles. RT-PCR results suggest that p6-RT is capable of viral RNA packaging. RT-destabilizing amino acid mutations associated with PR-mediated virus processing deficiencies were found to be capable of reducing Gagp6-Pol VLP yields and attenuating EFV enhancement of Gagp6-Pol VLP assembly. Our results support the proposal that impaired RT stability or RT/RT interaction can disrupt Gag-Pol/Gag-Pol interaction, leading to impaired PR activation. This Gagp6-Pol VLP assembly system offers a potential assay method for probing domains involved in Gag-Pol/Gag-Pol interaction.</p><p><strong>Importance: </strong>HIV-1 protease (PR) activation for mediating virus particle processing is essential for virus infectivity. As part of our attempt to determine whether Gag-Pol dimerization triggers PR activation, we found that RT point mutations that impair RT heterodimer stability and virus particle processing markedly reduced VLP assembly efficiencies in a p6gag-containing Gag-Pol expression vector (designated Gagp6-Pol). Further, these unstable RT point mutations markedly inhibited the facilitating effect of an RT dimerization enhancer on Gagp6-Pol VLP assembly. Our data support the proposal that RT/RT interaction contributes to PR activation by promoting Gag-Pol/Gag-Pol interaction, thus suggesting that targeting Gag-Pol dimerization may serve as an alternative HIV/AIDS treatment strategy. A Gag-Pol VLP assembly assay might be usable for probing the potential impacts of Gag-Pol dimerization on PR activation.</p>","PeriodicalId":17583,"journal":{"name":"Journal of Virology","volume":" ","pages":"e0223624"},"PeriodicalIF":4.0,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143605405","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sputnik virophage disrupts the transcriptional regulation of its host giant virus.
IF 4 2区 医学 Q2 VIROLOGY Pub Date : 2025-03-12 DOI: 10.1128/jvi.00192-25
Jingjie Chen, Hiroyuki Ogata, Hiroyuki Hikida

Sputnik virophages are small double-stranded DNA (dsDNA) viruses that replicate only inside host amoebae infected with giant dsDNA viruses, mimiviruses. Sputnik infection affects mimivirus replication, but their molecular interaction remains poorly understood. Here, we performed a time-course transcriptome analysis of Acanthamoeba castellanii cells infected with Acanthamoeba polyphaga mimivirus (APMV; hereafter referred to as Sputnik- cells) and those infected with both APMV and Sputnik 3 virophage (Sputnik+ cells). The gene expression patterns of the amoeba were similar between these two conditions, whereas the expression of APMV genes was drastically affected by Sputnik, depending on the timing of their expression. Early-expressed APMV genes showed similar expression patterns in both conditions at the early stage of infection. However, at later stages, their expression levels remained higher in Sputnik+ cells than in Sputnik- cells, suggesting a prolongation of early gene expression by Sputnik. Late-expressed APMV genes showed lower expression at earlier stages in Sputnik+ cells, but their expression levels reached or exceeded those in Sputnik- cells at later stages, indicating a delay in gene expression. Overall, our results demonstrated that Sputnik infection drastically alters the transcriptome of APMV rather than amoeba, likely by disturbing the transition from early to late stages of APMV infection.IMPORTANCEVirophages are small double-stranded DNA (dsDNA) viruses parasitizing other dsDNA viruses, such as giant viruses. Virophages inhibit the replication of giant viruses, and some protists use virophages as a defense system against giant viruses. However, molecular interactions among host cellular organisms, giant viruses, and virophages are largely unknown. Here, we performed a time-course transcriptome analysis of Acanthamoeba castellanii cells infected with Acanthamoeba polyphaga mimivirus (APMV) and those infected with both APMV and Sputnik 3 virophage. We demonstrated that the virophage has little effect on the amoeba transcriptome and primarily hijacks the transcriptional machinery of the giant virus. Furthermore, virophage infection alters giant virus gene expression, depending on their expression timing. The expression of early genes was prolonged, while that of late genes was delayed, suggesting that virophage infection disrupts the transition from the early to late stages of giant virus infection. This study provides molecular insights into the interactions within this unique tripartite system.

{"title":"Sputnik virophage disrupts the transcriptional regulation of its host giant virus.","authors":"Jingjie Chen, Hiroyuki Ogata, Hiroyuki Hikida","doi":"10.1128/jvi.00192-25","DOIUrl":"https://doi.org/10.1128/jvi.00192-25","url":null,"abstract":"<p><p>Sputnik virophages are small double-stranded DNA (dsDNA) viruses that replicate only inside host amoebae infected with giant dsDNA viruses, mimiviruses. Sputnik infection affects mimivirus replication, but their molecular interaction remains poorly understood. Here, we performed a time-course transcriptome analysis of <i>Acanthamoeba castellanii</i> cells infected with Acanthamoeba polyphaga mimivirus (APMV; hereafter referred to as Sputnik<sup>-</sup> cells) and those infected with both APMV and Sputnik 3 virophage (Sputnik<sup>+</sup> cells). The gene expression patterns of the amoeba were similar between these two conditions, whereas the expression of APMV genes was drastically affected by Sputnik, depending on the timing of their expression. Early-expressed APMV genes showed similar expression patterns in both conditions at the early stage of infection. However, at later stages, their expression levels remained higher in Sputnik<sup>+</sup> cells than in Sputnik<sup>-</sup> cells, suggesting a prolongation of early gene expression by Sputnik. Late-expressed APMV genes showed lower expression at earlier stages in Sputnik<sup>+</sup> cells, but their expression levels reached or exceeded those in Sputnik<sup>-</sup> cells at later stages, indicating a delay in gene expression. Overall, our results demonstrated that Sputnik infection drastically alters the transcriptome of APMV rather than amoeba, likely by disturbing the transition from early to late stages of APMV infection.IMPORTANCEVirophages are small double-stranded DNA (dsDNA) viruses parasitizing other dsDNA viruses, such as giant viruses. Virophages inhibit the replication of giant viruses, and some protists use virophages as a defense system against giant viruses. However, molecular interactions among host cellular organisms, giant viruses, and virophages are largely unknown. Here, we performed a time-course transcriptome analysis of <i>Acanthamoeba castellanii</i> cells infected with Acanthamoeba polyphaga mimivirus (APMV) and those infected with both APMV and Sputnik 3 virophage. We demonstrated that the virophage has little effect on the amoeba transcriptome and primarily hijacks the transcriptional machinery of the giant virus. Furthermore, virophage infection alters giant virus gene expression, depending on their expression timing. The expression of early genes was prolonged, while that of late genes was delayed, suggesting that virophage infection disrupts the transition from the early to late stages of giant virus infection. This study provides molecular insights into the interactions within this unique tripartite system.</p>","PeriodicalId":17583,"journal":{"name":"Journal of Virology","volume":" ","pages":"e0019225"},"PeriodicalIF":4.0,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143605446","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Functional dissection of the C-terminal domain of rabies virus RNA polymerase L protein.
IF 4 2区 医学 Q2 VIROLOGY Pub Date : 2025-03-11 DOI: 10.1128/jvi.02082-24
Fumiki Izumi, Machiko Makino, Michihito Sasaki, Kento Nakagawa, Tatsuki Takahashi, Shoko Nishiyama, Yuji Fujii, Misuzu Okajima, Tatsunori Masatani, Manabu Igarashi, Hirofumi Sawa, Makoto Sugiyama, Naoto Ito

The rabies virus large (L) protein interacts with its cofactor phosphoprotein (P protein) to function as an RNA-dependent RNA polymerase (RdRp). The C-terminal domain (CTD) of the L protein plays a critical role in P protein binding. We previously reported that the highly conserved NPYNE sequence in the hydrophilic region of the CTD (positions 1929-1933 of the L protein [L1929-1933]) is important for both P protein binding and RdRp function. To elucidate the functional role of the CTD in detail, we examined the importance of each of the hydrophilic residues in the NPYNE sequence (underlined). A rabies virus mutant with Ala substitutions in these hydrophilic residues showed low replication capacity. Comprehensive analyses of a revertant of the mutant virus and a series of L protein mutants revealed that Asn at L1929 is crucial for both P protein binding and RdRp function. Analyses of the L protein mutants also showed that Asn at L1932 and Glu at L1933 have roles in RdRp function and P protein binding, respectively. Furthermore, we demonstrated that the NPYNE sequence is essential for stabilizing the L protein through the L-P interaction. In a previously determined L protein structure, all of the hydrophilic residues in the NPYNE sequence form the first α-helix in the CTD. Therefore, our findings indicate that this helix is important for P protein-binding ability, RdRp function, and stabilization of the L protein, thereby contributing to efficient viral replication.

Importance: Although RNA-dependent RNA polymerase of rhabdoviruses, which is composed of the large (L) protein and its cofactor phosphoprotein (P protein), has a high potential as a target for therapeutics against the viruses, the relationship between the structure and molecular functions is poorly understood. In this study, we functionally examined the C-terminal domain (CTD) of the rabies virus L protein as a model for the rhabdovirus L protein. We showed that the first α-helix in the CTD is important for the P protein-binding ability, RdRp function, and stability of the L protein. Since in the L-P complex structure, this helix does not form an interface with the P protein, we provide here the first evidence of an indirect contribution of the L protein CTD to the L-P interaction in rhabdoviruses. The findings in this study will be useful for developing therapeutics targeting the L-P interaction.

{"title":"Functional dissection of the C-terminal domain of rabies virus RNA polymerase L protein.","authors":"Fumiki Izumi, Machiko Makino, Michihito Sasaki, Kento Nakagawa, Tatsuki Takahashi, Shoko Nishiyama, Yuji Fujii, Misuzu Okajima, Tatsunori Masatani, Manabu Igarashi, Hirofumi Sawa, Makoto Sugiyama, Naoto Ito","doi":"10.1128/jvi.02082-24","DOIUrl":"https://doi.org/10.1128/jvi.02082-24","url":null,"abstract":"<p><p>The rabies virus large (L) protein interacts with its cofactor phosphoprotein (P protein) to function as an RNA-dependent RNA polymerase (RdRp). The C-terminal domain (CTD) of the L protein plays a critical role in P protein binding. We previously reported that the highly conserved NPYNE sequence in the hydrophilic region of the CTD (positions 1929-1933 of the L protein [L1929-1933]) is important for both P protein binding and RdRp function. To elucidate the functional role of the CTD in detail, we examined the importance of each of the hydrophilic residues in the <u>N</u>PY<u>NE</u> sequence (underlined). A rabies virus mutant with Ala substitutions in these hydrophilic residues showed low replication capacity. Comprehensive analyses of a revertant of the mutant virus and a series of L protein mutants revealed that Asn at L1929 is crucial for both P protein binding and RdRp function. Analyses of the L protein mutants also showed that Asn at L1932 and Glu at L1933 have roles in RdRp function and P protein binding, respectively. Furthermore, we demonstrated that the NPYNE sequence is essential for stabilizing the L protein through the L-P interaction. In a previously determined L protein structure, all of the hydrophilic residues in the NPYNE sequence form the first α-helix in the CTD. Therefore, our findings indicate that this helix is important for P protein-binding ability, RdRp function, and stabilization of the L protein, thereby contributing to efficient viral replication.</p><p><strong>Importance: </strong>Although RNA-dependent RNA polymerase of rhabdoviruses, which is composed of the large (L) protein and its cofactor phosphoprotein (P protein), has a high potential as a target for therapeutics against the viruses, the relationship between the structure and molecular functions is poorly understood. In this study, we functionally examined the C-terminal domain (CTD) of the rabies virus L protein as a model for the rhabdovirus L protein. We showed that the first α-helix in the CTD is important for the P protein-binding ability, RdRp function, and stability of the L protein. Since in the L-P complex structure, this helix does not form an interface with the P protein, we provide here the first evidence of an indirect contribution of the L protein CTD to the L-P interaction in rhabdoviruses. The findings in this study will be useful for developing therapeutics targeting the L-P interaction.</p>","PeriodicalId":17583,"journal":{"name":"Journal of Virology","volume":" ","pages":"e0208224"},"PeriodicalIF":4.0,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143605444","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
BET degraders reveal BRD4 disruption of 7SK and P-TEFb is critical for effective reactivation of latent HIV in CD4+ T-cells.
IF 4 2区 医学 Q2 VIROLOGY Pub Date : 2025-03-11 DOI: 10.1128/jvi.01777-24
Anne-Marie W Turner, Frances M Bashore, Shane D Falcinelli, Joshua A Fox, Alana L Keller, Anthony D Fenton, Renee F Geyer, Brigitte Allard, Jennifer L Kirchherr, Nancie M Archin, Lindsey I James, David M Margolis

HIV cure strategies that aim to induce viral reactivation for immune clearance leverage latency reversal agents to modulate host pathways which directly or indirectly facilitate viral reactivation. Inhibition of bromo and extra-terminal domain (BET) family member BRD4 reverses HIV latency, but enthusiasm for the use of BET inhibitors in HIV cure studies is tempered by concerns over inhibition of other BET family members and dose-limiting toxicities in oncology trials. Here, we evaluated the potential for bivalent chemical degraders targeted to the BET family as alternative latency reversal agents. We observed that despite highly potent and selective BRD4 degradation in primary CD4+ T-cells from ART-suppressed donors, BRD4 degraders failed to induce latency reversal as compared to BET inhibitors. Furthermore, BRD4 degraders failed to mimic previously observed synergistic HIV reactivation between BET inhibitors and an activator of the non-canonical NF-κB pathway. Mechanistic investigation of this discrepancy revealed that latency reversal by BET inhibitors is not related to the abatement of competition between Tat and BRD4 for P-TEFb, but rather the ability of BRD4 to disrupt 7SK and increase the levels of free P-TEFb. This activity is dependent on the shift of BRD4 from chromatin-bound to soluble and retargeting of P-TEFb to chromatin, which is dependent on intact BRD4 but independent of the bromodomains.

Importance: Multiple factors and pathways contribute to the maintenance of HIV latency, including bromo and extra-terminal domain (BET) family member BRD4. While small molecule inhibitors of the BET family result in latency reversal, enthusiasm for the use of BET inhibitors in HIV cure is limited due to toxicity concerns. We examined BRD4-selective chemical degraders as alternatives to BET inhibitors but found two robust degraders failed to induce latency reversal. We observed key differences in the ability of BET inhibitors versus BET degraders to disrupt P-TEFb, a key cellular activator of transcription and a complex required for HIV reactivation. We present a new model for the role of BRD4 in HIV latency and propose that BRD4 be reconsidered as an activator rather than a repressor of HIV transcription in the context of HIV cure strategies.

{"title":"BET degraders reveal BRD4 disruption of 7SK and P-TEFb is critical for effective reactivation of latent HIV in CD4+ T-cells.","authors":"Anne-Marie W Turner, Frances M Bashore, Shane D Falcinelli, Joshua A Fox, Alana L Keller, Anthony D Fenton, Renee F Geyer, Brigitte Allard, Jennifer L Kirchherr, Nancie M Archin, Lindsey I James, David M Margolis","doi":"10.1128/jvi.01777-24","DOIUrl":"https://doi.org/10.1128/jvi.01777-24","url":null,"abstract":"<p><p>HIV cure strategies that aim to induce viral reactivation for immune clearance leverage latency reversal agents to modulate host pathways which directly or indirectly facilitate viral reactivation. Inhibition of bromo and extra-terminal domain (BET) family member BRD4 reverses HIV latency, but enthusiasm for the use of BET inhibitors in HIV cure studies is tempered by concerns over inhibition of other BET family members and dose-limiting toxicities in oncology trials. Here, we evaluated the potential for bivalent chemical degraders targeted to the BET family as alternative latency reversal agents. We observed that despite highly potent and selective BRD4 degradation in primary CD4+ T-cells from ART-suppressed donors, BRD4 degraders failed to induce latency reversal as compared to BET inhibitors. Furthermore, BRD4 degraders failed to mimic previously observed synergistic HIV reactivation between BET inhibitors and an activator of the non-canonical NF-κB pathway. Mechanistic investigation of this discrepancy revealed that latency reversal by BET inhibitors is not related to the abatement of competition between Tat and BRD4 for P-TEFb, but rather the ability of BRD4 to disrupt 7SK and increase the levels of free P-TEFb. This activity is dependent on the shift of BRD4 from chromatin-bound to soluble and retargeting of P-TEFb to chromatin, which is dependent on intact BRD4 but independent of the bromodomains.</p><p><strong>Importance: </strong>Multiple factors and pathways contribute to the maintenance of HIV latency, including bromo and extra-terminal domain (BET) family member BRD4. While small molecule inhibitors of the BET family result in latency reversal, enthusiasm for the use of BET inhibitors in HIV cure is limited due to toxicity concerns. We examined BRD4-selective chemical degraders as alternatives to BET inhibitors but found two robust degraders failed to induce latency reversal. We observed key differences in the ability of BET inhibitors versus BET degraders to disrupt P-TEFb, a key cellular activator of transcription and a complex required for HIV reactivation. We present a new model for the role of BRD4 in HIV latency and propose that BRD4 be reconsidered as an activator rather than a repressor of HIV transcription in the context of HIV cure strategies.</p>","PeriodicalId":17583,"journal":{"name":"Journal of Virology","volume":" ","pages":"e0177724"},"PeriodicalIF":4.0,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143605426","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Antigenic structural analysis of bat and human norovirus protruding (P) domains.
IF 4 2区 医学 Q2 VIROLOGY Pub Date : 2025-03-10 DOI: 10.1128/jvi.01971-24
Dayna L Holroyd, Akhil Kumar, Eduardo Vasquez, Veronika Masic, Mark von Itzstein, John B Bruning, Grant S Hansman
{"title":"Antigenic structural analysis of bat and human norovirus protruding (P) domains.","authors":"Dayna L Holroyd, Akhil Kumar, Eduardo Vasquez, Veronika Masic, Mark von Itzstein, John B Bruning, Grant S Hansman","doi":"10.1128/jvi.01971-24","DOIUrl":"https://doi.org/10.1128/jvi.01971-24","url":null,"abstract":"","PeriodicalId":17583,"journal":{"name":"Journal of Virology","volume":" ","pages":"e0197124"},"PeriodicalIF":4.0,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143586122","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A single mutation in the PrM gene of Zika virus determines AXL dependency for infection of human neural cells.
IF 4 2区 医学 Q2 VIROLOGY Pub Date : 2025-03-10 DOI: 10.1128/jvi.01873-24
Renu Khasa, Sarah C Ogden, Yuqing Wang, Zongiun Mou, Anna D Metzler, Xuping Xie, Xinghong Dai, Hengli Tang

Zika virus (ZIKV) is spread by mosquito bites and is unique among known flaviviruses for being able to cause microcephaly. Entry factors for ZIKV are incompletely understood, but phosphatidylserine (PS) receptors, including the TAM (Tyro3, AXL, and Mer) and TIM (T-cell Ig mucin) families, can serve as cofactors for flavivirus entry in a cell type-specific manner. We identify AXL as the top hit in a CRISPR/Cas9 genome-wide screen in human glioblastoma cells and establish a definitive role of AXL, but not TYRO3 or MerTK, for ZIKV infection. Additionally, Spondweni virus also shows AXL dependency, while dengue virus infection is not affected by AXL knockout. Passage of ZIKV in AXL knockout (KO) cells generated a mutant virus capable of infection via AXL-independent mechanisms, and multiple independent selections identified a common mutation, H83R, in the prM coding region of the ZIKV genome. The mutant virus exhibits an increased infectivity rate in AXL KO cells as compared to wild-type ZIKV and is dependent upon the single H83R mutation. The mutant virus' ability to infect cells in an AXL-independent manner is unrelated to interferon signaling antagonism but likely pertains to a change in virus maturation that leads to a structural disturbance of the ZIKV virion. Our study provides evidence for a potential mechanism linking the viral structural proteins and host PS receptor usage during flavivirus infection.IMPORTANCEA major challenge in elucidating the mechanism of Zika virus (ZIKV) pathogenesis is the multitude of cell types it infects with distinct requirements. The role of phosphatidylserine (PS) receptors in ZIKV infection is cell type-specific, and the controversy surrounds their function in flavivirus entry. Here, we establish a definitive requirement of AXL for infection of human glioblastoma cells by both Zika and Spondweni virus. We then identified a single amino acid mutation (H83R) in the prM protein of ZIKV that allowed AXL-independent infection of these cells. The H83R-mediated escape of AXL requirement is independent of interferon (IFN) signaling suppression by AXL; instead, the mutation has the potential to disrupt the virus assembly and virion structure. This study reveals a previously unknown connection between the PS receptor usage and the flavivirus prM gene, which can guide detailed molecular mechanism studies of the interplay between virion assembly and virus entry.

{"title":"A single mutation in the PrM gene of Zika virus determines AXL dependency for infection of human neural cells.","authors":"Renu Khasa, Sarah C Ogden, Yuqing Wang, Zongiun Mou, Anna D Metzler, Xuping Xie, Xinghong Dai, Hengli Tang","doi":"10.1128/jvi.01873-24","DOIUrl":"https://doi.org/10.1128/jvi.01873-24","url":null,"abstract":"<p><p>Zika virus (ZIKV) is spread by mosquito bites and is unique among known flaviviruses for being able to cause microcephaly. Entry factors for ZIKV are incompletely understood, but phosphatidylserine (PS) receptors, including the TAM (Tyro3, AXL, and Mer) and TIM (T-cell Ig mucin) families, can serve as cofactors for flavivirus entry in a cell type-specific manner. We identify AXL as the top hit in a CRISPR/Cas9 genome-wide screen in human glioblastoma cells and establish a definitive role of AXL, but not TYRO3 or MerTK, for ZIKV infection. Additionally, Spondweni virus also shows AXL dependency, while dengue virus infection is not affected by AXL knockout. Passage of ZIKV in AXL knockout (KO) cells generated a mutant virus capable of infection via AXL-independent mechanisms, and multiple independent selections identified a common mutation, H83R, in the prM coding region of the ZIKV genome. The mutant virus exhibits an increased infectivity rate in AXL KO cells as compared to wild-type ZIKV and is dependent upon the single H83R mutation. The mutant virus' ability to infect cells in an AXL-independent manner is unrelated to interferon signaling antagonism but likely pertains to a change in virus maturation that leads to a structural disturbance of the ZIKV virion. Our study provides evidence for a potential mechanism linking the viral structural proteins and host PS receptor usage during flavivirus infection.IMPORTANCEA major challenge in elucidating the mechanism of Zika virus (ZIKV) pathogenesis is the multitude of cell types it infects with distinct requirements. The role of phosphatidylserine (PS) receptors in ZIKV infection is cell type-specific, and the controversy surrounds their function in flavivirus entry. Here, we establish a definitive requirement of AXL for infection of human glioblastoma cells by both Zika and Spondweni virus. We then identified a single amino acid mutation (H83R) in the prM protein of ZIKV that allowed AXL-independent infection of these cells. The H83R-mediated escape of AXL requirement is independent of interferon (IFN) signaling suppression by AXL; instead, the mutation has the potential to disrupt the virus assembly and virion structure. This study reveals a previously unknown connection between the PS receptor usage and the flavivirus prM gene, which can guide detailed molecular mechanism studies of the interplay between virion assembly and virus entry.</p>","PeriodicalId":17583,"journal":{"name":"Journal of Virology","volume":" ","pages":"e0187324"},"PeriodicalIF":4.0,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143586209","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Interaction of human cytomegalovirus pUL52 with major components of the viral DNA encapsidation network underlines its essential role in genome cleavage-packaging.
IF 4 2区 医学 Q2 VIROLOGY Pub Date : 2025-03-10 DOI: 10.1128/jvi.02201-24
Sarah Harmening, Boris Bogdanow, Karen Wagner, Fan Liu, Martin Messerle, Eva Maria Borst

Cleavage of human cytomegalovirus (HCMV) genomes and their packaging into capsids requires at least seven essential viral proteins, yet it is not completely understood how these proteins cooperate to accomplish this task. Besides the portal protein pUL104 and the terminase subunits pUL51, pUL56, and pUL89, the UL52 protein is also necessary for HCMV genome encapsidation; however, knowledge about pUL52 is scant. In the absence of pUL52, viral concatemers are not cleaved into unit-length genomes and no DNA-filled capsids are observed, yet no viral or cellular proteins interacting with pUL52 have been identified that would explain how pUL52 exerts its essential role in the HCMV infection cycle. In this study, we aimed at a comprehensive definition of pUL52-interacting proteins in infected cells. Using suitable HCMV mutants, we employed three complementary state-of-the-art proteomic approaches, namely biotin ligase-dependent proximity labeling, affinity purification, and cross-linking mass spectrometry. These experiments, combined with thorough validation by immunoblotting, pointed to several viral DNA-associated proteins and key players pivotal for genome encapsidation as interactors of pUL52. The most noticeable direct pUL52 interaction partners were the terminase subunits pUL56 and pUL89 as well as the portal protein pUL104. Hence, we suggest a model of pUL52 function in which pUL52 mediates association of HCMV genomes with the terminase subunits and the capsid portal. Taken together, our data contribute to the understanding of an essential viral process previously recognized as a prominent antiviral target. Disturbing the identified pUL52 interactions may provide a starting point to develop novel antiviral medication.

Importance: Human cytomegalovirus (HCMV) can evoke severe disease in immunocompromised patients and, moreover, is the most frequent viral cause of malformations in newborns. The virus-specific process of genome cleavage and packaging into capsids has emerged as an Achilles heel in the HCMV life cycle, which can be targeted by novel antiviral drugs, yet the mechanism of viral DNA encapsidation is only partially understood. Here, we report that the essential viral cleavage-packaging protein pUL52 interacts with several HCMV proteins known to be crucial for genome packaging, with the most prominent ones being the terminase complex and the portal protein. These data provide insight into the role of pUL52 during HCMV infection and may lay the basis for the development of additional antiviral substances tackling viral DNA packaging.

{"title":"Interaction of human cytomegalovirus pUL52 with major components of the viral DNA encapsidation network underlines its essential role in genome cleavage-packaging.","authors":"Sarah Harmening, Boris Bogdanow, Karen Wagner, Fan Liu, Martin Messerle, Eva Maria Borst","doi":"10.1128/jvi.02201-24","DOIUrl":"https://doi.org/10.1128/jvi.02201-24","url":null,"abstract":"<p><p>Cleavage of human cytomegalovirus (HCMV) genomes and their packaging into capsids requires at least seven essential viral proteins, yet it is not completely understood how these proteins cooperate to accomplish this task. Besides the portal protein pUL104 and the terminase subunits pUL51, pUL56, and pUL89, the UL52 protein is also necessary for HCMV genome encapsidation; however, knowledge about pUL52 is scant. In the absence of pUL52, viral concatemers are not cleaved into unit-length genomes and no DNA-filled capsids are observed, yet no viral or cellular proteins interacting with pUL52 have been identified that would explain how pUL52 exerts its essential role in the HCMV infection cycle. In this study, we aimed at a comprehensive definition of pUL52-interacting proteins in infected cells. Using suitable HCMV mutants, we employed three complementary state-of-the-art proteomic approaches, namely biotin ligase-dependent proximity labeling, affinity purification, and cross-linking mass spectrometry. These experiments, combined with thorough validation by immunoblotting, pointed to several viral DNA-associated proteins and key players pivotal for genome encapsidation as interactors of pUL52. The most noticeable direct pUL52 interaction partners were the terminase subunits pUL56 and pUL89 as well as the portal protein pUL104. Hence, we suggest a model of pUL52 function in which pUL52 mediates association of HCMV genomes with the terminase subunits and the capsid portal. Taken together, our data contribute to the understanding of an essential viral process previously recognized as a prominent antiviral target. Disturbing the identified pUL52 interactions may provide a starting point to develop novel antiviral medication.</p><p><strong>Importance: </strong>Human cytomegalovirus (HCMV) can evoke severe disease in immunocompromised patients and, moreover, is the most frequent viral cause of malformations in newborns. The virus-specific process of genome cleavage and packaging into capsids has emerged as an Achilles heel in the HCMV life cycle, which can be targeted by novel antiviral drugs, yet the mechanism of viral DNA encapsidation is only partially understood. Here, we report that the essential viral cleavage-packaging protein pUL52 interacts with several HCMV proteins known to be crucial for genome packaging, with the most prominent ones being the terminase complex and the portal protein. These data provide insight into the role of pUL52 during HCMV infection and may lay the basis for the development of additional antiviral substances tackling viral DNA packaging.</p>","PeriodicalId":17583,"journal":{"name":"Journal of Virology","volume":" ","pages":"e0220124"},"PeriodicalIF":4.0,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143586123","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
HSV-1 UL56 protein recruits cellular NEDD4-family ubiquitin ligases to suppress CD1d expression and NKT cell function.
IF 4 2区 医学 Q2 VIROLOGY Pub Date : 2025-03-06 DOI: 10.1128/jvi.02140-24
Lingxi Qiu, Xuedi Gao, Xinyue Shao, Jingwen Xi, Siyang Chen, Thanh Pham, Yi Wang, Jonathan Dong, Samhita Divakar Rao, Jingting Hao, Jae Ho Lo, Rirong Yang, Esteban A Engel, Colin M Crump, Weiming Yuan

Herpesviruses, including α-herpesvirus and herpes simplex virus (HSV-1), are masters of immune evasion. Previously we demonstrated that CD1d-restricted NKT cells are required for optimal anti-HSV-1 immune responses and HSV-1 efficiently downregulates CD1d to suppress NKT cell function. To delineate how the virus evades NKT cell function and establishes infection in vivo, we screened an HSV-1 expression library to identify the viral gene(s) downregulating CD1d and discovered that a leaky late gene, UL56, most efficiently suppresses CD1d expression by degrading the protein, apparently via both proteasome- and lysosome-dependent pathways. To investigate the molecular mechanism of UL56 suppression of CD1d expression, we purified and identified UL56-associated proteins by mass spectrometry. The most abundant associated proteins were members of NEDD4 E3 ubiquitin ligase family. Interestingly overexpression of one member, NEDD4L is sufficient to downregulate CD1d expression. However, different from the K5 protein from Kaposi sarcoma's herpesvirus (KSHV), UL56 and NEDD4L did not directly ubiquitinate CD1d. CD1d protein lacking the key lysine residue in its cytoplasmic tail is similarly downregulated by UL56 and NEDD4L protein. Co-expression of UL56 and NEDD4L synergistically reduced the CD1d expression, suggesting that UL56 collaborates with NEDD4L to downregulate CD1d. During in vivo infection, UL56-deficient mutant virus showed significantly weaker virulence in NKT-sufficient mice but demonstrated higher virulence in mutant mice lacking NKT cells. All our results supported that at least one of the pathogenesis functions of UL56 is its suppression of NKT cell function during infection.

Importance: In the large DNA genomes of herpeviruses, there are many genes encoding associate proteins. Most of these proteins are not essential for viral replication but play key roles in viral pathogenesis, in particular, modulating the host immune system to allow efficient viral replication in vivo and latency. The HSV-1 UL56 gene is one of such genes, and its exact pathogenic roles have remain elusive. After we demonstrated the essential roles of CD1d-restricted NKT cells in anti-HSV-1 immunity during HSV-1 ocular infection (P. Rao, X. Wen, J. H. Lo, S. Kim, X. Li, et al., J Virol 92:e01490-18, 2018, https://doi.org/10.1128/jvi.01490-18), we now screened the HSV-1 expression library and identified UL56 is a key factor downregulating CD1d and suppressing NKT cell function. In this manuscript, we are reporting our molecular mechanism study of how UL56 evades CD1d antigen presentation and NKT cell function.

{"title":"HSV-1 UL56 protein recruits cellular NEDD4-family ubiquitin ligases to suppress CD1d expression and NKT cell function.","authors":"Lingxi Qiu, Xuedi Gao, Xinyue Shao, Jingwen Xi, Siyang Chen, Thanh Pham, Yi Wang, Jonathan Dong, Samhita Divakar Rao, Jingting Hao, Jae Ho Lo, Rirong Yang, Esteban A Engel, Colin M Crump, Weiming Yuan","doi":"10.1128/jvi.02140-24","DOIUrl":"10.1128/jvi.02140-24","url":null,"abstract":"<p><p>Herpesviruses, including α-herpesvirus and herpes simplex virus (HSV-1), are masters of immune evasion. Previously we demonstrated that CD1d-restricted NKT cells are required for optimal anti-HSV-1 immune responses and HSV-1 efficiently downregulates CD1d to suppress NKT cell function. To delineate how the virus evades NKT cell function and establishes infection <i>in vivo</i>, we screened an HSV-1 expression library to identify the viral gene(s) downregulating CD1d and discovered that a leaky late gene, UL56, most efficiently suppresses CD1d expression by degrading the protein, apparently via both proteasome- and lysosome-dependent pathways. To investigate the molecular mechanism of UL56 suppression of CD1d expression, we purified and identified UL56-associated proteins by mass spectrometry. The most abundant associated proteins were members of NEDD4 E3 ubiquitin ligase family. Interestingly overexpression of one member, NEDD4L is sufficient to downregulate CD1d expression. However, different from the K5 protein from Kaposi sarcoma's herpesvirus (KSHV), UL56 and NEDD4L did not directly ubiquitinate CD1d. CD1d protein lacking the key lysine residue in its cytoplasmic tail is similarly downregulated by UL56 and NEDD4L protein. Co-expression of UL56 and NEDD4L synergistically reduced the CD1d expression, suggesting that UL56 collaborates with NEDD4L to downregulate CD1d. During <i>in vivo</i> infection, UL56-deficient mutant virus showed significantly weaker virulence in NKT-sufficient mice but demonstrated higher virulence in mutant mice lacking NKT cells. All our results supported that at least one of the pathogenesis functions of UL56 is its suppression of NKT cell function during infection.</p><p><strong>Importance: </strong>In the large DNA genomes of herpeviruses, there are many genes encoding associate proteins. Most of these proteins are not essential for viral replication but play key roles in viral pathogenesis, in particular, modulating the host immune system to allow efficient viral replication <i>in vivo</i> and latency. The HSV-1 UL56 gene is one of such genes, and its exact pathogenic roles have remain elusive. After we demonstrated the essential roles of CD1d-restricted NKT cells in anti-HSV-1 immunity during HSV-1 ocular infection (P. Rao, X. Wen, J. H. Lo, S. Kim, X. Li, et al., J Virol 92:e01490-18, 2018, https://doi.org/10.1128/jvi.01490-18), we now screened the HSV-1 expression library and identified UL56 is a key factor downregulating CD1d and suppressing NKT cell function. In this manuscript, we are reporting our molecular mechanism study of how UL56 evades CD1d antigen presentation and NKT cell function.</p>","PeriodicalId":17583,"journal":{"name":"Journal of Virology","volume":" ","pages":"e0214024"},"PeriodicalIF":4.0,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143567486","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of Virology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1