Background: Dietary supplementation for beef cattle, using natural plant extracts, such as oregano essential oil (OEO), has proven effective in enhancing growth performance, beef production quantity and quality, and ensuring food safety. However, the precise mechanisms underlying these effects remain unclear. This study investigated the impact of OEO on carcass traits, muscle fiber structure, meat quality, oxidative status, flavor compounds, and gene regulatory mechanisms in the longissimus thoracis (LT) muscles of beef cattle. Eighteen steers were randomly assigned to two groups (n = 9 per group) and fed either a control diet (CK) or the same diet supplemented with 20 g of OEO per head per day for 300 days.
Results: Oregano essential oil supplementation improved the body weight, carcass weight, meat production, area and diameter of fiber, ether extract, and water-holding power of muscle. Increasing catalase (CAT), peroxidases (POD), glutathione peroxidase (GSH-Px) and by decreasing lipid droplets (LDs) reduced muscle lipid oxidation. However, the color (L*, a*, b*, C* and H°) and the flavor compounds of muscle were affected adversely by OEO. The transcriptome and metabolome indicated the OEO group enriched fat synthesis, proteo-metabolism, antioxidants, and growth significantly. Five key genes (SH2B2, CD209, LOC504773, C1QC, and HMOX) and ten downregulated metabolites (deoxyguanosine, d-melezitose, maltotriose, raffinose, melatonin, quinic acid, orotic acid, hydrocinnamic acid, 2-methylsuccinic acid, and pyridoxal 5'-phosphate) were identified as key biomarkers. These interacted to positively influence the growth, oxidative status, and meat quality of steers positively.
Background: Octenylsuccinic anhydride (OSA) is one of the efficient compounds used in food industries as an emulsifier. The current study describes the augmentation of tocotrienol (T3) bioavailability by combining it with OSA and then converting it into a nanoemulsion. The creation of the nanoemulsions ASG-T3U10, ASG-T3U20 and ASG-T3U30 involved ultrasonication power at 300 W for 10, 20 and 30 cycles, respectively.
Result: The nanoemulsion particle sizes of ASG-T3U30, ASG-T3U20 and ASG-T3U10 ranged from 100 to 200, 200 to 300 and >300 nm (P < 0.05), respectively. ASG-T3U30 exhibited enhanced encapsulation efficiency and potential stability in a simulated gastrointestinal environment. A range of models such as zero order, Higuchi, Korsmeyer-Peppas, Peppas-Sahlin and Gompertz were utilized for the study of release kinetics. The models were found to be a good fit (R2 > 0.90) for the release of T3 in the gastrointestinal environment from an amphiphilic starch matrix. Storage stability tests showed that the emulsions were stable for 21 days of storage at 4 °C, but after 14 days, samples with particle diameters greater than 200 nm displayed the onset of Ostwald ripening.
Background: The escalating global prevalence of food allergies has intensified the need for hypoallergenic food products. Transglutaminase (TGase)-mediated crosslinking has garnered significant attention for its potential to reduce the allergenicity of food proteins. This study aimed to investigate the effects of TGase crosslinking on the potential allergenicity and conformational changes in a dual-protein system composed of β-lactoglobulin (β-LG) and soy protein isolate (SPI) at varying mass ratios (10:0, 7:3, 5:5, 3:7 and 0:10 (w/w)).
Results: TGase preferentially crosslinked the 7S and 11S subunits of soy protein, rather than β-LG. Crosslinking treatment reduced the allergenic potential of both soy protein and β-LG, with the degree of reduction depending on the protein ratio. The β-LG5:SPI5 and β-LG7:SPI3 mixtures showed the most significant reduction in antibody reactivity towards soy protein and β-LG, respectively. Additionally, TGase-mediated crosslinking significantly reduced the binding capacity of all dual-protein samples to serum immunoglobulin E from allergic patients, compared to the control group (P < 0.05). The allergenicity reduction was accompanied by structural modifications, including a decrease in β-sheet content, an increase in β-turn and random coil structures, enhanced ultraviolet absorption and intrinsic fluorescence, reduced free sulfhydryl levels and altered intermolecular forces. These changes suggest that TGase-induced crosslinking may disrupt or mask allergenic epitopes, thus lowering allergenicity.
Juliana Eloy Granato Costa, Jessica da Silva Matos, Paula Zambe Azevedo, Francisca das Chagas do Amaral Souza, Sueli Rodrigues, Fabiano André Narciso Fernandes, Vanelle Maria da Silva, Jaqueline de Araújo Bezerra, Edgar Aparecido Sanches, Carlos Victor Lamarão, Márcia Cristina Teixeira Ribeiro Vidigal, Paulo César Stringheta, Evandro Martins, Pedro Henrique Campelo
Background: With the growing human awareness of the environmental and animal stress caused by the meat industry, the consumption of plant-based products has expanded. Plant proteins have gained market prominence due to their sustainable origin, economic value and health benefits. Well-established plant proteins in the market, such as those of soy and pea, have various applications as ingredients in the food industry. However, given the wide variety of protein sources, it is necessary to conduct studies on the chemical and techno-functional characterization of other raw materials to further diversify their properties. In this context, the present study introduces jack bean protein concentrate (JBPC) as a potential alternative to proteins already established in the market. Techno-functional properties such as surface hydrophobicity, solubility, zeta potential, water- and oil-holding capacity, foam capacity and stability, emulsion stability and gel formation and rheology were analyzed.
Results: The protein content obtained from the extraction of the JBPC was 73 g (100 g)-1 on a dry weight basis, with an extraction yield of approximately 10% (w/w). Least gelation concentration for JBPC was 20%. JBPC exhibited a predominantly hydrophobic nature, with good oil retention capacity and emulsion and foam stabilization properties. The structure of JBPC was more linear, stable and rigid, which primarily influenced gel stiffness.
{"title":"Sensors for food and beverage","authors":"Fabio Mencarelli","doi":"10.1002/jsfa.14046","DOIUrl":"10.1002/jsfa.14046","url":null,"abstract":"","PeriodicalId":17725,"journal":{"name":"Journal of the Science of Food and Agriculture","volume":"105 3","pages":"1407"},"PeriodicalIF":3.3,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142971521","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Background: Determining the optimum water absorption capacity of gluten-free flours for an improved breadmaking process has been a challenge because there is no standard method. In the present study, large amplitude oscillatory shear (LAOS) tests were performed to explore the impact of different levels of added water on non-linear viscoelastic response of soy flour dough in comparison to wheat flour dough at a consistency of 500 BU.
Results: Among the LAOS parameters, large strain modulus (G'L) and large strain rate viscosity (η'L) were found to better probe the impact of added water amount on non-linear viscoelastic properties of soy flour dough. Although soy flour dough with 160:100 (water: soy flour, v/w) and wheat flour dough had overlapping η*(ω) in the linear viscoelastic region, LAOS sweeps revealed similar tan δ, G'L and η'L values along with similar elastic and viscous Lissajous-Bowditch curves at γ0 = 200% for soy flour dough with 175:100 (water: soy flour, v/w) to those of wheat flour dough.
Background: Edible insects are used for consumption and traditional medicine due to their rich bioactive compounds. This study examined the bioactive compounds and inhibitory effects of crude extracts from Bombyx mori and Omphisa fuscidentalis on α-glucosidase, α-amylase, acetylcholinesterase (AChE), and tyrosinase. Fatty acids, including n-hexadecanoic acid and oleic acid, were identified in the extracts and evaluated for their inhibitory potential against the enzymes in vitro and in silico.
Results: The total phenolic content of the edible insect extracts correlated with enzyme inhibitory activity. The quercetin and kaempferol content of B. mori ethyl acetate (EtOAc) extract was also closely related to α-amylase inhibitory activity. The EtOAc and hexane extracts of B. mori showed similar inhibition potential to acarbose and tacrine against α-amylase and AChE, respectively. The hexane extract of O. fuscidentalis exhibited comparable tyrosinase inhibitory activity to kojic acid. n-Hexadecanoic acid and oleic acid were the predominant bioactive compounds in all of the extracts. A kinetic study revealed that n-hexadecanoic acid acted as a mixed-type inhibitor against α-amylase, similar to acarbose, whereas oleic acid showed non-competitive inhibition against AChE, unlike tacrine. Docking studies suggested that these fatty acids bind to the active sites of α-amylase and AChE.
Background: Soy protein isolate (SPI) has poor emulsifying ability because of its low molecular flexibility and compact structure, limiting its application in extruded protein-based foods. Extrusion technology has emerged as a promising way to alter the structural properties of proteins. Therefore, the impacts of grape seed proanthocyanidin (GSP) on structural and emulsifying characteristics of SPI in extrusion field were explored in this study.
Results: After extrusion treatment, the molecular chains of SPI were unfolded. In comparison with extruded SPI, the interaction with GSP led to a rightward shift in particle size distribution and an enhancement in zeta potential values of the protein. As GSP concentration increased from 20 to 80 g kg-1, the free sulfhydryl content of SPI was reduced by 4.17%, 25%, 29.24% and 35.85% compared with that of extruded SPI. The addition of GSP altered the secondary structure of SPI and enhanced the microenvironment polarity. Meanwhile, SDS-PAGE results indicated that the protein presented lower molecular weight with the introduction of GSP. Compared with extruded SPI, the supplementation with GSP increased the molecular flexibility while it decreased the surface hydrophobicity of SPI. Correlation analyses demonstrated that these structural changes induced an improvement in emulsifying activity and emulsion stability of SPI. GSP mainly binds to SPI through hydrogen bonds and hydrophobic interactions under the extrusion environment.