Jiewen Zheng, Li Lin, Yuzhan Li, Zaiman Wang, Xiangru Tang, Shenggang Pan, Zhaowen Mo
Background: The objective of this study was to investigate the input and output of energy, carbon input and sequestration, and economic benefits of fragrant and nonfragrant rice under different crop management practices, with the aim of providing theoretical guidance for sustainable rice production. Two high-yield and popular rice varieties, Yuxiangyouzhan and Jiyou615, were grown under three nitrogen fertilizer levels (0, 150, and 220 kg ha-1) and three planting methods (manual transplanting, mechanical transplanting, and mechanical direct seeding) during 2018 and 2019.
Results: The results showed that the economic, energy, and carbon benefits of the different rice varieties varied in response to the different fertilizations and planting methods. The average energy outputs of Yuxiangyouzhan and Jiyou615 were 214 423.26 and 218 474.90 MJ ha-1, respectively. The mean harvest index and mean energy use efficiency of Jiyou615 were slightly greater, at 4.21% and 3.93%, respectively, than those of Yuxiangyouzhan, while the mean carbon input-sequestration ratio of Yuxiangyouzhan was slightly greater, at 1.79%, than that of Jiyou615. Yuxiangyouzhan had a significantly greater mean benefit-cost ratio (5.76%) than Jiyou615. In addition, Yuxiangyouzhan had a significantly greater mean nominal economic return on energy input (12.21%), nominal economic return on energy output (13.20%), nominal economic return on carbon input (12.65%), and nominal economic return on carbon sequestration (11.31%) than Jiyou615.
Background: The integration of myofibrillar proteins with plant proteins has gained substantial consideration in the food industry for producing healthier and more sustainable food products. However, achieving the desired properties of these protein emulsions remains challenging. High-intensity ultrasound treatment has emerged as a promising method to enhance the structural and functional properties of emulsions. We have explored the previously unexamined potential of ultrasonication with respect to improving the stability of animal-plant-based protein emulsions, providing new insights into the interactions of novel protein combinations.
Results: Ultrasonication improved the stability of the myofibrillar protein-soybean protein isolate (MS), myofibrillar protein-pea protein (MP) and myofibrillar protein-hydrolyzed wheat protein (MW) emulsions. Interestingly, the particle size of MS, MP and MW emulsions was significantly reduced with ultrasound treatment for 20 min. Among the three protein combinations, MW presented better stability, as indicated by the higher zeta potential, lower particle size and turbidity values. Moreover, the stability of MW was increased with an increasing ultrasound time.
Isabel Márquez-Rangel, Mario Cruz, Héctor A Ruiz, Rosa M Rodríguez-Jasso, Araceli Loredo-Treviño, Ruth Belmares
Background: The generation of agro-industrial wastes and strategies to reduce the environmental and economic impacts that this problem generates has aroused interest in the use of lignocellulosic wastes to promote food sustainability. These wastes are rich in polysaccharides, and their addition can affect the physicochemical characteristics of bakery food. In this study, agave wastes were evaluated at different substitution levels (0%, 10%, 20%, and 30%, w/w) in wheat flour to determine their nutritional, techno-functional, and thermal qualities.
Results: There was an improvement in the proximal chemical composition in the flour blends, mainly in crude fiber (0.01%, 0.47%, 0.80%, and 1.70%, respectively). This also resulted in differences in the coloration (ΔE; 0, 12.43, 21.05, and 24.22) owing to the brown color of agave powder. An increase in water holding capacity was obtained (1.29, 1.44, 1.52, and 1.69%), while oil holding capacity presented a decrease (1.59%, 1.38%, 1.36%, and 1.33%). Viscosities were significantly affected by the addition of agave. However, the final viscosity (3195.67, 2573.33, 2430, and 2107.33 cP) suggested that the maximum level of substitution was 20%. Thermal properties indicated a decrease in the heat capacity required for starch gelatinization (39.45, 36.36, 35.33, and 34.47 J g-1) due to its partial substitution.
Kartikkumar Ramjibhai Vadher, Amar A Sakure, Pooja M Mankad, Anita Rawat, Mahendra Bishnoi, Kanthi Kiran Kondepudi, Ashish Patel, Preetam Sarkar, Subrota Hati
Background: This study aims to evaluate the antidiabetic and anti-inflammatory activities of Lacticaseibacillus rhamnosus (M9) MTCC 25516 during the fermentation of whey and soy protein isolates. It also seeks to characterize protein profiles, identify multifunctional peptides, and assess structural changes using sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), two-dimensional (2D) gel electrophoresis, Fourier-transform infrared (FTIR) spectroscopy, and confocal laser scanning microscopy (CLSM).
Results: Fermentation with Lacticaseibacillus rhamnosus (M9) significantly enhanced antidiabetic activity, with optimal peptide production at a 25 mL L-1 inoculation rate for 48 h at 37 °C. Proteolytic activity reduced inflammatory markers (IL-6, TNF-α, IL-1β, NO) in RAW 267.4 cells. SDS-PAGE and 2D gel electrophoresis revealed distinct protein profiles, with 19 and 49 protein spots in whey and soy isolates, respectively. Reverse-phase high-performance liquid chromatography (RP-HPLC) identified multifunctional peptides, and FTIR spectroscopy confirmed structural changes post-fermentation. Confocal microscopy further revealed protein modifications.
Background: Starch retrogradation leads to undesirable changes in the texture and taste of starchy foods. The fibrous aggregates of whey protein fibrils (WPF) formed by heating under acidic conditions possess enhanced emulsification and foaming properties, but their effect on the retrogradation behavior of starch is unclear.
Results: WPFs with various molecular sizes were obtained by heating at 85 °C under acidic conditions (pH 2.0) for different times (0, 0.5, 2.5, 5, 7.5, and 10 h). Their effects on the gelatinization and retrogradation of wheat starch were investigated. Particle size distribution and confocal laser scanning microscopy confirmed the formation of WPFs. Compared to native starch, WPFs reduced swelling, lowered the storage modulus (G') peak, and increased the gelatinization temperature, indicating inhibition of starch gelatinization. High molecular weight WPF (WPF5) had the strongest inhibitory effect, significantly enhancing G' during cooling after gelatinization, suggesting a stronger gel network. Moreover, all WPFs reduced retrogradation and crystallinity of starch gels over 14 days, with WPF5 showing the most significant effect, reducing retrogradation by 35.85% and relative crystallinity by 5.53%.
Background: Low soil temperature and its fluctuation can negatively impact the growth of seedlings. The district of Cooch Behar (India), belonging to the Cwa zone (according to Koppen's classification), receives several cold waves during winter. Our previous study demonstrated that a constant temperature of 20 °C (chilling but not freezing) can cause a loss in the vigor of tomatoes. Since the temperature of the soil is not uniform throughout the day, we hypothesized that the duration of cold exposure can have variable effects on seed vigor.
Results: It was observed that increasing the duration of cold stress can slow down the germination process and reduce vigor. This was due to the cold-mediated damage to cell membranes (due to dehydration) which caused electrolyte leakage and reduced levels of glutathione reductase. In this regard, biopriming seeds with microbes that produce exopolysaccharide (EPS) can be useful as it can form a protective layer on the seeds. Indigenous EPS-producing bacteria, Bacillus, Phytobacter and Priestia sp., were used for biopriming. Priestia and Phytobacter sp. not only reduced the electrolyte leakage but also increased the levels of antioxidant genes. This improved the germination speed and vigor. In a field trial, the rhizosphere of the seedlings pretreated with bioinoculants displayed a reduced thermal fluctuation compared with the untreated seeds.
Background: Encapsulation technology has been extensively employed in recent years to enhance the efficacy and efficiency of probiotics. Nevertheless, existing studies have primarily concentrated on product efficacy, with inadequate scrutiny concerning potential effects on living organisms. This study aimed to evaluate the effects of various encapsulated probiotic strains on inflammatory responses in healthy mice, alongside their in vitro viability. Nissle (EcN) and Lactobacillus rhamnosus GG (LGG) were microencapsulated for the study.
Results: The differences in serum levels of Total Oxidant Status, Total Antioxidant Status, and C-reactive protein among the groups were statistically significant (LGG, P = 0.039, P = 0.024, and P < 0.001; EcN, P = 0.019, P = 0.012, and P = 0.037, respectively). The highest levels were found in the control group, while the lowest levels were observed in the microencapsulated group. There were no significant differences in tissue tumor necrosis factor or interleukin-6 levels for either LGG or EcN.
Background: Peptidomics combined with molecular docking is an effective alternative method for rapid screening of novel bioactive peptides in food. Buffalo milk as a potential source of dipeptidyl peptidase-IV (DPP-IV) inhibitory peptides has been less studied. Peptidomics and molecular docking methods were employed to rapidly screen new DPP-IV inhibitory peptides from buffalo milk. The screened DPP-IV inhibitory peptides were further verified using an in vitro inhibition assay and a Caco-2 cell assay.
Results: The DPP-IV inhibition rate of buffalo milk was increased from 73.40 ± 6.01% to 97.23 ± 3.18% in an in vitro digestion assay, suggesting that buffalo milk could be a promising source of DPP-IV inhibitory peptides. Subsequently, two novel peptides (GPFPIIV and FPQYL) with potential DPP-IV inhibitory activity were screened using peptidomics, molecular docking and an in vitro inhibitory assay. The IC50 values for GPFPIIV and FPQYL were 0.2998 ± 0.03 and 0.1407 ± 0.01 mg mL-1, respectively. During simulated gastrointestinal digestion in vitro, FPQYL had an excellent digestive stability of 92.13 ± 1.03%, whereas that of GPFPIIV was 59.52 ± 2.56%. In addition, GPFPIIV and FPQYL (1.00 mg mL-1) showed significant DPP-IV inhibitory effects in a Caco-2 cell assay, with the inhibition rate increasing to 32% and 36%, respectively.
Jingtong Guo, Lihong Wu, Yujing Sun, Le Zhang, Xingqian Ye
Background: The loss of flavor in modern tomato cultivars represents a great challenge for the food industry. This study investigated the potential of power ultrasound as an innovative approach to improve tomato juice flavor by releasing bound volatiles.
Results: It was found that power ultrasound offered a more viable, environmentally friendly technique for enhancing the aroma of tomato juice compared with enzymatic or acid hydrolysis methods. There were significant differences in the released aromas among these three methods: Ultrasound primarily released alcohols and esters, with the characteristic volatiles being trans-2-hexenol and 6-methyl-5-hepten-2-one. Enzymatic hydrolysis primarily released glycosides such as alcohols and aldehydes, with the characteristic volatiles being hexanal, 6-methyl-5-hepten-2-one, β-damascenone, methyl salicylate and phenylethyl alcohol. Acid hydrolysis mainly released ketones and alkenes, with the characteristic volatiles being hexanal, 6-methyl-5-hepten-2-one, β-damascenone, methyl salicylate and trans-2-hexenol. Ultrasound parameters could be varied to improve the level of flavors of tomato juice with the optimal parameters being 40 °C, 10 min, 600 W L-1 ultrasound density and 50% duty cycle.
Francesca Bruno, Ingo Hein, M Ehsan Jorat, Moira Ledbetter, Brian Harrower, Ben Davies, Keith Sturrock, Gary Montague, Malcolm Knott, Ged McNamara, Alberto Fiore
Background: This study investigated the effect of sulfur nutrition, basalt rock aggregate (BA) application, with a carbon capture function, and speed breeding under light-emitting diode (LED) light, on the nutritional profile of potatoes and acrylamide formation in crisp production.
Results: Taurus potatoes grown with sulfur showed reduced glucose, sucrose, and total amino acids, and increased asparagine. No difference in acrylamide content was observed in crisps from Taurus and Lady Claire cultivars, with either sulfur or BA application. Speed breeding under LED light reduced plant height in all cultivars (50-60 cm) in comparison with controls (80-90 cm). Tubers grown under LED light exhibited higher levels of glucose and fructose, and increased formation of acrylamide in crisps (78.90% for Lady Claire, 592.58% for Taurus, and 70.25% for Desiree).