Pub Date : 2021-11-24DOI: 10.17308/kcmf.2021.23/3667
N. Brezhnev, A. V. Kosyakov, A. V. Steich, A. Zavrazhnov
The goals of this work are as follows: (а) searching for a method of study of the In – Se system taking into account the specified problems and difficulties, (b) choosing a way for the instrumental implementation of this method, and (c) obtaining experimental evidence that this method and its implementation are promising. The choice of the In – Se system is related to the fact that indium selenides, layered structures and semiconductor phases with stoichiometric vacancies, are promising from the point of view of materials science. This choice is also related to the use of binary precursors for the synthesis of heterostructures based on CIS compounds.We studied the possibility of applying the auxiliary component method using the equilibrium with the participation of indium chloride vapours which were made to contact the condensed phases of the In – Se system. Equilibrium was achieved using high-temperature spectrophotometry of the vapour phase. The experiment had two stages. During the first stage we determined the absorption characteristics of the InCl3 vapour. During the second stage we studied the heterogeneous equilibrium of the unsaturated indium chloride vapour with several phases of the In – Se system. Over the course of the study, we determined the molar attenuation coefficients of the InCl3 vapour and plotted the temperature dependences of the value KP.It was found that the phase composition of the alloys significantly influences the position of the corresponding lines on the KP–T diagram, which proves the possibility of using the suggested auxiliary component method in its specific instrumental (spectrophotometric) implementation in order to study the In – Se system. We also showed the additional possibilities of using this method for plotting T-x diagrams of binary systems in such high-temperature areas where the binary solid phase is in equilibrium with the melt. This application of the method is related to the solubility of a vapour of an auxiliary component (chlorine in the form of indium chlorides) in the melts of binary phases (indium selenides).
{"title":"High-temperature spectrophotometry of indium chloride vapours as a method of study of the In – Se system","authors":"N. Brezhnev, A. V. Kosyakov, A. V. Steich, A. Zavrazhnov","doi":"10.17308/kcmf.2021.23/3667","DOIUrl":"https://doi.org/10.17308/kcmf.2021.23/3667","url":null,"abstract":"The goals of this work are as follows: (а) searching for a method of study of the In – Se system taking into account the specified problems and difficulties, (b) choosing a way for the instrumental implementation of this method, and (c) obtaining experimental evidence that this method and its implementation are promising. The choice of the In – Se system is related to the fact that indium selenides, layered structures and semiconductor phases with stoichiometric vacancies, are promising from the point of view of materials science. This choice is also related to the use of binary precursors for the synthesis of heterostructures based on CIS compounds.We studied the possibility of applying the auxiliary component method using the equilibrium with the participation of indium chloride vapours which were made to contact the condensed phases of the In – Se system. Equilibrium was achieved using high-temperature spectrophotometry of the vapour phase. The experiment had two stages. During the first stage we determined the absorption characteristics of the InCl3 vapour. During the second stage we studied the heterogeneous equilibrium of the unsaturated indium chloride vapour with several phases of the In – Se system. Over the course of the study, we determined the molar attenuation coefficients of the InCl3 vapour and plotted the temperature dependences of the value KP.It was found that the phase composition of the alloys significantly influences the position of the corresponding lines on the KP–T diagram, which proves the possibility of using the suggested auxiliary component method in its specific instrumental (spectrophotometric) implementation in order to study the In – Se system. We also showed the additional possibilities of using this method for plotting T-x diagrams of binary systems in such high-temperature areas where the binary solid phase is in equilibrium with the melt. This application of the method is related to the solubility of a vapour of an auxiliary component (chlorine in the form of indium chlorides) in the melts of binary phases (indium selenides).","PeriodicalId":17879,"journal":{"name":"Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases","volume":"59 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75123034","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-11-24DOI: 10.17308/kcmf.2021.23/3671
T. Muratov
To date, the processes of tunnel ionisation of impurities near the interface between two different semiconductors have been comprehensively studied. The most important parameters of the contact electron states of impurities have been determined. However, the calculated expressions for these parameters have been of local nature, as applied to individual impurities. Meanwhile, it is easy to understand that a number of processes, such as the flow of charge carriers and their diffusion through a heterojunction, are clearly statistical in nature. The same applies to the processes of tunnel ionisation of shallow and/or deep impurities near the interface. A statistical approach to the calculation of the parameters of tunnel ionisation of impurities broadens the opportunities for obtaining fundamental information regarding surface electronstates.The aim of this work was to use a statistical approach to study the effect of the heterointerface on the energy spectrum of shallow and deep centres. For this purpose, the expansion of the reflected quasi-classical wave function within the complete system of spherical harmonics and the subsequent extraction of the zero harmonic amplitude (s-component) was used to estimate the minimum distance from the impurity to the heterobarrier and to specify the limitations of the applicability of the results obtained in other works. The article analyses the conditions of the quasi-classical approximation which are used to estimate the order of the value for the minimum height of the potential barrier (pit).This work (with due consideration given to the minimum distance estimate) presents averaged formulas obtained for the energy shift of the ground state and the lifetime of the quasi-stationary state depending on the distance from the heterobarrier. Some qualitatively new considerations can also be found in the article. The distribution of impurity centres near the heterobarrier is assumed to be uniform. The article discusses the role of electron transitions in causing the buffer field effect for both shallow and deep centres. The focus of the article is on the estimates of various physical parameters characterising electron transitions near the heterobarrier.
{"title":"Statistical approach to the process of tunnel ionisation of impurity centres near the heterointerface","authors":"T. Muratov","doi":"10.17308/kcmf.2021.23/3671","DOIUrl":"https://doi.org/10.17308/kcmf.2021.23/3671","url":null,"abstract":"To date, the processes of tunnel ionisation of impurities near the interface between two different semiconductors have been comprehensively studied. The most important parameters of the contact electron states of impurities have been determined. However, the calculated expressions for these parameters have been of local nature, as applied to individual impurities. Meanwhile, it is easy to understand that a number of processes, such as the flow of charge carriers and their diffusion through a heterojunction, are clearly statistical in nature. The same applies to the processes of tunnel ionisation of shallow and/or deep impurities near the interface. A statistical approach to the calculation of the parameters of tunnel ionisation of impurities broadens the opportunities for obtaining fundamental information regarding surface electronstates.The aim of this work was to use a statistical approach to study the effect of the heterointerface on the energy spectrum of shallow and deep centres. For this purpose, the expansion of the reflected quasi-classical wave function within the complete system of spherical harmonics and the subsequent extraction of the zero harmonic amplitude (s-component) was used to estimate the minimum distance from the impurity to the heterobarrier and to specify the limitations of the applicability of the results obtained in other works. The article analyses the conditions of the quasi-classical approximation which are used to estimate the order of the value for the minimum height of the potential barrier (pit).This work (with due consideration given to the minimum distance estimate) presents averaged formulas obtained for the energy shift of the ground state and the lifetime of the quasi-stationary state depending on the distance from the heterobarrier. Some qualitatively new considerations can also be found in the article. The distribution of impurity centres near the heterobarrier is assumed to be uniform. The article discusses the role of electron transitions in causing the buffer field effect for both shallow and deep centres. The focus of the article is on the estimates of various physical parameters characterising electron transitions near the heterobarrier.","PeriodicalId":17879,"journal":{"name":"Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases","volume":"148 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78005798","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-11-24DOI: 10.17308/kcmf.2021.23/3680
P. Duyen, A. T. Nguyen
In this work, orthoferrite NdFeO3 nanomaterials with particle sizes 20-40 nm have been successfully synthesized via a simple co-precipitation method through the hydrolysis of Nd (III) and Fe (III) cations in hot water with 5% NaOH as a precipitating agent. Single-phase NdFeO3 was generated after calcination of the as-prepared powder at 700, 800, and 900 °C for 1 hour. The UV-Vis spectra at room temperature presented strong absorption in the UV-Vis regions (l = 200–400 nm and 400–600 nm) with small band gap energy (Eg = 2.2÷2.5 eV). The obtained NdFeO3 nanomaterials exhibited a hard ferromagnetic behavior with high coercivity (Hc = 600–1600 Oe).
{"title":"Optical and magnetic properties of orthoferrite NdFeO3 nanomaterials synthesized by simple co-precipitation method","authors":"P. Duyen, A. T. Nguyen","doi":"10.17308/kcmf.2021.23/3680","DOIUrl":"https://doi.org/10.17308/kcmf.2021.23/3680","url":null,"abstract":"In this work, orthoferrite NdFeO3 nanomaterials with particle sizes 20-40 nm have been successfully synthesized via a simple co-precipitation method through the hydrolysis of Nd (III) and Fe (III) cations in hot water with 5% NaOH as a precipitating agent. Single-phase NdFeO3 was generated after calcination of the as-prepared powder at 700, 800, and 900 °C for 1 hour. The UV-Vis spectra at room temperature presented strong absorption in the UV-Vis regions (l = 200–400 nm and 400–600 nm) with small band gap energy (Eg = 2.2÷2.5 eV). The obtained NdFeO3 nanomaterials exhibited a hard ferromagnetic behavior with high coercivity (Hc = 600–1600 Oe).","PeriodicalId":17879,"journal":{"name":"Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases","volume":"98 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83590653","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-11-24DOI: 10.17308/kcmf.2021.23/3681
P. Fedorov, M. N. Mayakova, R. Gaynutdinov, N. Tabachkova, G. Komandin, A. Baranchikov, E. Chernova, S. Kuznetsov, V. Ivanov, Vyacheslav V. Osiko (1932-2019)
The deposition of calcium fluoride nanoparticles on single crystal chips of calcium fluoride was studied. CaF2 nanoparticles were synthesized by co-precipitation from aqueous nitrate solutions using hydrofluoric acid as a fluorinating agent at a batch system. The prepared samples were examined by atomic force microscopy, scanning electron microscopy, transmission electron microscopy and optical transmission. There is an inhomogeneous coating of the substrate surface with submicron particles of about 100–150 nm in size, which are clusters of nanoparticles of 15-20 nm in size. The initial nanoparticles coherently grow on the surface of the crystal substrate. Heat treatment of the substrate-deposited layer composite at 600 °C leads to the coalescence of submicron particles and the formation of a porous layer of a complex structure.
{"title":"Investigation of the deposition of calcium fluoride nanoparticles on the chips of CaF2 single crystals","authors":"P. Fedorov, M. N. Mayakova, R. Gaynutdinov, N. Tabachkova, G. Komandin, A. Baranchikov, E. Chernova, S. Kuznetsov, V. Ivanov, Vyacheslav V. Osiko (1932-2019)","doi":"10.17308/kcmf.2021.23/3681","DOIUrl":"https://doi.org/10.17308/kcmf.2021.23/3681","url":null,"abstract":"The deposition of calcium fluoride nanoparticles on single crystal chips of calcium fluoride was studied. CaF2 nanoparticles were synthesized by co-precipitation from aqueous nitrate solutions using hydrofluoric acid as a fluorinating agent at a batch system. The prepared samples were examined by atomic force microscopy, scanning electron microscopy, transmission electron microscopy and optical transmission. There is an inhomogeneous coating of the substrate surface with submicron particles of about 100–150 nm in size, which are clusters of nanoparticles of 15-20 nm in size. The initial nanoparticles coherently grow on the surface of the crystal substrate. Heat treatment of the substrate-deposited layer composite at 600 °C leads to the coalescence of submicron particles and the formation of a porous layer of a complex structure.","PeriodicalId":17879,"journal":{"name":"Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases","volume":"84 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86180217","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-11-24DOI: 10.17308/kcmf.2021.23/3676
A. Sorokin, M. G. Kholyavka, M. Lavlinskaya
The aim of this work is to synthesise chitosan and N-vinylimidazole graft-copolymers of various compositions and to study the properties of their aqueous solutions.Chitosan and N-vinylimidazole graft-copolymers were obtained by solution polymerisation in the presence of a ceric ammonium nitrate redox initiator. The synthesised graft copolymers were characterised by FTIR to determine their compositions and the grafted side chains of poly-N-vinylimidazole were characterised by gel permeation chromatography to determine their molecular wights and polydispersity indices. It was established that the obtained products are characterised by high values of yield and grafting efficiency and low values of the polydispersity index. It was found that when the content of the N-vinylimidazole links is above 57 wt%, the synthesised graft copolymers are water-soluble. Aqueous solutions of the obtained copolymers were characterised using dynamic light scattering, transmission electron microscopy, and laserDoppler microelectrophoresis. The study showed that macromolecules of graft copolymers in aqueous solutions have stimuli-sensitive properties with respect to the medium reaction and at a concentration above 10–2 wt% are characterised by a tendency to self-association forming core-crown aggregates, the geometry of which depends on the molecular masses of the grafted chains. Associates of macromolecules in solutions are characterised by positive values of the electrokinetic potential, the values of which also depend on the medium reaction. Thus, it was found that the ceric ammonium nitrate initiator allows obtaining chitosan and N-vinylimidazole graft-copolymers showing stimuli-sensitive properties in aqueous solutions and prone to self-association at concentrations above 10–2 wt%.
{"title":"Synthesis of chitosan and N-vinylimidazole graft-copolymers and the properties of their aqueous solutions","authors":"A. Sorokin, M. G. Kholyavka, M. Lavlinskaya","doi":"10.17308/kcmf.2021.23/3676","DOIUrl":"https://doi.org/10.17308/kcmf.2021.23/3676","url":null,"abstract":"The aim of this work is to synthesise chitosan and N-vinylimidazole graft-copolymers of various compositions and to study the properties of their aqueous solutions.Chitosan and N-vinylimidazole graft-copolymers were obtained by solution polymerisation in the presence of a ceric ammonium nitrate redox initiator. The synthesised graft copolymers were characterised by FTIR to determine their compositions and the grafted side chains of poly-N-vinylimidazole were characterised by gel permeation chromatography to determine their molecular wights and polydispersity indices. It was established that the obtained products are characterised by high values of yield and grafting efficiency and low values of the polydispersity index. It was found that when the content of the N-vinylimidazole links is above 57 wt%, the synthesised graft copolymers are water-soluble. Aqueous solutions of the obtained copolymers were characterised using dynamic light scattering, transmission electron microscopy, and laserDoppler microelectrophoresis. The study showed that macromolecules of graft copolymers in aqueous solutions have stimuli-sensitive properties with respect to the medium reaction and at a concentration above 10–2 wt% are characterised by a tendency to self-association forming core-crown aggregates, the geometry of which depends on the molecular masses of the grafted chains. Associates of macromolecules in solutions are characterised by positive values of the electrokinetic potential, the values of which also depend on the medium reaction. Thus, it was found that the ceric ammonium nitrate initiator allows obtaining chitosan and N-vinylimidazole graft-copolymers showing stimuli-sensitive properties in aqueous solutions and prone to self-association at concentrations above 10–2 wt%.","PeriodicalId":17879,"journal":{"name":"Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases","volume":"23 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75555155","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-11-24DOI: 10.17308/kcmf.2021.23/3683
V. Chekanov, E. Kirillova, A. Kovalenko, E. Diskaeva
The article describes a mathematical model of self-oscillation in the form of a boundary value problem for a nonlinear system of partial differential equations, with a numerical solution. The numerical results were compared to the experimental data to confirm the adequacy of the model. The model uses the classical system of differential equations of material balance, Nernst-Planck and Poisson equations without simplifications or fitting parameters. The aim of the article was to study the parameters of concentration self-oscillation in a layer of the dispersed phase particles of magnetic fluid at the interface with an electrode in an electric field. For this purpose, we developed a mathematical model, the consistency of which wasconfirmed by the corresponding physical mechanism.As a result of numerical experiments, we found the critical value of the potential jump after which self-oscillation began. We also determined the oscillation growth period and other characteristics of the process. We developed software called AutoWave01 with an intuitive user interface and advanced functionality for the study of self-oscillation in a thin layer of magnetic colloid.
{"title":"Experimental study and mathematical modelling of self-oscillation at the electrode-magnetic fluid interface in an electric field","authors":"V. Chekanov, E. Kirillova, A. Kovalenko, E. Diskaeva","doi":"10.17308/kcmf.2021.23/3683","DOIUrl":"https://doi.org/10.17308/kcmf.2021.23/3683","url":null,"abstract":"The article describes a mathematical model of self-oscillation in the form of a boundary value problem for a nonlinear system of partial differential equations, with a numerical solution. The numerical results were compared to the experimental data to confirm the adequacy of the model. The model uses the classical system of differential equations of material balance, Nernst-Planck and Poisson equations without simplifications or fitting parameters. The aim of the article was to study the parameters of concentration self-oscillation in a layer of the dispersed phase particles of magnetic fluid at the interface with an electrode in an electric field. For this purpose, we developed a mathematical model, the consistency of which wasconfirmed by the corresponding physical mechanism.As a result of numerical experiments, we found the critical value of the potential jump after which self-oscillation began. We also determined the oscillation growth period and other characteristics of the process. We developed software called AutoWave01 with an intuitive user interface and advanced functionality for the study of self-oscillation in a thin layer of magnetic colloid.","PeriodicalId":17879,"journal":{"name":"Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases","volume":"52 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82679667","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-11-24DOI: 10.17308/kcmf.2021.23/3679
Y. Tushinova, B. Bazarov, E. V. Kovtunets, J. Bazarova
Systematic studies of the subsolidus structure of ternary molybdate systems allow expanding the representation of ternary molybdates. In this paper we studied the solid phase interaction in the Ag2MoO4–Rb2MoO4–Hf(MoO4)2 system for the first time using X-ray phase analysis.To determine the quasi-binary sections, we use the method of “intersecting cuts”. It helped to reveal the formation of new Rb5Ag1/3Hf5/3(MoO4)6 and Rb3AgHf2(MoO4)6 phases. We also determined their thermal characteristics using differential scanning calorimetry. The ternary molybdate Rb5Ag1/3Hf5/3(MoO4)6 crystallised in the trigonal syngony with the followingunit cell parameters: a = 10.7117(1), c = 38.5464(5) Å (space group R3с, Z = 6). The Ag2MoO4–Rb2MoO4–Hf(MoO4)2 system is characterised by the existence of ten quasi-binary cross sections.The experimental data obtained in this work complement the information on phase equilibria in condensed ternary systems containing molybdates of tetravalent elements and two different monovalent elements. This provides opportunities for the combination of the compositions of ternary molybdates due to cationic substitutions, which will allow controlling their properties.
系统的研究三元钼酸盐体系的亚固体结构允许扩展三元钼酸盐的表示。本文首次采用x射线相分析方法研究了Ag2MoO4-Rb2MoO4-Hf (MoO4)2体系中的固相相互作用。为了确定准二元截面,我们采用了“相交切割”的方法。这有助于揭示新的Rb5Ag1/3Hf5/3(MoO4)6和Rb3AgHf2(MoO4)6相的形成。我们还用差示扫描量热法测定了它们的热特性。三元钼酸盐Rb5Ag1/3Hf5/3(MoO4)6以三角共晶方式结晶,晶胞参数为:a = 10.7117(1), c = 38.5464(5) Å(空间群r3r, Z = 6)。该体系存在十个准二元截面。实验数据补充了含四价元素钼酸盐和两种不同单价元素的缩合三元体系的相平衡信息。这为三元钼酸盐的阳离子取代组合提供了机会,这将允许控制它们的性质。
{"title":"Phase formation in the Ag2MoO4–Rb2MoO4–Hf(MoO4)2 system","authors":"Y. Tushinova, B. Bazarov, E. V. Kovtunets, J. Bazarova","doi":"10.17308/kcmf.2021.23/3679","DOIUrl":"https://doi.org/10.17308/kcmf.2021.23/3679","url":null,"abstract":"Systematic studies of the subsolidus structure of ternary molybdate systems allow expanding the representation of ternary molybdates. In this paper we studied the solid phase interaction in the Ag2MoO4–Rb2MoO4–Hf(MoO4)2 system for the first time using X-ray phase analysis.To determine the quasi-binary sections, we use the method of “intersecting cuts”. It helped to reveal the formation of new Rb5Ag1/3Hf5/3(MoO4)6 and Rb3AgHf2(MoO4)6 phases. We also determined their thermal characteristics using differential scanning calorimetry. The ternary molybdate Rb5Ag1/3Hf5/3(MoO4)6 crystallised in the trigonal syngony with the followingunit cell parameters: a = 10.7117(1), c = 38.5464(5) Å (space group R3с, Z = 6). The Ag2MoO4–Rb2MoO4–Hf(MoO4)2 system is characterised by the existence of ten quasi-binary cross sections.The experimental data obtained in this work complement the information on phase equilibria in condensed ternary systems containing molybdates of tetravalent elements and two different monovalent elements. This provides opportunities for the combination of the compositions of ternary molybdates due to cationic substitutions, which will allow controlling their properties.","PeriodicalId":17879,"journal":{"name":"Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases","volume":"534 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73179048","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-11-24DOI: 10.17308/kcmf.2021.23/3674
A. Seroglazova, M. Chebanenko, V. Popkov
Porous nanocomposites based on PrFeO3-TiO2 were synthesized using the glycine-nitrate combustion method with different values of mass content of TiO2 (0–7.5 %) and subsequent heat treatment in air. The results of X-ray phase analysis and Raman spectroscopy confirmed the presence of ultradispersed TiO2, structurally close to that of anatase. The morphology, specific surface area, and porous structure of the obtained powders were characterized by scanning electron microscopy and adsorption-structural analysis, the results of which showed that the samples had a foam-like mesoporous structure.The specific surface area and the average pore size were in the ranges of 7.6–17.8 m2/g and 7.2–15.2 nm, respectively, and varied depending on the TiO2 content. The optical properties of the nanocomposites were studied by UV-visible diffuse reflection spectroscopy, the energy of the band gap was calculated as 2.11–2.26 eV. The photocatalytic activity of PrFeO3‑TiO2 nanocomposites was investigated in the process of photo-Fenton-like degradation of methyl violet under the action of visible light. It was shown that the maximum reaction rate constant was 0.095 min-1, which is ten times higher than the value for the known orthoferrite-based analogs. The obtained photocatalysts were also characterized by their high cyclic stability. Based on the studies carried out, the obtained porous PrFeO3-TiO2 nanocomposites can be considered to be apromising basis for photocatalysts applied in advanced oxidative processes of aqueous media purification from organic pollutants.
{"title":"Synthesis, structure, and photo-Fenton activity of PrFeO3-TiO2 mesoporous nanocomposites","authors":"A. Seroglazova, M. Chebanenko, V. Popkov","doi":"10.17308/kcmf.2021.23/3674","DOIUrl":"https://doi.org/10.17308/kcmf.2021.23/3674","url":null,"abstract":"Porous nanocomposites based on PrFeO3-TiO2 were synthesized using the glycine-nitrate combustion method with different values of mass content of TiO2 (0–7.5 %) and subsequent heat treatment in air. The results of X-ray phase analysis and Raman spectroscopy confirmed the presence of ultradispersed TiO2, structurally close to that of anatase. The morphology, specific surface area, and porous structure of the obtained powders were characterized by scanning electron microscopy and adsorption-structural analysis, the results of which showed that the samples had a foam-like mesoporous structure.The specific surface area and the average pore size were in the ranges of 7.6–17.8 m2/g and 7.2–15.2 nm, respectively, and varied depending on the TiO2 content. The optical properties of the nanocomposites were studied by UV-visible diffuse reflection spectroscopy, the energy of the band gap was calculated as 2.11–2.26 eV. The photocatalytic activity of PrFeO3‑TiO2 nanocomposites was investigated in the process of photo-Fenton-like degradation of methyl violet under the action of visible light. It was shown that the maximum reaction rate constant was 0.095 min-1, which is ten times higher than the value for the known orthoferrite-based analogs. The obtained photocatalysts were also characterized by their high cyclic stability. Based on the studies carried out, the obtained porous PrFeO3-TiO2 nanocomposites can be considered to be apromising basis for photocatalysts applied in advanced oxidative processes of aqueous media purification from organic pollutants.","PeriodicalId":17879,"journal":{"name":"Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases","volume":"86 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84096083","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-11-24DOI: 10.17308/kcmf.2021.23/3668
P. Vasilevsky, M. Savelyev, S. Tereshchenko, S. Selishchev, A. Gerasimenko
The constant increase in the power of laser systems and the growth of potential fields for the application of lasers make the problem of protecting sensitive elements of electro-optical systems and visual organs from high-intensity radiation an urgent issue. Modern systems are capable of generating laser radiation in a wide range of wavelengths, durations, and pulse repetition rates. High-quality protection requires the use of a universal limiter capable of attenuating laser radiation, not causing colour distortion, and having a high transmission value when exposed to low-power radiation. For this, dispersed media based on carbon nanotubes with unique physicochemical properties can be used. Such media have constant valuesof their absorption coefficient and refractive index when exposed to low-intensity laser radiation and change their properties only when the threshold value is reached.The aim of this work was the study of the nonlinear optical properties of an aqueous dispersion of single-walled carbon nanotubes exposed to nano- and femtosecond radiation. For the characterization of the studied medium, Z-scan and fixed sample location experiments were used. The optical parameters were calculated using a threshold model based on the radiation transfer equation.As a result of the experiments, it was shown that the aqueous dispersion of single-walled carbon nanotubes is capable of limiting radiation with wavelengths from the visible and near-IR ranges: nano- (532, 1064 nm) and femtosecond (810 nm). A description of nonlinear optical effects was proposed for when a medium is exposed to radiation with a nanosecond duration due to reverse saturable absorption and two-photon absorption. When the sample exposed for a femtosecond duration the main limiting effect is spatial self-phase modulation. The calculated optical parameters can be used to describe the behaviour of dispersions of carbon nanotubes when exposed to radiation with different intensities. The demonstrated effects allow us to conclude that it is promising to use the investigated media as limiters of high-intensity laser radiationin optical systems to protect light-sensitive elements.
{"title":"Nonlinear optical properties of single-walled carbon nanotubes/water dispersed media exposed to laser radiation with nano- and femtosecond pulse durations","authors":"P. Vasilevsky, M. Savelyev, S. Tereshchenko, S. Selishchev, A. Gerasimenko","doi":"10.17308/kcmf.2021.23/3668","DOIUrl":"https://doi.org/10.17308/kcmf.2021.23/3668","url":null,"abstract":"The constant increase in the power of laser systems and the growth of potential fields for the application of lasers make the problem of protecting sensitive elements of electro-optical systems and visual organs from high-intensity radiation an urgent issue. Modern systems are capable of generating laser radiation in a wide range of wavelengths, durations, and pulse repetition rates. High-quality protection requires the use of a universal limiter capable of attenuating laser radiation, not causing colour distortion, and having a high transmission value when exposed to low-power radiation. For this, dispersed media based on carbon nanotubes with unique physicochemical properties can be used. Such media have constant valuesof their absorption coefficient and refractive index when exposed to low-intensity laser radiation and change their properties only when the threshold value is reached.The aim of this work was the study of the nonlinear optical properties of an aqueous dispersion of single-walled carbon nanotubes exposed to nano- and femtosecond radiation. For the characterization of the studied medium, Z-scan and fixed sample location experiments were used. The optical parameters were calculated using a threshold model based on the radiation transfer equation.As a result of the experiments, it was shown that the aqueous dispersion of single-walled carbon nanotubes is capable of limiting radiation with wavelengths from the visible and near-IR ranges: nano- (532, 1064 nm) and femtosecond (810 nm). A description of nonlinear optical effects was proposed for when a medium is exposed to radiation with a nanosecond duration due to reverse saturable absorption and two-photon absorption. When the sample exposed for a femtosecond duration the main limiting effect is spatial self-phase modulation. The calculated optical parameters can be used to describe the behaviour of dispersions of carbon nanotubes when exposed to radiation with different intensities. The demonstrated effects allow us to conclude that it is promising to use the investigated media as limiters of high-intensity laser radiationin optical systems to protect light-sensitive elements.","PeriodicalId":17879,"journal":{"name":"Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79321998","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-11-24DOI: 10.17308/kcmf.2021.23/3669
O. M. Golitsyna, S. Drozhdin
In the temperature range ΔT ≈ 321 K ÷ 322 K, the kinetics of the nonequilibrium domain structure of triglycine sulphate crystals, both pure and with specially introduced defects, has been studied by means of piezoresponse force microscopy technique. The temporal change in the domain structure as a set of regions with a scalar order parameter of P (r, t) = +1 and −1 for oppositely polarized domains was analysed by the behaviour of the space-time correlation function C(r,t) = ·Р(r,t)Р(0,t)Ò. At different distances from the Curie point Tc, the characteristic length Lc, as a scale measure of the average domain size, increases with time according to the power law Lc(t)~(t−t0)a. A decrease of the exponent a with distance from Tc can be a consequence of the transition of the domain structure of TGS crystals from a non-conservative state to aconservative one.
在ΔT≈321 K ÷ 322 K的温度范围内,用压电响应力显微镜技术研究了纯硫酸甘油三酯晶体和带缺陷的硫酸甘油三酯晶体的非平衡结构动力学。通过时空相关函数C(r,t) =·Р(r,t)Р(0,t)Ò的行为分析了域结构作为一组标量阶参数P (r,t) = +1和- 1的区域的时间变化。在距离居里点Tc不同的距离处,表征平均畴尺寸的特征长度Lc按幂律Lc(t)~(t−t0)a随时间增加。指数A随离Tc的距离的减小可能是TGS晶体的畴结构由非保守态向保守态转变的结果。
{"title":"Formation of a quasi-equilibrium domain structure of crystals of the TGS group near TC","authors":"O. M. Golitsyna, S. Drozhdin","doi":"10.17308/kcmf.2021.23/3669","DOIUrl":"https://doi.org/10.17308/kcmf.2021.23/3669","url":null,"abstract":"In the temperature range ΔT ≈ 321 K ÷ 322 K, the kinetics of the nonequilibrium domain structure of triglycine sulphate crystals, both pure and with specially introduced defects, has been studied by means of piezoresponse force microscopy technique. The temporal change in the domain structure as a set of regions with a scalar order parameter of P (r, t) = +1 and −1 for oppositely polarized domains was analysed by the behaviour of the space-time correlation function C(r,t) = ·Р(r,t)Р(0,t)Ò. At different distances from the Curie point Tc, the characteristic length Lc, as a scale measure of the average domain size, increases with time according to the power law Lc(t)~(t−t0)a. A decrease of the exponent a with distance from Tc can be a consequence of the transition of the domain structure of TGS crystals from a non-conservative state to aconservative one.","PeriodicalId":17879,"journal":{"name":"Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases","volume":"23 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76538596","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}