首页 > 最新文献

Karbala International Journal of Modern Science最新文献

英文 中文
A study on image processing techniques and deep learning techniques for insect identification 昆虫识别的图像处理技术和深度学习技术研究
Pub Date : 2023-05-22 DOI: 10.33640/2405-609x.3289
V. Gupta, M. Padmavati, R. Saxena, P. Patnaik, R. Tamrakar
Abstract Automatic identification of insects and diseases has attracted researchers for the last few years. Researchers have suggested several algorithms to get around the problems of manually identifying insects and pests. Image processing techniques and deep convolution neural networks can overcome the challenges of manual insect identification and classification. This work focused on optimizing and assessing deep convolutional neural networks for insect identification. AlexNet, MobileNetv2, ResNet-50, ResNet-101, GoogleNet, InceptionV3, SqueezeNet, ShuffleNet, DenseNet201, VGG-16 and VGG-19 are the architectures evaluated on three different datasets. In our experiments, DenseNet 201 performed well with the highest test accuracy. Regarding training time, AlexNet performed well, but ShuffleNet, SqueezeNet, and MobileNet are better alternatives for small architecture.
摘要昆虫和疾病的自动识别在过去几年里吸引了研究人员。研究人员提出了几种算法来解决手动识别昆虫和害虫的问题。图像处理技术和深度卷积神经网络可以克服人工昆虫识别和分类的挑战。这项工作的重点是优化和评估用于昆虫识别的深度卷积神经网络。AlexNet、MobileNetv2、ResNet-50、ResNet-101、GoogleNet、InceptionV3、SqueezeNet、ShuffleNet、DenseNet201、VGG-16和VGG-19是在三个不同数据集上评估的架构。在我们的实验中,DenseNet 201以最高的测试精度表现良好。关于训练时间,AlexNet表现良好,但ShuffleNet、SqueezeNet和MobileNet是小型架构的更好选择。
{"title":"A study on image processing techniques and deep learning techniques for insect identification","authors":"V. Gupta, M. Padmavati, R. Saxena, P. Patnaik, R. Tamrakar","doi":"10.33640/2405-609x.3289","DOIUrl":"https://doi.org/10.33640/2405-609x.3289","url":null,"abstract":"Abstract Automatic identification of insects and diseases has attracted researchers for the last few years. Researchers have suggested several algorithms to get around the problems of manually identifying insects and pests. Image processing techniques and deep convolution neural networks can overcome the challenges of manual insect identification and classification. This work focused on optimizing and assessing deep convolutional neural networks for insect identification. AlexNet, MobileNetv2, ResNet-50, ResNet-101, GoogleNet, InceptionV3, SqueezeNet, ShuffleNet, DenseNet201, VGG-16 and VGG-19 are the architectures evaluated on three different datasets. In our experiments, DenseNet 201 performed well with the highest test accuracy. Regarding training time, AlexNet performed well, but ShuffleNet, SqueezeNet, and MobileNet are better alternatives for small architecture.","PeriodicalId":17782,"journal":{"name":"Karbala International Journal of Modern Science","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41473768","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Secure QR-Code Generation in Healthcare 医疗保健中的安全qr码生成
Pub Date : 2023-05-09 DOI: 10.33640/2405-609x.3294
Safa S. Abdul-Jabbar, Alaa K. Farhan
{"title":"Secure QR-Code Generation in Healthcare","authors":"Safa S. Abdul-Jabbar, Alaa K. Farhan","doi":"10.33640/2405-609x.3294","DOIUrl":"https://doi.org/10.33640/2405-609x.3294","url":null,"abstract":"","PeriodicalId":17782,"journal":{"name":"Karbala International Journal of Modern Science","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44984566","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Improved Face Morphing Attack Detection Method Using PCA and Convolutional Neural Network 基于PCA和卷积神经网络的人脸变形攻击检测方法
Pub Date : 2023-05-09 DOI: 10.33640/2405-609x.3298
Imanuddin Razaq, B. K. Shukur
Abstract Face recognition is the most extensively utilized security and public safety verification method. In many nations, the Automatic Border Control system uses face recognition to confirm the identification of travelers The ABC system is vulnerable to face morphing attacks; the face recognition systems give acceptance for the traveller, even though the passport photo does not represent the actual image of the person but is a result of the merger of two images. Therefore, it is vital to determine whether the passport image is altering (morph) or actual. This research proposes an improved method to extract features from facial images. The proposed method consists of four phases: In the first stage, morph images were generated using a set of databases of images of real people, used every two images that were similar in general shape or landmarks in producing the morphed image using three types of techniques used in this field (Automatic selection landmark, StyleGAN, and Manual selection landmark). StyleGAN has been relied upon to achieve the best results in producing artefact-free images. In the second phase, a Faster Region Convolution neural network is utilizing for determining and cutting important landmarks area (eyes, nose, mouth, and skin) in the face, where we leave the hair, ears, and image background for every image in the database. In the third phase, the features are extracted using three techniques Principal component analysis, eigenvalue, and eigenvector; a matrix of two-dimensional features is generated with one layer for each technique. Then merge the extracted features (with out s) from each image into one image with three layers. The first layer represents the principal component analysis features, the second the eigenvalue features, and the third the eigenvector features. Finally, the features are introduced into the convolutional neural networks to obtain optimal features. The fourth phase represents the classification process using the Deep Neural Network (DNN) classifier and Support Vector Machine (SVM) second classifier. The DNN classifier achieved an average accuracy of 99.02% compared with SVM, with an accuracy of 98.64%. The power of the proposed work is evident through the FRA and RFF evaluation. Which achieved values as low as possible for DNN FAR 0.018, indicating the error rate in calculating morphed images is actual, and FRR 0.003, meaning the error rate in calculating the actual images is morphed, FAR 0.023, FRR 0.06 for SVM whenever these ratios are less than one, the higher system's accuracy in detection. The AMSL dataset (Accuracy 95.8%, FAR 0.039, FRR 0%) (Accuracy 95.2%, FAR 0.047, FRR 0.98) for DNN and SVM, respectively. It turned out that the training of the proposed network optimized for the features extracted for the landmarks area significantly affects finding the difference and discovering the modified images, even in the case of minor modifications as in the AMSL dataset.
摘要人脸识别是应用最广泛的安全和公共安全验证方法。在许多国家,自动边境控制系统使用人脸识别来确认旅行者的身份。ABC系统容易受到人脸变形攻击;人脸识别系统为旅行者提供了认可,即使护照照片并不代表个人的实际图像,而是两个图像合并的结果。因此,确定护照图像是变化的(变形的)还是真实的是至关重要的。本研究提出了一种改进的人脸图像特征提取方法。所提出的方法由四个阶段组成:在第一阶段,使用一组真实人物的图像数据库生成变形图像,使用该领域使用的三种类型的技术(自动选择界标、样式GAN和手动选择界标),在生成变形图像时使用每两个总体形状或界标相似的图像。StyleGAN一直被用来在生成无伪影图像方面实现最佳效果。在第二阶段,快速区域卷积神经网络用于确定和切割面部的重要标志区域(眼睛、鼻子、嘴巴和皮肤),在那里我们为数据库中的每个图像留下头发、耳朵和图像背景。在第三阶段,使用主成分分析、特征值和特征向量三种技术提取特征;为每种技术生成具有一层的二维特征矩阵。然后将从每个图像中提取的特征(不包含s)合并为一个具有三层的图像。第一层表示主成分分析特征,第二层表示特征值特征,第三层表示特征向量特征。最后,将特征引入卷积神经网络以获得最优特征。第四阶段表示使用深度神经网络(DNN)分类器和支持向量机(SVM)第二分类器的分类过程。与SVM相比,DNN分类器的平均准确率为99.02%,准确率为98.64%。通过FRA和RFF评估,所提出的工作的威力是显而易见的。对于DNN FAR 0.018(表示计算变形图像的错误率是实际的)和FRR 0.003(表示计算实际图像的错误比率是变形的),当这些比率小于1时,SVM的FAR 0.023、FRR 0.06达到尽可能低的值,系统的检测精度就越高。DNN和SVM的AMSL数据集(准确性95.8%,FAR 0.039,FRR 0%)(准确性95.2%,FAR 0.047,FRR 0.98)。事实证明,针对为地标区域提取的特征进行优化的所提出的网络的训练显著影响了差异的发现和修改后的图像的发现,即使是在AMSL数据集中的微小修改的情况下也是如此。
{"title":"Improved Face Morphing Attack Detection Method Using PCA and Convolutional Neural Network","authors":"Imanuddin Razaq, B. K. Shukur","doi":"10.33640/2405-609x.3298","DOIUrl":"https://doi.org/10.33640/2405-609x.3298","url":null,"abstract":"Abstract Face recognition is the most extensively utilized security and public safety verification method. In many nations, the Automatic Border Control system uses face recognition to confirm the identification of travelers The ABC system is vulnerable to face morphing attacks; the face recognition systems give acceptance for the traveller, even though the passport photo does not represent the actual image of the person but is a result of the merger of two images. Therefore, it is vital to determine whether the passport image is altering (morph) or actual. This research proposes an improved method to extract features from facial images. The proposed method consists of four phases: In the first stage, morph images were generated using a set of databases of images of real people, used every two images that were similar in general shape or landmarks in producing the morphed image using three types of techniques used in this field (Automatic selection landmark, StyleGAN, and Manual selection landmark). StyleGAN has been relied upon to achieve the best results in producing artefact-free images. In the second phase, a Faster Region Convolution neural network is utilizing for determining and cutting important landmarks area (eyes, nose, mouth, and skin) in the face, where we leave the hair, ears, and image background for every image in the database. In the third phase, the features are extracted using three techniques Principal component analysis, eigenvalue, and eigenvector; a matrix of two-dimensional features is generated with one layer for each technique. Then merge the extracted features (with out s) from each image into one image with three layers. The first layer represents the principal component analysis features, the second the eigenvalue features, and the third the eigenvector features. Finally, the features are introduced into the convolutional neural networks to obtain optimal features. The fourth phase represents the classification process using the Deep Neural Network (DNN) classifier and Support Vector Machine (SVM) second classifier. The DNN classifier achieved an average accuracy of 99.02% compared with SVM, with an accuracy of 98.64%. The power of the proposed work is evident through the FRA and RFF evaluation. Which achieved values as low as possible for DNN FAR 0.018, indicating the error rate in calculating morphed images is actual, and FRR 0.003, meaning the error rate in calculating the actual images is morphed, FAR 0.023, FRR 0.06 for SVM whenever these ratios are less than one, the higher system's accuracy in detection. The AMSL dataset (Accuracy 95.8%, FAR 0.039, FRR 0%) (Accuracy 95.2%, FAR 0.047, FRR 0.98) for DNN and SVM, respectively. It turned out that the training of the proposed network optimized for the features extracted for the landmarks area significantly affects finding the difference and discovering the modified images, even in the case of minor modifications as in the AMSL dataset.","PeriodicalId":17782,"journal":{"name":"Karbala International Journal of Modern Science","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45918038","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Biosynthesis of Copper Nanoparticles Using Hylocereus costaricensis Peel Extract and their Photocatalytic Properties 红杉皮提取物生物合成纳米铜及其光催化性能研究
Pub Date : 2023-05-04 DOI: 10.33640/2405-609x.3300
S. Putri, N. Herawati, Ahmad Fudhail, D. Pratiwi, S. Side, Abd-Shukor A. Rahman, S. Desa, Nur Ahmad, S. Junaedi, A. Surleva
{"title":"Biosynthesis of Copper Nanoparticles Using Hylocereus costaricensis Peel Extract and their Photocatalytic Properties","authors":"S. Putri, N. Herawati, Ahmad Fudhail, D. Pratiwi, S. Side, Abd-Shukor A. Rahman, S. Desa, Nur Ahmad, S. Junaedi, A. Surleva","doi":"10.33640/2405-609x.3300","DOIUrl":"https://doi.org/10.33640/2405-609x.3300","url":null,"abstract":"","PeriodicalId":17782,"journal":{"name":"Karbala International Journal of Modern Science","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45196066","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bio-Colloidal Silver Nanoparticles Prepared via Green Synthesis Using Sandoricum koetjape Peel Extract for Selective Colorimetry-Based Mercury Ions Detection 三棱皮提取物绿色合成生物胶体银纳米粒子用于选择性比色法检测汞离子
Pub Date : 2023-05-04 DOI: 10.33640/2405-609x.3299
A. S. Rini, Anggrid Fitrisia, Y. Rati, L. Umar, Y. Soerbakti
{"title":"Bio-Colloidal Silver Nanoparticles Prepared via Green Synthesis Using Sandoricum koetjape Peel Extract for Selective Colorimetry-Based Mercury Ions Detection","authors":"A. S. Rini, Anggrid Fitrisia, Y. Rati, L. Umar, Y. Soerbakti","doi":"10.33640/2405-609x.3299","DOIUrl":"https://doi.org/10.33640/2405-609x.3299","url":null,"abstract":"","PeriodicalId":17782,"journal":{"name":"Karbala International Journal of Modern Science","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46513387","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Analyzing COVID-19 Vaccine Adverse Reactions Using Machine Learning Techniques 利用机器学习技术分析COVID-19疫苗不良反应
Pub Date : 2023-05-02 DOI: 10.33640/2405-609x.3271
Mohammed Basil Albayati, A. Altamimi
{"title":"Analyzing COVID-19 Vaccine Adverse Reactions Using Machine Learning Techniques","authors":"Mohammed Basil Albayati, A. Altamimi","doi":"10.33640/2405-609x.3271","DOIUrl":"https://doi.org/10.33640/2405-609x.3271","url":null,"abstract":"","PeriodicalId":17782,"journal":{"name":"Karbala International Journal of Modern Science","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45200073","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Immunomodulatory and Ameliorative Effect of Citrus limon Extract on DMBA‐induced Breast Cancer in Mouse 柑橘柠檬提取物对DMBA诱导的小鼠乳腺癌的免疫调节和改善作用
Pub Date : 2023-04-28 DOI: 10.33640/2405-609x.3273
W. E. Putra, Astrid Karindra Agusinta, Muhammad Sultonun Arifin Ali Ashar, Vetti Adriani Manullang, Muhaimin Rifa’i
{"title":"Immunomodulatory and Ameliorative Effect of Citrus limon Extract on DMBA‐induced Breast Cancer in Mouse","authors":"W. E. Putra, Astrid Karindra Agusinta, Muhammad Sultonun Arifin Ali Ashar, Vetti Adriani Manullang, Muhaimin Rifa’i","doi":"10.33640/2405-609x.3273","DOIUrl":"https://doi.org/10.33640/2405-609x.3273","url":null,"abstract":"","PeriodicalId":17782,"journal":{"name":"Karbala International Journal of Modern Science","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47598437","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exploiting social trust via weighted voting strategy for recommendation systems improvement 通过加权投票策略利用社会信任改进推荐系统
Pub Date : 2023-04-20 DOI: 10.33640/2405-609x.3295
H. J. Oudah, M. H. Hussein
{"title":"Exploiting social trust via weighted voting strategy for recommendation systems improvement","authors":"H. J. Oudah, M. H. Hussein","doi":"10.33640/2405-609x.3295","DOIUrl":"https://doi.org/10.33640/2405-609x.3295","url":null,"abstract":"","PeriodicalId":17782,"journal":{"name":"Karbala International Journal of Modern Science","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43134560","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Machine learning based Software Fault Prediction models 基于机器学习的软件故障预测模型
Pub Date : 2023-04-20 DOI: 10.33640/2405-609x.3297
Gurmeet Kaur, Jyotika Pruthi, Parul Gandhi
{"title":"Machine learning based Software Fault Prediction models","authors":"Gurmeet Kaur, Jyotika Pruthi, Parul Gandhi","doi":"10.33640/2405-609x.3297","DOIUrl":"https://doi.org/10.33640/2405-609x.3297","url":null,"abstract":"","PeriodicalId":17782,"journal":{"name":"Karbala International Journal of Modern Science","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42627652","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
New Alkyd Resins from Underutilized Indigenous Seed Oils: Synthesis and Characterization 未充分利用的本地种子油制备新型醇酸树脂:合成与表征
Pub Date : 2023-04-17 DOI: 10.33640/2405-609x.3293
A. O. Mustapha, Hakeem B. Ayoku, Halimah A. Amao
{"title":"New Alkyd Resins from Underutilized Indigenous Seed Oils: Synthesis and Characterization","authors":"A. O. Mustapha, Hakeem B. Ayoku, Halimah A. Amao","doi":"10.33640/2405-609x.3293","DOIUrl":"https://doi.org/10.33640/2405-609x.3293","url":null,"abstract":"","PeriodicalId":17782,"journal":{"name":"Karbala International Journal of Modern Science","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41597973","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Karbala International Journal of Modern Science
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1