M. Ghadiri, M. Pasha, Wenguang Nan, C. Hare, Vivacqua, U. Zafar, S. Nezamabadi, A. López, S. Nadimi
Powder processing and manufacturing operations are rate processes for which the bottleneck is cohesive powder flow. Diversity of material properties, particulate form, and sensitivity to environmental conditions, such as humidity and tribo-electric charging, make its prediction very challenging. However, this is highly desirable particularly when addressing a powder material for which only a small quantity is available. Furthermore, in a number of applications powder flow testing at low stress levels is highly desirable. Characterisation of bulk powder failure for flow initiation (quasi-static) is well established. However, bulk flow parameters are all sensitive to strain rate with which the powder is sheared, but in contrast to quasi-static test methods, there is no shear cell for characterisation of the bulk parameters in the dynamic regime. There are only a handful of instruments available for powder rheometry, in which the bulk resistance to motion can be quantified as a function of the shear strain rate, but the challenge is relating the bulk behaviour to the physical and mechanical properties of constituting particles. A critique of the current state of the art in characterisation and analysis of cohesive powder flow is presented, addressing the effects of cohesion, strain rate, fluid medium drag and particle shape.
{"title":"Cohesive Powder Flow: Trends and Challenges in Characterisation and Analysis","authors":"M. Ghadiri, M. Pasha, Wenguang Nan, C. Hare, Vivacqua, U. Zafar, S. Nezamabadi, A. López, S. Nadimi","doi":"10.14356/kona.2020018","DOIUrl":"https://doi.org/10.14356/kona.2020018","url":null,"abstract":"Powder processing and manufacturing operations are rate processes for which the bottleneck is cohesive powder flow. Diversity of material properties, particulate form, and sensitivity to environmental conditions, such as humidity and tribo-electric charging, make its prediction very challenging. However, this is highly desirable particularly when addressing a powder material for which only a small quantity is available. Furthermore, in a number of applications powder flow testing at low stress levels is highly desirable. Characterisation of bulk powder failure for flow initiation (quasi-static) is well established. However, bulk flow parameters are all sensitive to strain rate with which the powder is sheared, but in contrast to quasi-static test methods, there is no shear cell for characterisation of the bulk parameters in the dynamic regime. There are only a handful of instruments available for powder rheometry, in which the bulk resistance to motion can be quantified as a function of the shear strain rate, but the challenge is relating the bulk behaviour to the physical and mechanical properties of constituting particles. A critique of the current state of the art in characterisation and analysis of cohesive powder flow is presented, addressing the effects of cohesion, strain rate, fluid medium drag and particle shape.","PeriodicalId":17828,"journal":{"name":"KONA Powder and Particle Journal","volume":"117 13 1","pages":""},"PeriodicalIF":4.1,"publicationDate":"2020-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84261274","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The use of vertical stirred mills in the mining industry has increased remarkably over the past few decades as a result of the growing demand for finer ore grinding. This equipment is recognized to deliver higher energy efficiency in fine grinding operations when compared to conventional tubular mills. Methods of designing vertical stirred mills involve operational experience, pilot plant tests and bench tests. An important issue is that the laboratory-scale test, conducted in the standard 8"×10" jar, requires at least 10–20 kg of material, depending on ore density, which is not available in many cases, particularly in the early stages of greenfield projects. For regrinding of flotation concentrates, several bench scale flotation tests are required to generate such a sample. The paper describes the development and validation with six different ore samples of a simplified laboratory jar mill test using a 6"×8" jar, which is smaller than the 8"×10" size, the latter commonly used which requires about one-tenth of the mass required in the standard test. The proposed test indicated similar results as compared to the standard procedure.
{"title":"Development and Validation of a Simplified Laboratory Test to Design Vertical Stirred Mills","authors":"M. G. Bergerman, H. D. Júnior","doi":"10.14356/KONA.2020007","DOIUrl":"https://doi.org/10.14356/KONA.2020007","url":null,"abstract":"The use of vertical stirred mills in the mining industry has increased remarkably over the past few decades as a result of the growing demand for finer ore grinding. This equipment is recognized to deliver higher energy efficiency in fine grinding operations when compared to conventional tubular mills. Methods of designing vertical stirred mills involve operational experience, pilot plant tests and bench tests. An important issue is that the laboratory-scale test, conducted in the standard 8\"×10\" jar, requires at least 10–20 kg of material, depending on ore density, which is not available in many cases, particularly in the early stages of greenfield projects. For regrinding of flotation concentrates, several bench scale flotation tests are required to generate such a sample. The paper describes the development and validation with six different ore samples of a simplified laboratory jar mill test using a 6\"×8\" jar, which is smaller than the 8\"×10\" size, the latter commonly used which requires about one-tenth of the mass required in the standard test. The proposed test indicated similar results as compared to the standard procedure.","PeriodicalId":17828,"journal":{"name":"KONA Powder and Particle Journal","volume":"34 1","pages":""},"PeriodicalIF":4.1,"publicationDate":"2020-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89322854","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The KONA Award 2018","authors":"","doi":"10.14356/kona.2020023","DOIUrl":"https://doi.org/10.14356/kona.2020023","url":null,"abstract":"","PeriodicalId":17828,"journal":{"name":"KONA Powder and Particle Journal","volume":"42 1 1","pages":""},"PeriodicalIF":4.1,"publicationDate":"2020-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72673652","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
J. Groen, W. Kooijman, Djamilla van Belzen, G. Meesters, D. Schütz, Timothy Aschl, P. Verolme
Unwanted changes in powder flow behavior can unexpectedly occur when a product is exposed to certain conditions of temperature and humidity. This can happen during production, but also during transport or storage. The work reported here demonstrates the novel approach of using an amended powder rheology set-up for measuring and predicting such changes in powder flow behavior. The developed methodology makes it possible to vary in-situ the temperature and the relative humidity of the air to which the product is exposed, thereby mimicking realistic conditions of production or related unit operations. An air flow capable of fluidizing the powder particles is controlled at a specific constant temperature and its relative humidity can be altered while measuring the torque in the fluidized powder bed in real time. The fluidization is necessary for generating a homogeneous introduction of temperature and relative humidity. Results obtained using citric acid and commercial coffee whitener products have proven this methodology to provide both similar and in certain instances dissimilar results compared to the more established methodology such as measuring the vapour adsorption isotherms. These observations are explained. In this way, it can be predicted under which combinations of temperature and humidity a product does or does not become sticky. The main advantages of our approach are that the flow properties are directly assessed, the interpretation of the obtained data is more straightforward and that the measurement times are shortened substantially.
{"title":"Real-time in-situ Rheological Assessment of Sticky Point Temperature and Humidity of Powdered Products","authors":"J. Groen, W. Kooijman, Djamilla van Belzen, G. Meesters, D. Schütz, Timothy Aschl, P. Verolme","doi":"10.14356/KONA.2020006","DOIUrl":"https://doi.org/10.14356/KONA.2020006","url":null,"abstract":"Unwanted changes in powder flow behavior can unexpectedly occur when a product is exposed to certain conditions of temperature and humidity. This can happen during production, but also during transport or storage. The work reported here demonstrates the novel approach of using an amended powder rheology set-up for measuring and predicting such changes in powder flow behavior. The developed methodology makes it possible to vary in-situ the temperature and the relative humidity of the air to which the product is exposed, thereby mimicking realistic conditions of production or related unit operations. An air flow capable of fluidizing the powder particles is controlled at a specific constant temperature and its relative humidity can be altered while measuring the torque in the fluidized powder bed in real time. The fluidization is necessary for generating a homogeneous introduction of temperature and relative humidity. Results obtained using citric acid and commercial coffee whitener products have proven this methodology to provide both similar and in certain instances dissimilar results compared to the more established methodology such as measuring the vapour adsorption isotherms. These observations are explained. In this way, it can be predicted under which combinations of temperature and humidity a product does or does not become sticky. The main advantages of our approach are that the flow properties are directly assessed, the interpretation of the obtained data is more straightforward and that the measurement times are shortened substantially.","PeriodicalId":17828,"journal":{"name":"KONA Powder and Particle Journal","volume":"50 1","pages":""},"PeriodicalIF":4.1,"publicationDate":"2020-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90556085","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
S. Tang, Prachaya Sopanon, W. Tanthapanichakoon, A. Soottitantawat
In this work, composite powders of natural rubber/silica (NR-SiO 2 ) were prepared via sol-gel and spray drying method. The morphology and physical properties of resultant rubber composite powders were characterized by scanning electron microscopy with energy dispersive X-ray spectrometry, laser light scattering particle sizer and thermogravimetric analyzer. The results showed that spray-dried NR-SiO 2 particles were spherical in shape with diameter of less than 10 μm, with silica on the outer layer. The particle size was found to increase gradually with the increase in NR/Si mass ratio. Marginal growth in particle size was observed with increasing feed flow rate. Increasing inlet air temperature improved the latex particle encapsulation by silica layer while maintaining the final particle size. The mechanical properties of NR-SiO 2 powders-filled polylactic acid (PLA) composite increase gradually with the addition of dried particles of higher rubber content. However, the composite exhibited relatively lower or reduced tensile strength and elongation at break compared to the host PLA polymer. This could be attributed to poor filler dispersion associated with weak filler/matrix interaction effect occurring during melt-compounding process.
{"title":"Preparation and Properties of Spherical Natural Rubber/Silica Composite Powders via Spray Drying","authors":"S. Tang, Prachaya Sopanon, W. Tanthapanichakoon, A. Soottitantawat","doi":"10.14356/kona.2020009","DOIUrl":"https://doi.org/10.14356/kona.2020009","url":null,"abstract":"In this work, composite powders of natural rubber/silica (NR-SiO 2 ) were prepared via sol-gel and spray drying method. The morphology and physical properties of resultant rubber composite powders were characterized by scanning electron microscopy with energy dispersive X-ray spectrometry, laser light scattering particle sizer and thermogravimetric analyzer. The results showed that spray-dried NR-SiO 2 particles were spherical in shape with diameter of less than 10 μm, with silica on the outer layer. The particle size was found to increase gradually with the increase in NR/Si mass ratio. Marginal growth in particle size was observed with increasing feed flow rate. Increasing inlet air temperature improved the latex particle encapsulation by silica layer while maintaining the final particle size. The mechanical properties of NR-SiO 2 powders-filled polylactic acid (PLA) composite increase gradually with the addition of dried particles of higher rubber content. However, the composite exhibited relatively lower or reduced tensile strength and elongation at break compared to the host PLA polymer. This could be attributed to poor filler dispersion associated with weak filler/matrix interaction effect occurring during melt-compounding process.","PeriodicalId":17828,"journal":{"name":"KONA Powder and Particle Journal","volume":"4966 5 1","pages":""},"PeriodicalIF":4.1,"publicationDate":"2020-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83108485","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Electrodynamic sorting (EDX) is a new technology developed to sort industrial scrap metals. Under the present embodiment, an electromagnet is placed directly underneath a conveyor belt and then excited by an alternating electrical current to produce a time-varying magnetic field. As scrap particles pass through the field overhead, electrical eddy currents are induced throughout their volumes and then repelled away. If the frequency of excitation is very high (e.g., 12 kHz), then the lightweight aluminum particles tend to jump far more dramatically than heavier materials like copper, brass, and zinc. To demonstrate the principle, a small-scale prototype was assembled and tested. Using an 8-inch (20 cm) lane width, the system could process industrial scrap Zorba at a throughput of over 550 lbs/hour (225 kg/h) with an aluminum grade of 97.6 % and a recovery of 93 %.
{"title":"Electrodynamic Sorting of Industrial Scrap Metal","authors":"J. Nagel, D. Cohrs, J. Salgado, R. Rajamani","doi":"10.14356/kona.2020015","DOIUrl":"https://doi.org/10.14356/kona.2020015","url":null,"abstract":"Electrodynamic sorting (EDX) is a new technology developed to sort industrial scrap metals. Under the present embodiment, an electromagnet is placed directly underneath a conveyor belt and then excited by an alternating electrical current to produce a time-varying magnetic field. As scrap particles pass through the field overhead, electrical eddy currents are induced throughout their volumes and then repelled away. If the frequency of excitation is very high (e.g., 12 kHz), then the lightweight aluminum particles tend to jump far more dramatically than heavier materials like copper, brass, and zinc. To demonstrate the principle, a small-scale prototype was assembled and tested. Using an 8-inch (20 cm) lane width, the system could process industrial scrap Zorba at a throughput of over 550 lbs/hour (225 kg/h) with an aluminum grade of 97.6 % and a recovery of 93 %.","PeriodicalId":17828,"journal":{"name":"KONA Powder and Particle Journal","volume":"12 1","pages":""},"PeriodicalIF":4.1,"publicationDate":"2020-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83343076","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The discrete element method (DEM) and the moving particle semi-implicit (MPS) method are the most popular mesh-free particle methods in the discontinuum and continuum. This paper describes a state-of-the-art modeling on multi-phase flows using these mesh-free particle methods. Herein, a combinational model of the signed distance function (SDF) and immersed boundary method (IBM) is introduced for an arbitrary-shaped wall boundary in the DEM simulation. Practically, this model uses a simple operation to create the wall boundary. Although the SDF is a scalar field for the wall boundary of the DEM, it is useful for the wall boundary of the CFD through combination with the IBM. Validation tests are carried out to demonstrate the adequacy of the SDF/IBM wall boundary model. Regarding the mesh-free particle method for continuum, the phase change problem is one of the challenging topics, as the solid state is usually modeled by extremely high viscous fluid in the phase change simulation. The phase change simulation is shown to be efficiently performed through an implicit algorithm and a heat flux model in the MPS method. The adequacy of these models is verified by the numerical examples.
{"title":"Recent Progress on Mesh-free Particle Methods for Simulations of Multi-phase Flows: A Review","authors":"M. Sakai, Y. Mori, Xiaosong Sun, K. Takabatake","doi":"10.14356/kona.2020017","DOIUrl":"https://doi.org/10.14356/kona.2020017","url":null,"abstract":"The discrete element method (DEM) and the moving particle semi-implicit (MPS) method are the most popular mesh-free particle methods in the discontinuum and continuum. This paper describes a state-of-the-art modeling on multi-phase flows using these mesh-free particle methods. Herein, a combinational model of the signed distance function (SDF) and immersed boundary method (IBM) is introduced for an arbitrary-shaped wall boundary in the DEM simulation. Practically, this model uses a simple operation to create the wall boundary. Although the SDF is a scalar field for the wall boundary of the DEM, it is useful for the wall boundary of the CFD through combination with the IBM. Validation tests are carried out to demonstrate the adequacy of the SDF/IBM wall boundary model. Regarding the mesh-free particle method for continuum, the phase change problem is one of the challenging topics, as the solid state is usually modeled by extremely high viscous fluid in the phase change simulation. The phase change simulation is shown to be efficiently performed through an implicit algorithm and a heat flux model in the MPS method. The adequacy of these models is verified by the numerical examples.","PeriodicalId":17828,"journal":{"name":"KONA Powder and Particle Journal","volume":"24 1","pages":""},"PeriodicalIF":4.1,"publicationDate":"2020-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87853414","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Multiple industrial applications, including pharmaceuticals, rely on the processing of powders. The current powder characterization framework is fragmented into two general areas. One deals with understanding powders from the standpoint of its constituting agents—particles. The other deals with understanding based on the bulk— the collective behavior of particles. While complementary, the two aspects provide distinct pieces of information. Whenever possible, experimental techniques should be used to predict powder behavior. However, it is equally important to recognize that because of the natural complexity of powders, existing predictive approaches will continue to be of limited success for predicting the collective behavior of particles. This article discusses the understanding of powder properties from two perspectives. One is the effect of surface energy at the bulk level (large collections of particles), which controls interactions between powders. This aspect is most useful if studied at the bulk-powder level, not at the single-particle level. Another perspective deals with the physico-mechanical properties of individual particles, responsible for the observed behavior of powders when subjected to mechanical stress from unit operations such as milling. This aspect, which controls the failure mechanism of powders subjected to milling, is most useful if assessed at the single-particle, not at the bulk level. Therefore, in order to fully understand, and eventually predict, or at least effectively model powder behavior, a good-judgement-based combination of microscopic and bulk-level analytical methods is necessary.
{"title":"Integrating Particle Microstructure, Surface and Mechanical Characterization with Bulk Powder Processing","authors":"R. Pinal, M. Carvajal","doi":"10.14356/kona.2020008","DOIUrl":"https://doi.org/10.14356/kona.2020008","url":null,"abstract":"Multiple industrial applications, including pharmaceuticals, rely on the processing of powders. The current powder characterization framework is fragmented into two general areas. One deals with understanding powders from the standpoint of its constituting agents—particles. The other deals with understanding based on the bulk— the collective behavior of particles. While complementary, the two aspects provide distinct pieces of information. Whenever possible, experimental techniques should be used to predict powder behavior. However, it is equally important to recognize that because of the natural complexity of powders, existing predictive approaches will continue to be of limited success for predicting the collective behavior of particles. This article discusses the understanding of powder properties from two perspectives. One is the effect of surface energy at the bulk level (large collections of particles), which controls interactions between powders. This aspect is most useful if studied at the bulk-powder level, not at the single-particle level. Another perspective deals with the physico-mechanical properties of individual particles, responsible for the observed behavior of powders when subjected to mechanical stress from unit operations such as milling. This aspect, which controls the failure mechanism of powders subjected to milling, is most useful if assessed at the single-particle, not at the bulk level. Therefore, in order to fully understand, and eventually predict, or at least effectively model powder behavior, a good-judgement-based combination of microscopic and bulk-level analytical methods is necessary.","PeriodicalId":17828,"journal":{"name":"KONA Powder and Particle Journal","volume":"11 1","pages":""},"PeriodicalIF":4.1,"publicationDate":"2020-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80453742","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}