Hamadi Karembe, Anne Geneteau, Sandrine Lacoste, Nathalie Varinot, Reynald Magnier, Evelyne Coussanes, Santiago Lopez, Daniel Sperling, Mathieu Peyrou
Iron deficiency anemia (IDA) and cystoisosporosis are the most common clinical conditions of fast-growing piglets. Until now, IDA and cystoisosporosis have been managed by intramuscular injection of iron complexes (such as dextran or gleptoferron) and oral administration of toltrazuril. Recently, a new combination product containing toltrazuril and gleptoferron for intramuscular application (Forceris®) has been registered. The objective of this study was to compare the pharmacokinetic profiles of toltrazuril and its main metabolite, toltrazuril sulfone, following a single oral (Baycox®) or intramuscular (Forceris®, a toltrazuril-iron combination product) administration at 20 mg/kg to young suckling piglets. The orally treated piglets were also supplemented with iron (Gleptosil®), and the hematinic activities were compared. Piglets in both groups received comparable doses. The peak concentration (Cmax) of toltrazuril after intramuscular administration was 11% lower than that after oral administration (p = .376). However, the exposure to toltrazuril (AUC) was significantly increased (40% higher) when toltrazuril was administered intramuscularly (p = .036). The Cmax and AUC values of the active metabolite, toltrazuril sulfone were 39% and 34% higher, respectively, after intramuscular administration (p = .007 and 0.008, respectively). Piglets in both groups were properly protected against IDA. In conclusion, a higher relative bioavailability of toltrazuril is observed when toltrazuril is administered intramuscularly.
{"title":"Comparison of an injectable toltrazuril–gleptoferron and an oral toltrazuril + injectable gleptoferron in piglets: Hematinic activities and pharmacokinetics","authors":"Hamadi Karembe, Anne Geneteau, Sandrine Lacoste, Nathalie Varinot, Reynald Magnier, Evelyne Coussanes, Santiago Lopez, Daniel Sperling, Mathieu Peyrou","doi":"10.1111/jvp.13464","DOIUrl":"10.1111/jvp.13464","url":null,"abstract":"<p>Iron deficiency anemia (IDA) and cystoisosporosis are the most common clinical conditions of fast-growing piglets. Until now, IDA and cystoisosporosis have been managed by intramuscular injection of iron complexes (such as dextran or gleptoferron) and oral administration of toltrazuril. Recently, a new combination product containing toltrazuril and gleptoferron for intramuscular application (Forceris®) has been registered. The objective of this study was to compare the pharmacokinetic profiles of toltrazuril and its main metabolite, toltrazuril sulfone, following a single oral (Baycox®) or intramuscular (Forceris®, a toltrazuril-iron combination product) administration at 20 mg/kg to young suckling piglets. The orally treated piglets were also supplemented with iron (Gleptosil®), and the hematinic activities were compared. Piglets in both groups received comparable doses. The peak concentration (C<sub>max</sub>) of toltrazuril after intramuscular administration was 11% lower than that after oral administration (<i>p</i> = .376). However, the exposure to toltrazuril (AUC) was significantly increased (40% higher) when toltrazuril was administered intramuscularly (<i>p</i> = .036). The C<sub>max</sub> and AUC values of the active metabolite, toltrazuril sulfone were 39% and 34% higher, respectively, after intramuscular administration (<i>p</i> = .007 and 0.008, respectively). Piglets in both groups were properly protected against IDA. In conclusion, a higher relative bioavailability of toltrazuril is observed when toltrazuril is administered intramuscularly.</p>","PeriodicalId":17596,"journal":{"name":"Journal of veterinary pharmacology and therapeutics","volume":"47 6","pages":"492-502"},"PeriodicalIF":1.5,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jvp.13464","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141427181","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Clodronic acid is designated as a controlled medication for competition horses by the International Federation for Equestrian Sports and, according to the International Federation of Horseracing Authorities, clodronic acid is not to be administered to racehorses younger than 3.5 years or within 30 days prior to a race. In this study, 35 horses involved in competition were treated with a single dose of 1.53 mg clodronic acid/kg bodyweight intramuscularly. Plasma samples were obtained before treatment and 10, 20, 30, and 40 days post-administration. Clodronic acid concentrations were measured using a validated method, and the data were fitted using a nonlinear mixed effects model. The estimated depletion half-life of clodronic acid was 10.6 days (inter-individual variability: 17.9%). Age, body weight, sex, disease severity, dose, training days, training, and competition did not significantly impact the depletion half-life. The percentage of horses predicted via simulation to have clodronic acid concentrations below the assay's limit of quantification of 1.0 ng/mL was 93.9% at day 30 and 99.4% at Day 40. This study provides rationale to the equestrian federations and horse racing authorities to reliably establish a detection time for clodronic acid, assisting equine veterinarians in recommending a competition withdrawal time for the horses under their care.
{"title":"Detection times of clodronic acid in horses with orthopedic disease","authors":"Beatriz Seguí Pedrosa, Chris Dujardin, Ben Moses, Caryn Thompson, Patxi Sarasola, Florence Gattacceca, Benoit Loup, Patrice Garcia, Marie-Agnès Popot, Ludovic Bailly-Chouriberry","doi":"10.1111/jvp.13453","DOIUrl":"10.1111/jvp.13453","url":null,"abstract":"<p>Clodronic acid is designated as a controlled medication for competition horses by the International Federation for Equestrian Sports and, according to the International Federation of Horseracing Authorities, clodronic acid is not to be administered to racehorses younger than 3.5 years or within 30 days prior to a race. In this study, 35 horses involved in competition were treated with a single dose of 1.53 mg clodronic acid/kg bodyweight intramuscularly. Plasma samples were obtained before treatment and 10, 20, 30, and 40 days post-administration. Clodronic acid concentrations were measured using a validated method, and the data were fitted using a nonlinear mixed effects model. The estimated depletion half-life of clodronic acid was 10.6 days (inter-individual variability: 17.9%). Age, body weight, sex, disease severity, dose, training days, training, and competition did not significantly impact the depletion half-life. The percentage of horses predicted via simulation to have clodronic acid concentrations below the assay's limit of quantification of 1.0 ng/mL was 93.9% at day 30 and 99.4% at Day 40. This study provides rationale to the equestrian federations and horse racing authorities to reliably establish a detection time for clodronic acid, assisting equine veterinarians in recommending a competition withdrawal time for the horses under their care.</p>","PeriodicalId":17596,"journal":{"name":"Journal of veterinary pharmacology and therapeutics","volume":"47 5","pages":"380-389"},"PeriodicalIF":1.5,"publicationDate":"2024-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jvp.13453","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141331262","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lérica Le Roux-Pullen, Jeroen J.M.W. Van den Heuvel, Noraly B. Jonis, Tom Scheer-Weijers, Ilse R. Dubbelboer, Jan B. Koenderink, Frans G.M. Russel, Ronette Gehring
Orthologs of breast cancer resistance protein (BCRP/ABCG2), an ATP-binding cassette (ABC) efflux transmembrane transporter, are present in several species. The list of compounds known to interact with BCRP is growing, and many questions remain concerning species-specific variations in substrate specificity and affinity and the potency of inhibitors. As the most abundant efflux transporter known to be present in the blood–milk barrier, BCRP can increase the elimination of certain xenobiotics to milk, posing a risk for suckling offspring and dairy product consumers. Here we developed a model that can be employed to investigate species-specific differences between BCRP substrates and inhibitors. Membrane vesicles were isolated from transiently transduced human embryonic kidney (HEK) 293 cells, overexpressing BCRP, with human, bovine, caprine, and ovine cDNA sequences. To confirm BCRP transport activity in the transduced cells, D-luciferin efflux was measured and to confirm transport activity in the membrane vesicles, [3H] estrone-3-sulfate ([3H]E1S) influx was measured. We also determined the Michaelis–Menten constant (Km) and Vmax of [3H]E1S for each species. We have developed an in vitro transport model to study differences in compound interactions with BCRP orthologs from milk-producing animal species and humans. BCRP transport activity was demonstrated in the species-specific transduced cells by a reduced accumulation of D-luciferin compared with the control cells, indicating BCRP-mediated efflux of D-luciferin. Functionality of the membrane vesicle model was demonstrated by confirming ATP-dependent transport and by quantifying the kinetic parameters, Km and Vmax for the model substrate [3H]E1S. The values were not significantly different between species for the model substrates tested. This model can be insightful for appropriate inter-species extrapolations and risk assessments of xenobiotics in lactating woman and dairy animals.
{"title":"In vitro screening model for compound interactions with human and dairy animal BCRP orthologs","authors":"Lérica Le Roux-Pullen, Jeroen J.M.W. Van den Heuvel, Noraly B. Jonis, Tom Scheer-Weijers, Ilse R. Dubbelboer, Jan B. Koenderink, Frans G.M. Russel, Ronette Gehring","doi":"10.1111/jvp.13460","DOIUrl":"10.1111/jvp.13460","url":null,"abstract":"<p>Orthologs of breast cancer resistance protein (BCRP/ABCG2), an ATP-binding cassette (ABC) efflux transmembrane transporter, are present in several species. The list of compounds known to interact with BCRP is growing, and many questions remain concerning species-specific variations in substrate specificity and affinity and the potency of inhibitors. As the most abundant efflux transporter known to be present in the blood–milk barrier, BCRP can increase the elimination of certain xenobiotics to milk, posing a risk for suckling offspring and dairy product consumers. Here we developed a model that can be employed to investigate species-specific differences between BCRP substrates and inhibitors. Membrane vesicles were isolated from transiently transduced human embryonic kidney (HEK) 293 cells, overexpressing BCRP, with human, bovine, caprine, and ovine cDNA sequences. To confirm BCRP transport activity in the transduced cells, D-luciferin efflux was measured and to confirm transport activity in the membrane vesicles, [<sup>3</sup>H] estrone-3-sulfate ([<sup>3</sup>H]E<sub>1</sub>S) influx was measured. We also determined the Michaelis–Menten constant (Km) and Vmax of [<sup>3</sup>H]E<sub>1</sub>S for each species. We have developed an in vitro transport model to study differences in compound interactions with BCRP orthologs from milk-producing animal species and humans. BCRP transport activity was demonstrated in the species-specific transduced cells by a reduced accumulation of D-luciferin compared with the control cells, indicating BCRP-mediated efflux of D-luciferin. Functionality of the membrane vesicle model was demonstrated by confirming ATP-dependent transport and by quantifying the kinetic parameters, Km and Vmax for the model substrate [<sup>3</sup>H]E<sub>1</sub>S. The values were not significantly different between species for the model substrates tested. This model can be insightful for appropriate inter-species extrapolations and risk assessments of xenobiotics in lactating woman and dairy animals.</p>","PeriodicalId":17596,"journal":{"name":"Journal of veterinary pharmacology and therapeutics","volume":"47 5","pages":"437-441"},"PeriodicalIF":1.5,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jvp.13460","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141284070","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Krzysztof Bourdo, Charbel Fadel, Mario Giorgi, Andrejs Šitovs, Amnart Poapolathep, Beata Łebkowska-Wieruszewska
Tilmicosin (TMC), a semi-synthetic macrolide antibiotic, is widely used in veterinary medicine due to its broad-spectrum, bacteriostatic properties. Frequently administered in various birds species, it is likely used off-label in geese as well. The study sought to investigate TMC's pharmacokinetics, tissue residues, in geese through in vivo experiments. The study involved longitudinal open studies on 15 healthy adult males, with three phases separated by one-month washout periods. Geese were administered TMC through intravenous (IV, 5 mg/kg), subcutaneous (SC, 10 mg/kg), and oral (PO, 25 mg/kg for five consecutive days) routes, with blood samples drawn at specific intervals. Tissue samples were also collected for subsequent analysis at pre-assigned times. TMC in goose plasma was quantified by a fully validated HPLC method. Plasma concentrations were quantified up to 4 hr for the PO and IV routes, and up to 10 hr in the SC route. Significant variations in bioavailability were observed between SC (87%) and PO (4%) routes. The body extraction ratio was low at 0.03, suggesting minimal ability of the liver and kidneys to eliminate TMC. Multiple oral doses showed no plasma accumulation, but tissue data revealed extensive distribution and prolonged residence, up to 120 h, suggesting a sustained therapeutic effect despite the brief plasma half-life. Regarding the multiple PO doses, provisional withdrawal times of 6, 7.5, and 8 days were suggested for the liver, muscles, and kidneys, respectively, according to the MRL set for these matrices in chickens by EMA. In conclusion, while the practical oral administration is discouraged at the population level, SC administration of TMC may be appropriate for geese, albeit impractical for flock therapy.
{"title":"Disposition kinetics and tissue residues of tilmicosin following intravenous, subcutaneous, single and multiple oral dosing in geese (Anser anser domesticus)","authors":"Krzysztof Bourdo, Charbel Fadel, Mario Giorgi, Andrejs Šitovs, Amnart Poapolathep, Beata Łebkowska-Wieruszewska","doi":"10.1111/jvp.13461","DOIUrl":"10.1111/jvp.13461","url":null,"abstract":"<p>Tilmicosin (TMC), a semi-synthetic macrolide antibiotic, is widely used in veterinary medicine due to its broad-spectrum, bacteriostatic properties. Frequently administered in various birds species, it is likely used off-label in geese as well. The study sought to investigate TMC's pharmacokinetics, tissue residues, in geese through in vivo experiments. The study involved longitudinal open studies on 15 healthy adult males, with three phases separated by one-month washout periods. Geese were administered TMC through intravenous (IV, 5 mg/kg), subcutaneous (SC, 10 mg/kg), and oral (PO, 25 mg/kg for five consecutive days) routes, with blood samples drawn at specific intervals. Tissue samples were also collected for subsequent analysis at pre-assigned times. TMC in goose plasma was quantified by a fully validated HPLC method. Plasma concentrations were quantified up to 4 hr for the PO and IV routes, and up to 10 hr in the SC route. Significant variations in bioavailability were observed between SC (87%) and PO (4%) routes. The body extraction ratio was low at 0.03, suggesting minimal ability of the liver and kidneys to eliminate TMC. Multiple oral doses showed no plasma accumulation, but tissue data revealed extensive distribution and prolonged residence, up to 120 h, suggesting a sustained therapeutic effect despite the brief plasma half-life. Regarding the multiple PO doses, provisional withdrawal times of 6, 7.5, and 8 days were suggested for the liver, muscles, and kidneys, respectively, according to the MRL set for these matrices in chickens by EMA. In conclusion, while the practical oral administration is discouraged at the population level, SC administration of TMC may be appropriate for geese, albeit impractical for flock therapy.</p>","PeriodicalId":17596,"journal":{"name":"Journal of veterinary pharmacology and therapeutics","volume":"47 5","pages":"416-426"},"PeriodicalIF":1.5,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141284069","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}