In this paper, recent developments of the devolatilization model and soot-formation model for the numerical simulations of pulverized-coal combustion fields, and the technology used to measure soot particles in pulverized-coal combustion fields are reviewed. For the development of new models, the validation of the developed models using measurement is necessary to check the accuracy of the models because new models without validation have a possibility to make large errors in simulations. We have developed the tabulated devolatilization process model (TDP model) that can take into account the effect of particle heating rate on the volatile matter amount and the devolatilization-rate parameters. The accuracy of the developed TDP model was validated by using the laser Doppler velocimetry data for the bench-scale coal combustion test furnace. The soot-formation model combined with TDP model for the large eddy simulation (LES) has been also developed. The spatial distributions of both the soot-volume fraction and the polycyclic aromatic hydrocarbons were measured by virtue of laser-induced incandescence (LII) and laser-induced chemiluminescence (PAHs-LIF). The accuracy of the developed soot-formation model was validated by using the measured data.
{"title":"Coal Particle Devolatilization and Soot Formation in Pulverized Coal Combustion Fields","authors":"Nozomu Hashimoto, J. Hayashi","doi":"10.14356/kona.2021003","DOIUrl":"https://doi.org/10.14356/kona.2021003","url":null,"abstract":"In this paper, recent developments of the devolatilization model and soot-formation model for the numerical simulations of pulverized-coal combustion fields, and the technology used to measure soot particles in pulverized-coal combustion fields are reviewed. For the development of new models, the validation of the developed models using measurement is necessary to check the accuracy of the models because new models without validation have a possibility to make large errors in simulations. We have developed the tabulated devolatilization process model (TDP model) that can take into account the effect of particle heating rate on the volatile matter amount and the devolatilization-rate parameters. The accuracy of the developed TDP model was validated by using the laser Doppler velocimetry data for the bench-scale coal combustion test furnace. The soot-formation model combined with TDP model for the large eddy simulation (LES) has been also developed. The spatial distributions of both the soot-volume fraction and the polycyclic aromatic hydrocarbons were measured by virtue of laser-induced incandescence (LII) and laser-induced chemiluminescence (PAHs-LIF). The accuracy of the developed soot-formation model was validated by using the measured data.","PeriodicalId":17828,"journal":{"name":"KONA Powder and Particle Journal","volume":"59 1","pages":""},"PeriodicalIF":4.1,"publicationDate":"2021-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72413256","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Electrostatic forces cause spontaneous movement of charged particles; subsequently, electrostatic technology is attracting attention because of its application in powder handling processes, such as separation, classification, dispersion, and collection. Dielectric and conductive particles are charged by induction in a strong electric field and moved by Coulomb forces. The magnitude and polarity of the transferred charges are controlled by the strength and direction of the electric field. The dielectric particles are also polarized in the electric field, and dipole interactions occur between particles or in the particle layers, complicating the particle behavior. This review paper presents induction charging, agglomeration, levitation, and other behaviors resulting from particle layers in electric fields. A series of particle phenomena occur in parallel electrode systems, which consist of a lower plate electrode and an upper mesh electrode. Charged agglomerates are formed on the particle layers, levitated by the Coulomb forces, and disintegrated with rotation when approaching the mesh electrode. The mechanisms of agglomeration and disintegration have been elucidated in multiple studies, including microscopic observations and theoretical analyses of particle motion, based on numerical calculations of the electric field. Furthermore, a new system is proposed for continuous feeding of dispersed particles using electric fields and vibration.
{"title":"Agglomeration and Dispersion Related to Particle Charging in Electric Fields","authors":"M. Shoyama, S. Matsusaka","doi":"10.14356/kona.2021016","DOIUrl":"https://doi.org/10.14356/kona.2021016","url":null,"abstract":"Electrostatic forces cause spontaneous movement of charged particles; subsequently, electrostatic technology is attracting attention because of its application in powder handling processes, such as separation, classification, dispersion, and collection. Dielectric and conductive particles are charged by induction in a strong electric field and moved by Coulomb forces. The magnitude and polarity of the transferred charges are controlled by the strength and direction of the electric field. The dielectric particles are also polarized in the electric field, and dipole interactions occur between particles or in the particle layers, complicating the particle behavior. This review paper presents induction charging, agglomeration, levitation, and other behaviors resulting from particle layers in electric fields. A series of particle phenomena occur in parallel electrode systems, which consist of a lower plate electrode and an upper mesh electrode. Charged agglomerates are formed on the particle layers, levitated by the Coulomb forces, and disintegrated with rotation when approaching the mesh electrode. The mechanisms of agglomeration and disintegration have been elucidated in multiple studies, including microscopic observations and theoretical analyses of particle motion, based on numerical calculations of the electric field. Furthermore, a new system is proposed for continuous feeding of dispersed particles using electric fields and vibration.","PeriodicalId":17828,"journal":{"name":"KONA Powder and Particle Journal","volume":"4 1","pages":""},"PeriodicalIF":4.1,"publicationDate":"2021-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82976537","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Intermetallic compounds are becoming hot materials as catalysts because they show unique catalytic properties that originate from a unique electronic structure and an atomic ordered surface. Ternary intermetallic catalysts have rarely been reported, which is likely due to the difficulty in synthesizing their supported nanoparticles, the typical form for catalysis research; however, there could be novel catalysts in ternary systems because they have much more elemental combinations than binary systems. They are expected to exhibit novel properties due to the synergy between three elements. Metallurgical methods, such as arc-melting, can easily synthesize intermetallic compounds even in ternary (or more) systems if they are thermodynamically stable. Thus, only metallurgical synthesis enables screening for ternary intermetallic catalysts. The catalyst screening of Heusler alloys, which are a group of ternary intermetallic compounds popular in other research fields, such as magnetics, has been conducted using metallurgical synthesis. The screening revealed fundamental catalytic properties of Heusler alloys for several reactions and identified good catalysts for the selective hydrogenation of alkynes. The systematic control of catalysis was also demonstrated by the substitution of fourth elements using a feature of Heusler alloys. This paper describes the importance of ternary intermetallic catalysts with practical examples of Heusler alloy catalysts and discusses future prospects.
{"title":"Screening of Ternary Intermetallic Catalysts Is Possible Using Metallurgical Synthesis: Demonstration on Heusler Alloys","authors":"T. Kojima, S. Kameoka, A. Tsai","doi":"10.14356/kona.2021008","DOIUrl":"https://doi.org/10.14356/kona.2021008","url":null,"abstract":"Intermetallic compounds are becoming hot materials as catalysts because they show unique catalytic properties that originate from a unique electronic structure and an atomic ordered surface. Ternary intermetallic catalysts have rarely been reported, which is likely due to the difficulty in synthesizing their supported nanoparticles, the typical form for catalysis research; however, there could be novel catalysts in ternary systems because they have much more elemental combinations than binary systems. They are expected to exhibit novel properties due to the synergy between three elements. Metallurgical methods, such as arc-melting, can easily synthesize intermetallic compounds even in ternary (or more) systems if they are thermodynamically stable. Thus, only metallurgical synthesis enables screening for ternary intermetallic catalysts. The catalyst screening of Heusler alloys, which are a group of ternary intermetallic compounds popular in other research fields, such as magnetics, has been conducted using metallurgical synthesis. The screening revealed fundamental catalytic properties of Heusler alloys for several reactions and identified good catalysts for the selective hydrogenation of alkynes. The systematic control of catalysis was also demonstrated by the substitution of fourth elements using a feature of Heusler alloys. This paper describes the importance of ternary intermetallic catalysts with practical examples of Heusler alloy catalysts and discusses future prospects.","PeriodicalId":17828,"journal":{"name":"KONA Powder and Particle Journal","volume":"11 1","pages":"2021008"},"PeriodicalIF":4.1,"publicationDate":"2021-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82015228","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The design of new technology for processing and manufacturing particulate products requires understanding granular rheology over a broad range of conditions. Powders display a complex behaviour due to their ability to rearrange under stress, and as a result, granular flow is generally classified into three flow regimes, namely a quasi-static regime dominated by frictional contacts, an inertial regime dominated by collisional and kinematic stresses and an intermediate regime where the three sources of stress are important to establish a stress-strain rate relationship. Characterisation of the flowability is generally restricted to the flow initiation in quasi-static regime, even if, transition into inertial conditions is very common in practical applications involving the control of dense flows, such as powder handling, particle formation processes or additive manufacturing. This work presents a critical review of available techniques to characterise the departure from the quasi-static regime into an intermediate flow. We revise the application of shear cells and present different strategies to modify classic devices with external actuation, such as aeration, to operate at higher inertial numbers. We pay particular attention to innovative designs using aerated Couette flow configurations, highlight the complexity in the standardisation and the challenges in advancing towards a universal model.
{"title":"From Quasi-static to Intermediate Regimes in Shear Cell Devices: Theory and Characterisation","authors":"Victor Francia, L. A. A. Yahia, R. Ocone, A. Ozel","doi":"10.14356/KONA.2021018","DOIUrl":"https://doi.org/10.14356/KONA.2021018","url":null,"abstract":"The design of new technology for processing and manufacturing particulate products requires understanding granular rheology over a broad range of conditions. Powders display a complex behaviour due to their ability to rearrange under stress, and as a result, granular flow is generally classified into three flow regimes, namely a quasi-static regime dominated by frictional contacts, an inertial regime dominated by collisional and kinematic stresses and an intermediate regime where the three sources of stress are important to establish a stress-strain rate relationship. Characterisation of the flowability is generally restricted to the flow initiation in quasi-static regime, even if, transition into inertial conditions is very common in practical applications involving the control of dense flows, such as powder handling, particle formation processes or additive manufacturing. This work presents a critical review of available techniques to characterise the departure from the quasi-static regime into an intermediate flow. We revise the application of shear cells and present different strategies to modify classic devices with external actuation, such as aeration, to operate at higher inertial numbers. We pay particular attention to innovative designs using aerated Couette flow configurations, highlight the complexity in the standardisation and the challenges in advancing towards a universal model.","PeriodicalId":17828,"journal":{"name":"KONA Powder and Particle Journal","volume":"20 1","pages":""},"PeriodicalIF":4.1,"publicationDate":"2021-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78649072","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mervat Said Hassan Badr, S. Yuan, Jiaqi Dong, H. El-Shall, Yamile A. Bermudez, D. C. Ortega, Jorge E. Lopez-Rendon, B. Moudgil
It has been well known that mineral samples from different locations and origins can exhibit a significant shift in their properties and behavior. The present study of three samples of kaolin from a wide set of origin of deposits, composition, and ceramic properties, provided an important and perhaps a unique opportunity for investigating the interdependence of mineralogy, chemical composition, particle morphology, and surface property with their rheological behavior in ceramic applications such as casting rate. The X-ray diffraction patterns of kaolin samples #2 and #3 suggested low crystallinity with Hinckley Index (HI) ranging between 0.78 and 0.8. On the other hand, kaolin sample #1 was highly ordered with HI of about 1.21, and it had higher quartz content. This free quartz could enhance the permeability and hence increase the casting rate. The abundance of divalent ions (Ca 2+ and Mg 2+ ) in samples #2 & #3 could result in the collapse of the electrical double layer and reduction of zeta potential, consequently, coagulation of the particles leading to an increase of viscosity and dispersant demands. The morphology study suggested the platelet particles in samples #2 & #3 would lead to slower dewatering, thus, lower casting rate than that of the blocky (lower aspect ratio and narrower size distribution) particles in sample #1.
{"title":"The Properties of Kaolin from Different Locations and Their Impact on Casting Rate","authors":"Mervat Said Hassan Badr, S. Yuan, Jiaqi Dong, H. El-Shall, Yamile A. Bermudez, D. C. Ortega, Jorge E. Lopez-Rendon, B. Moudgil","doi":"10.14356/kona.2021002","DOIUrl":"https://doi.org/10.14356/kona.2021002","url":null,"abstract":"It has been well known that mineral samples from different locations and origins can exhibit a significant shift in their properties and behavior. The present study of three samples of kaolin from a wide set of origin of deposits, composition, and ceramic properties, provided an important and perhaps a unique opportunity for investigating the interdependence of mineralogy, chemical composition, particle morphology, and surface property with their rheological behavior in ceramic applications such as casting rate. The X-ray diffraction patterns of kaolin samples #2 and #3 suggested low crystallinity with Hinckley Index (HI) ranging between 0.78 and 0.8. On the other hand, kaolin sample #1 was highly ordered with HI of about 1.21, and it had higher quartz content. This free quartz could enhance the permeability and hence increase the casting rate. The abundance of divalent ions (Ca 2+ and Mg 2+ ) in samples #2 & #3 could result in the collapse of the electrical double layer and reduction of zeta potential, consequently, coagulation of the particles leading to an increase of viscosity and dispersant demands. The morphology study suggested the platelet particles in samples #2 & #3 would lead to slower dewatering, thus, lower casting rate than that of the blocky (lower aspect ratio and narrower size distribution) particles in sample #1.","PeriodicalId":17828,"journal":{"name":"KONA Powder and Particle Journal","volume":"14 1","pages":""},"PeriodicalIF":4.1,"publicationDate":"2021-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91122246","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
To create advanced materials with minimal energy consumption and environmental impacts, a green and sustainable powder processing technology is essential. The authors have developed this technique based on powder grinding technology. In this paper, the authors will explain the recent progress of the smart powder processing, and its applications. Firstly, particle bonding process, and novel one-pot processing methods to synthesize nanoparticles, to create nanostructured composite granules and to form nano-porous films on substrates in dry phase will be discussed. Their applications on the advanced material fabrications contributing to the sustainable economy will also be explained. Then, the use of grinding technology in wet processing to synthesize nanoparticles and control their morphology will be explained. Smart powder processing can be a foundation to move forward material development technologies and create many more high-quality advanced materials in the future.
{"title":"Smart Powder Processing for Excellent Advanced Materials and Its Applications","authors":"M. Naito, T. Kozawa, A. Kondo, C.C. Huang","doi":"10.14356/kona.2023001","DOIUrl":"https://doi.org/10.14356/kona.2023001","url":null,"abstract":"To create advanced materials with minimal energy consumption and environmental impacts, a green and sustainable powder processing technology is essential. The authors have developed this technique based on powder grinding technology. In this paper, the authors will explain the recent progress of the smart powder processing, and its applications. Firstly, particle bonding process, and novel one-pot processing methods to synthesize nanoparticles, to create nanostructured composite granules and to form nano-porous films on substrates in dry phase will be discussed. Their applications on the advanced material fabrications contributing to the sustainable economy will also be explained. Then, the use of grinding technology in wet processing to synthesize nanoparticles and control their morphology will be explained. Smart powder processing can be a foundation to move forward material development technologies and create many more high-quality advanced materials in the future.","PeriodicalId":17828,"journal":{"name":"KONA Powder and Particle Journal","volume":"11 35","pages":""},"PeriodicalIF":4.1,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72489594","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Recently, various types of functionalized metal oxide nanoparticles have been used for many applications because of their unique chemical and physical properties. To synthesize metal oxide nanoparticles, liquid-phase synthesis techniques have been developed. The production process of metal oxide nanoparticles in aqueous media is extremely complex because the formation, crystal structure, crystallinity, chemical composition, and morphology of the particles are considerably dependent on the preparation conditions (e.g., anion and cation concentrations and species, additives, solution pH, and reaction temperature and time). Accordingly, clarifying these effects is fundamental to accurately understand the formation mechanism of metal oxide nanoparticles to further develop new functionalized nanoparticles. In this review, the influence of anions (Cl – , SO 42– , and NO 3– ) and cations (Ni 2+ , Cu 2+ , and Cr 3+ ) on the formation and structure of iron oxide nanoparticles in aqueous media is described.
{"title":"Influence of Anions and Cations on the Formation of Iron Oxide Nanoparticles in Aqueous Media","authors":"Hidekazu Tanaka","doi":"10.14356/kona.2022003","DOIUrl":"https://doi.org/10.14356/kona.2022003","url":null,"abstract":"Recently, various types of functionalized metal oxide nanoparticles have been used for many applications because of their unique chemical and physical properties. To synthesize metal oxide nanoparticles, liquid-phase synthesis techniques have been developed. The production process of metal oxide nanoparticles in aqueous media is extremely complex because the formation, crystal structure, crystallinity, chemical composition, and morphology of the particles are considerably dependent on the preparation conditions (e.g., anion and cation concentrations and species, additives, solution pH, and reaction temperature and time). Accordingly, clarifying these effects is fundamental to accurately understand the formation mechanism of metal oxide nanoparticles to further develop new functionalized nanoparticles. In this review, the influence of anions (Cl – , SO 42– , and NO 3– ) and cations (Ni 2+ , Cu 2+ , and Cr 3+ ) on the formation and structure of iron oxide nanoparticles in aqueous media is described.","PeriodicalId":17828,"journal":{"name":"KONA Powder and Particle Journal","volume":"4 1","pages":"2022003"},"PeriodicalIF":4.1,"publicationDate":"2020-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77867200","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The synthesis of noble metals and their alloy nanoparticles by laser-induced nucleation is described. Femtosecond laser pulses with an energy on the order of mJ were tightly focused to create an intensity of 10 14 W/cm 2 or more in an aqueous solution of noble metal ions. The intense laser field generated solvated electrons and hydrogen radicals that have a highly reducing ability, resulting in nucleation through the reduction of the noble metal ions and particle growth through ripening. This laser-induced nucleation method can be performed without any reducing agents. Excess irradiation of chloroauric acid solution led to the formation of a stable colloidal solution of gold nanoparticles without any surfactants. Additionally, the irradiation of a mixed solution of different noble metal ions formed solid–solution alloy nanoparticles, even though these metals were immiscible in the bulk. Moreover, the laser-induced nucleation made it possible to form quinary solid-solution alloy nanoparticles of noble metals. The mechanism of superior catalytic activity found for alloy nanoparticles by using Rh–Pd–Pt solid–solution nanoparticles is discussed in terms of elemental distributions inside the particles.
{"title":"Synthesis of Noble Metals and Their Alloy Nanoparticles by Laser-induced Nucleation in a Highly Intense Laser Field","authors":"Takahiro Nakamura, Yuki Yamazaki, S. Sato","doi":"10.14356/kona.2022002","DOIUrl":"https://doi.org/10.14356/kona.2022002","url":null,"abstract":"The synthesis of noble metals and their alloy nanoparticles by laser-induced nucleation is described. Femtosecond laser pulses with an energy on the order of mJ were tightly focused to create an intensity of 10 14 W/cm 2 or more in an aqueous solution of noble metal ions. The intense laser field generated solvated electrons and hydrogen radicals that have a highly reducing ability, resulting in nucleation through the reduction of the noble metal ions and particle growth through ripening. This laser-induced nucleation method can be performed without any reducing agents. Excess irradiation of chloroauric acid solution led to the formation of a stable colloidal solution of gold nanoparticles without any surfactants. Additionally, the irradiation of a mixed solution of different noble metal ions formed solid–solution alloy nanoparticles, even though these metals were immiscible in the bulk. Moreover, the laser-induced nucleation made it possible to form quinary solid-solution alloy nanoparticles of noble metals. The mechanism of superior catalytic activity found for alloy nanoparticles by using Rh–Pd–Pt solid–solution nanoparticles is discussed in terms of elemental distributions inside the particles.","PeriodicalId":17828,"journal":{"name":"KONA Powder and Particle Journal","volume":"53 1","pages":"2022002"},"PeriodicalIF":4.1,"publicationDate":"2020-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88244621","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
図 Abstract Air filters have been commonly used for the removal of airborne particles. Currently the major concerns of air filters are ( 1 ) improvement of collection performance - a filter with a low pressure drop and a high collection efficiency, ( 2 ) influence of dust load on filter performance - prediction of filter life and development of a filter with a longer life, and ( 3 ) collection efficiency of nanoparticles - thermal rebound of sub -10 nm particles on fiber surfaces. In addition to the conventional usages of air filters, they may also be used for the classification of aerosol particles by tuning the filter structure and filtration conditions. Inertial filter is a low - pass filter, which may be used for the sampling of atmospheric particles and continuous measurement of PM 2 . 5 or PM 0 . 1 . The bounce - off of particles on fiber surfaces may be utilized to achieve “sieving” of aerosol particles. Another topic of filter is the collection efficiency of air filter for PM 2 . 5 . Combination of centrifugal force with air filter may solve many problems which the conventional air filters are confronted with now.
{"title":"Present Status of Air Filters and Exploration of Their New Applications","authors":"Myong-Hwa Lee, Hyun Jin Choi, M. Kumita, Y. Otani","doi":"10.14356/KONA.2020001","DOIUrl":"https://doi.org/10.14356/KONA.2020001","url":null,"abstract":"図 Abstract Air filters have been commonly used for the removal of airborne particles. Currently the major concerns of air filters are ( 1 ) improvement of collection performance - a filter with a low pressure drop and a high collection efficiency, ( 2 ) influence of dust load on filter performance - prediction of filter life and development of a filter with a longer life, and ( 3 ) collection efficiency of nanoparticles - thermal rebound of sub -10 nm particles on fiber surfaces. In addition to the conventional usages of air filters, they may also be used for the classification of aerosol particles by tuning the filter structure and filtration conditions. Inertial filter is a low - pass filter, which may be used for the sampling of atmospheric particles and continuous measurement of PM 2 . 5 or PM 0 . 1 . The bounce - off of particles on fiber surfaces may be utilized to achieve “sieving” of aerosol particles. Another topic of filter is the collection efficiency of air filter for PM 2 . 5 . Combination of centrifugal force with air filter may solve many problems which the conventional air filters are confronted with now.","PeriodicalId":17828,"journal":{"name":"KONA Powder and Particle Journal","volume":"47 1","pages":""},"PeriodicalIF":4.1,"publicationDate":"2020-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80434480","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Fig. 3 c) A closer look at the measurement optics. Here U is the real velocity, v is the component of velocity in the direction of the measurement beam, and nf is the refractive index of the medium. Angle α is obtained by calculating first angle δ by applying the Snell’s law of refraction to the two interfaces. On page 46 the paragraph related to Eq. (3) should be: Fig. 3b shows as an example a measurement setup of pipe flow. From Fig. 3c, we get the real axial velocity in the pipe to be
{"title":"Analysis of Industry-Related Flows by Optical Coherence Tomography—A Review","authors":"Antti I. Koponen, Sanna Haavisto","doi":"10.14356/KONA.2020003","DOIUrl":"https://doi.org/10.14356/KONA.2020003","url":null,"abstract":"Fig. 3 c) A closer look at the measurement optics. Here U is the real velocity, v is the component of velocity in the direction of the measurement beam, and nf is the refractive index of the medium. Angle α is obtained by calculating first angle δ by applying the Snell’s law of refraction to the two interfaces. On page 46 the paragraph related to Eq. (3) should be: Fig. 3b shows as an example a measurement setup of pipe flow. From Fig. 3c, we get the real axial velocity in the pipe to be","PeriodicalId":17828,"journal":{"name":"KONA Powder and Particle Journal","volume":"Suppl 23 1","pages":""},"PeriodicalIF":4.1,"publicationDate":"2020-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79097646","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}