Background: Starch-based food is easy to retrograde during cold storage after gelatinization, which leads to quality fission and a relatively short shelf life. Some lipids can effectively enhance the storage stability of starch gels by the formation of starch-lipid complexes. The present study aimed to investigate the effects of glyceryl monopalmitate (GMP) on gelatinization, rheological and retrogradation properties of Japonica rice starch (JS) at different conditions and to analyze the correlation between the physical-chemical properties and structural characteristics of the JS-GMP complex.
Results: The addition of GMP to JS could retard the process of starch gelatinization through forming JS-GMP complexes. The resulting JS-GMP pastes were typical pseudoplastic fluids with shear thinning, and their solid-like properties were prominent (tan δ < 1). In addition, the retrogradation of JS-GMP complex was more inhibited during storage at -18 than at 4 °C. The added amount of GMP was negatively and highly associated with the minimum viscosity, consistency coefficient, hardness and elasticity, whereas it was positively and highly correlated with the breakdown value, fluid characteristic index and relative crystallinity. The relative crystallinity of JS was affected by GMP in an approximate dose-dependent manner.
Pub Date : 2025-02-01Epub Date: 2024-10-07DOI: 10.1002/jsfa.13945
Liyang Du, Shaoyang Li, Yaqi Lan, Zong Meng
Background: The design of plant-based microgels provides a platform for food ingredients to enhance palatability and functionality. This work aimed to explore the modifying effect of salt addition (KCl) on the structure of pea protein microgel particles (PPI MPs), on the interfacial adsorption and characteristics of formed emulsions as fat analogues.
Results: Salt addition (0-200 mmol L-1) promoted a structural transformation from α-helix to β-sheet, increased the surface hydrophobicity (from 1160.8 to 2280.7), and increased the contact angle (from 56.73° to 96.47°) of PPI MPs. The electrostatic shielding effect led to the tighter packing of MPs with irregular structures and lowered the adsorption energy barrier. Notably, salt-treated PPI MPs could adjust their adsorption state at the interface. The discernible adsorption of PPI MPs with 200 mmol L-1 salt addition that possessed enhanced anti-deformation ability dominated the interfacial stabilization, whereas a relatively rougher stretched continuous interfacial film formed after spreading and deformation of 0 mmol L-1 MPs. A tribological test suggested that emulsion stabilized by MPs at 0 (0.0053) and 80 mmol L-1 (0.0068) had similar friction coefficients to commercial mayonnaise (0.0058), whereas a higher salt concentration (200 mmol L-1) lowered its oral sensation due to the adsorption layer and enhanced the resistance to droplet coalescence during oral processing.
Pub Date : 2025-02-01Epub Date: 2024-10-19DOI: 10.1002/jsfa.13961
Jia-Cheng Liu, Bin Nie, Yu-Qiao Wang, Jia-Nan Yan, Hai-Tao Wu
Background: Previous studies have investigated complexation and coacervation of scallop Patinopecten yessoensis male gonad hydrolysates (SMGHs) and polysaccharides influenced by pH and blending ratio. It has been found that SMGHs/polysaccharide composite shows better gel properties under strongly acidic conditions. Thus, the complexation and coacervation of SMGHs and gellan gum (GG) were investigated via turbidimetric titration at different pH values (1-12) and biopolymer blending ratios (9.5:0.5-6:4).
Results: Both pHc and pHφ1 exhibited ratio-independent behavior with constant values at approximately pH 5.8 and pH 3.8, respectively, dividing SMGHs/GG blends into three phases named mixed polymers, soluble complexes and insoluble coacervates, respectively. Overall, SMGHs and GG exhibited synergistic gelation under neutral and acidic conditions, with the initial storage modulus (G') increasing by approximately 42.5-, 573.7- and 3421-fold and 97.7-, 550.3- and 0.5-fold, respectively, at pH 7, 5 and 3, compared with SMGHs and GG. As pH decreased from 7 to 3, the initial G' and viscosity η values of SMGHs/GG gels increased by 20.1- and 2.3-fold, respectively, exhibiting the greatest increase in gel strength. Moreover, the free water in the SMGHs/GG system significantly shifted toward lower relaxation times attributed to the immobilization of the outer hydration layers. SMGHs/GG gels in the insoluble phase exhibited denser networks and rougher surfaces, supporting the enhanced rheological properties and water retention capacity of the gel.
Pub Date : 2025-02-01Epub Date: 2024-10-12DOI: 10.1002/jsfa.13964
Rachael Moss, Allison Stright, Laura Baxter, Matthew B McSweeney
Background: Flavour, texture, and extended shelf life are key quality traits for blueberries. Studies have used trained panelists and texture analysers to evaluate frozen blueberries. However, more studies are needed to investigate consumer perception and acceptance of frozen blueberries' texture. This study used word association, hedonic scales, and rate-all-that-apply to evaluate how consumers perceive the texture of frozen blueberries.
Results: Consumers were interested in the firmness of frozen blueberries, as well as crunchiness, softness, juiciness, and smoothness. They also identified the textural descriptors mushy, tough, chewy, squishy, and mealy. The participants separated the wild blueberries from the cultivated blueberries when evaluating their liking. Textural attributes were correlated with the consumers' overall liking (juicy, firm, crunchy, smooth positively and mushy, tough, squishy negatively).
Pub Date : 2025-02-01Epub Date: 2024-10-04DOI: 10.1002/jsfa.13937
Jia-Cheng Liu, Lin-Da Zhang, Yue Liu, Tian-Qi Zhou, Bin Lai, Ce Wang, Jia-Nan Yan, Hai-Tao Wu
Background: This study investigated the contribution of 11 polysaccharides (2%, w/w), including pectin (PC), κ-carrageenan (KC), ι-carrageenan (IC), gellan gum (GG), guar gum (GM), sodium alginate (SA), konjac gum (KG), gum arabic (GA), fucoidan (FC), locust bean gum (LBG), and curdlan (CD), to the gel and microstructural properties of Meretrix meretrix clam gel (MMG).
Results: The hardness, springiness and chewiness of MMG with KC, IC, GG, SA and FC addition increased by ~10%-250%, while PC, GM, KG and LBG groups decreased by ~0.6% to 69%. KC, IC, SA, GG and FC decreased the cooking loss rate (CLR) by 69.4% to 88.7% and correspondingly enhanced the water holding capacity (WHC) by 10.2% to 21.4%, which was accompanied by an increased bound water and immobilized water area and high hydrogen proton density. The addition of KC transformed the MMG microstructure from a loose network with large pores to a compact, dense network, reducing lacunarity by 57.9%. The primary intermolecular forces in MMG with the incorporation of KC, IC, GG, SA and FC were hydrophobic interactions and disulfide bonds, which increased by 32.8%-105.3% and 45.6%-114.5% than MMG alone, respectively.
Pub Date : 2025-02-01Epub Date: 2023-12-16DOI: 10.1002/jsfa.13174
Stefano Pettinelli, Clara Pérez-Gonzàlez, Coral Salvo-Comino, Fabio Mencarelli, Cristina Garcia-Cabezón, Maria Luz Rodriguez-Mendez
Background: Electronic tongues have been widely used to analyze wines. However, owing to the complexity of the matrix, the problem is not completely solved and further improvements are required.
Results: A high-performance potentiometric bioelectronic tongue (bio-ET) specifically devoted to the assessment of wine components is presented. The novelty of this system is due to two innovative approaches. First, the improved performance is obtained through the use of potentiometric biosensors based on carboxylated polyvinyl chloride (PVC) membranes, where enzymes (glucose oxidase, tyrosinase, laccase, and lyase) specific to compounds of interest are linked covalently. Second, the performance is further enhanced by introducing electron mediators (gold nanoparticles or copper phthalocyanine) into the PVC membrane to facilitate the electron transfer process. Individual sensors exposed to target analytes (glucose, catechol, cysteine, or tartaric acid) show a linear behavior, with limits of detection in the region of 10-4 mol L-1 for all the compounds analyzed, with excellent reproducibility (coefficient of variation lower than 3%). Sensors combined to form a bio-ET show excellent capabilities. Principal component (PC) analysis can discriminate monovarietal white wines (PC1 77%; PC2 15%) and red wines (PC1 63%; PC2 30%). Using partial least squares, the bio-ET can provide information about chemical parameters, including glucose, total polyphenols, total anthocyanins, free and total sulfur dioxide, total acidity, and pH with R2 between 0.91 and 0.98 in calibration and between 0.89 and 0.98 in validation.
Background: The potential for the efficient conversion of lignocellulosic biomass has been extensively explored to produce a wide range of bioproducts. Many approaches have been sought for the deep conversion of lignin to generate products that are toxin-free and beneficial for processing into high-value-added components.
Results: This study reported a fungus isolated from the deep sea with strong synthesis of multiple lignocellulases, conversion of lignin and guaiacol (0.1%) by 71.6% and 86.1% within 9 days at 30 °C respectively, and outstanding environmental adaptability (20-50 °C and pH 3-8). Metabolic pathway profiling showed that this fungus utilized lignin to rapidly activate multiple ring-opening reactions including the 2,3- and 3,4-cleavage pathways, with the 2,3-cleavage pathway predominating after 5 days. Conversion of metabolic intermediates confirmed the superb potential of this strain for lignin treatment. Meanwhile, its shikimic acid pathway was metabolically active under lignin.
Pub Date : 2025-02-01Epub Date: 2024-10-18DOI: 10.1002/jsfa.13963
Bárbara Delpozo, Ana Pons-Gómez, Cristina Besada
Background: This study investigates to what extent the presence of the EU organic (EU‑O) logo and a sustainable irrigation (SI) logo on extra virgin olive oil (EVOO) labels affects (i) consumers expectations and purchase intention based on label information and (ii) acceptance of olive oil when tasted under informed versus blind conditions. A panel of 94 consumers took part in the study. Attention paid to label components during the task designed to evaluate the logos' effect on expectations was recorded by means of an eye-tracker.
Results: Compared with the control (without logos), the presence of EU‑O and SI logos on the EVOO label significantly influenced participants' associations (i.e. price, sustainability, consumption occasions, etc.). A halo effect was detected, so that both logos led consumers to anticipate higher expected liking compared with the control. A synergic effect between both logos was detected. Eye-tracker data revealed that participants whose liking expectations were improved by the EU‑O logo paid more attention to it than those whose expectations did not improve. This relation between attention and expectation improvement was not observed with the SI logo, likely because participants were unfamiliar with it. Beyond expectations, the presence of logos on labels significantly increased the liking scores given by the participants when EVOOs were tasted, which resulted in a higher percentage of participants' willingness to purchase.
Background: Yellow mosaic disease (YMD) is the most devastating disease of soybean under north Indian conditions. A recombinant inbred line population derived from SL 958 (R) × AGS 456 (S) was used to map the genes imparting YMD resistance. Genotyping by sequencing (GBS) of 148 individuals and the parents was used to identify polymorphic SNPs in the population. These were used to generate linkage maps and subsequently map the QTL.
Results: A QTL, MYMIV 1-1.1, was mapped onto chromosome 6. The QTL was mapped at a genetic distance of 114.31 cM, with likelihood ratio of 81.34 (LOD 17.68), explaining 33.80% of the variation for the trait, with an additive effect of 1.22. MYMIV 1-1.1 was flanked by SNPs Gm06_12614920 explaining 33.80% of variation and Gm06_12887789 explaining 31.04% of the variation. The QTL region spanned for a total of 2.798 Mbp.