Pub Date : 2021-08-17DOI: 10.17308/KCMF.2021.23/3526
G. V. Semenova, A. Zavrazhnov
The scientific school founded by Yakov A. Ugai has existed at Voronezh State University for over fifty years. One of its focus areas has been the development of physics and chemistry for obtaining solid phases in systems with volatile components. This determined the necessity to develop methods for the investigation of vapour pressure (tensimetric methods). This article only focuses on some of the works by the VSU staff dedicated to the study and construction of P-T-x diagrams. This review analyses phase equilibria and the nature of the intermediate phases in the AIV – BV, AIV – BV – СV, and AIII – BVI systems.Owing to the special nature of the cation-cation and anion-anion bonds, these compounds have highly specific properties that make them promising materials (2D materials in particular). The article presents an overview of works devoted to the construction of P-T-x diagrams and the investigation of defect formation processes in binary and ternary systems based on AIVBV compounds. It should be emphasised that the known techniques needed updating due to the high values of vapour pressure. This allowed conducting experiments at pressures of about 35-40 atmospheres. The study of the AIII - BVI systems,on the contrary, is complicated by low values of vapour pressure over indium and gallium chalcogenides and the complex composition of the vapour. For such systems the auxiliary component method was developed. The possibilities of its application are wide and are not limited to AIIIBVI compounds. A new method for nonstoichiometry regulation was developed and applied using non-destructive selective chemical transport reactions (i.e. with the participation of an auxiliary component). This method is based on the introduction or removal of one of the sample components by means of a selective chemical transport reaction. In conclusion, the development of methods for the research and synthesis of intermediate phases with variable compositions (properties) was analysed based on the example of the discussed systems.
{"title":"The development of methods for the research and synthesis of solid phases by the scientific school of Ya. A Ugai. Review","authors":"G. V. Semenova, A. Zavrazhnov","doi":"10.17308/KCMF.2021.23/3526","DOIUrl":"https://doi.org/10.17308/KCMF.2021.23/3526","url":null,"abstract":"The scientific school founded by Yakov A. Ugai has existed at Voronezh State University for over fifty years. One of its focus areas has been the development of physics and chemistry for obtaining solid phases in systems with volatile components. This determined the necessity to develop methods for the investigation of vapour pressure (tensimetric methods). This article only focuses on some of the works by the VSU staff dedicated to the study and construction of P-T-x diagrams. This review analyses phase equilibria and the nature of the intermediate phases in the AIV – BV, AIV – BV – СV, and AIII – BVI systems.Owing to the special nature of the cation-cation and anion-anion bonds, these compounds have highly specific properties that make them promising materials (2D materials in particular). The article presents an overview of works devoted to the construction of P-T-x diagrams and the investigation of defect formation processes in binary and ternary systems based on AIVBV compounds. It should be emphasised that the known techniques needed updating due to the high values of vapour pressure. This allowed conducting experiments at pressures of about 35-40 atmospheres. The study of the AIII - BVI systems,on the contrary, is complicated by low values of vapour pressure over indium and gallium chalcogenides and the complex composition of the vapour. For such systems the auxiliary component method was developed. The possibilities of its application are wide and are not limited to AIIIBVI compounds. A new method for nonstoichiometry regulation was developed and applied using non-destructive selective chemical transport reactions (i.e. with the participation of an auxiliary component). This method is based on the introduction or removal of one of the sample components by means of a selective chemical transport reaction. In conclusion, the development of methods for the research and synthesis of intermediate phases with variable compositions (properties) was analysed based on the example of the discussed systems.","PeriodicalId":17879,"journal":{"name":"Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases","volume":"16 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79009948","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-08-17DOI: 10.17308/KCMF.2021.23/3531
A. Kaul, R. Nygaard, V. Ratovskiy, A. Vasiliev
A new principle for supplying volatile precursors to MOCVD gas-phase chemical deposition systems is proposed, based on a two-stage evaporation of an organic solution of precursors from a soaked cotton thread, which passes sequentially through the zones of evaporation of the solvent and precursors. The technological capabilities of TSF-MOCVD (Thread-Solution Feed MOCVD) are demonstrated based on examples of obtaining thin epitaxial films of СеО2, h-LuFeO3 and thin-film heterostructures β-Fe2O3/h-LuFeO3. The results of studying the obtained films by X-ray diffraction, energy dispersive X-rayanalysis, and high- and low-resolution transmission microscopy are presented. Using the TSF module, one can finely vary the crystallisation conditions, obtaining coatings of the required degree of crystallinity, as evidenced by the obtained dependences of the integral width of the h-LuFeO3 reflection on the film growth rate. Based on the TEM and XRD data, it was concluded that β-Fe2O3 grows epitaxially over the h-LuFeO3 layer. Thus, using TSF-MOCVD, one can flexibly change the composition of layered heterostructures and obtain highly crystalline epitaxial films with a clear interface in a continuous deposition process
{"title":"TSF-MOCVD – a novel technique for chemical vapour deposition on oxide thin films and layered heterostructures","authors":"A. Kaul, R. Nygaard, V. Ratovskiy, A. Vasiliev","doi":"10.17308/KCMF.2021.23/3531","DOIUrl":"https://doi.org/10.17308/KCMF.2021.23/3531","url":null,"abstract":"A new principle for supplying volatile precursors to MOCVD gas-phase chemical deposition systems is proposed, based on a two-stage evaporation of an organic solution of precursors from a soaked cotton thread, which passes sequentially through the zones of evaporation of the solvent and precursors. The technological capabilities of TSF-MOCVD (Thread-Solution Feed MOCVD) are demonstrated based on examples of obtaining thin epitaxial films of СеО2, h-LuFeO3 and thin-film heterostructures β-Fe2O3/h-LuFeO3. The results of studying the obtained films by X-ray diffraction, energy dispersive X-rayanalysis, and high- and low-resolution transmission microscopy are presented. Using the TSF module, one can finely vary the crystallisation conditions, obtaining coatings of the required degree of crystallinity, as evidenced by the obtained dependences of the integral width of the h-LuFeO3 reflection on the film growth rate. Based on the TEM and XRD data, it was concluded that β-Fe2O3 grows epitaxially over the h-LuFeO3 layer. Thus, using TSF-MOCVD, one can flexibly change the composition of layered heterostructures and obtain highly crystalline epitaxial films with a clear interface in a continuous deposition process","PeriodicalId":17879,"journal":{"name":"Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases","volume":"26 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77786043","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-08-17DOI: 10.17308/KCMF.2021.23/3532
V. F. Kostryukov, D. S. Balasheva, A. S. Parshina
Thin-film objects with a reproducible temperature dependence of the resistance, thermally stable, and easy to obtain can be used as the sensitive elements in semiconductor gas sensors. The aim of this study was to create thin films on the InP surface under the influence of an oxide chemostimulator + inert component (PbO + Y2O3, respectively) compositions and to determine their gas-sensitive properties and their dependence on the formula of the composition.Thin films were synthesised on the InP surface by the method of chemically stimulated thermal oxidation under the influence of various PbO + Y2O3 compositions. The thickness of the formed films, their elemental and chemical composition were determined (by laser ellipsometry, X-ray phase analysis, and infra-red spectroscopy). A number of experiments were carried out to establish the gas-sensitive properties of the obtained films with respect to ammonia with concentrations of 120, 100, and 80 ppm.By chemically stimulated thermal oxidation, we obtained thin films with semiconductor properties on the InP surface. It was determined that the samples had n-type conductivity. A gas-sensitive response was detected in the presence of ammonia in the atmosphere. The ability to create thin films with a predetermined value of sensory response was demonstrated
{"title":"Creation of thin films on the surface of InP with a controlled gas-sensitive signal under the influence of PbO + Y2O3 compositions","authors":"V. F. Kostryukov, D. S. Balasheva, A. S. Parshina","doi":"10.17308/KCMF.2021.23/3532","DOIUrl":"https://doi.org/10.17308/KCMF.2021.23/3532","url":null,"abstract":"Thin-film objects with a reproducible temperature dependence of the resistance, thermally stable, and easy to obtain can be used as the sensitive elements in semiconductor gas sensors. The aim of this study was to create thin films on the InP surface under the influence of an oxide chemostimulator + inert component (PbO + Y2O3, respectively) compositions and to determine their gas-sensitive properties and their dependence on the formula of the composition.Thin films were synthesised on the InP surface by the method of chemically stimulated thermal oxidation under the influence of various PbO + Y2O3 compositions. The thickness of the formed films, their elemental and chemical composition were determined (by laser ellipsometry, X-ray phase analysis, and infra-red spectroscopy). A number of experiments were carried out to establish the gas-sensitive properties of the obtained films with respect to ammonia with concentrations of 120, 100, and 80 ppm.By chemically stimulated thermal oxidation, we obtained thin films with semiconductor properties on the InP surface. It was determined that the samples had n-type conductivity. A gas-sensitive response was detected in the presence of ammonia in the atmosphere. The ability to create thin films with a predetermined value of sensory response was demonstrated ","PeriodicalId":17879,"journal":{"name":"Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases","volume":"245 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74727086","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-08-17DOI: 10.17308/KCMF.2021.23/3527
Tatiana S. Spiridonova, S. F. Solodovnikov, Y. M. Kadyrova, Z. A. Solodovnikova, A. A. Savina, E. G. Khaikina
The Ag2MoO4–Cs2MoO4 system was studied by powder X-ray diffraction, the formation of a new double molybdate CsAg3(MoO4)2 was established, its single crystals were obtained, and its structure was determined. CsAg3(MoO4)2 (sp. gr. P3¯, Z = 1, a = 5.9718(5), c = 7.6451(3) Å, R = 0.0149) was found to have the structure type of Ag2BaMn(VO4)2. The structure is based on glaserite-like layers of alternating MoO4 tetrahedra and Ag1O6 octahedra linked by oxygen vertices, which are connected into a whole 3D framework by Ag2O4 tetrahedra. An unusual feature of the Ag2 atom environment is its location almost in the centre of an oxygen face of the Ag2O4 tetrahedron. Caesium atoms are in cuboctahedral coordination (CN = 12).We determined the structures of the double molybdate of rubidium and silver obtained by us previously and a crystal from the solid solution based on the hexagonal modification of Tl2MoO4, which both are isostructural to glaserite K3Na(SO4)2 (sp. gr. P3¯m1). According to X-ray structural analysis data, both crystals have nonstoichiometric compositions Rb2.81Ag1.19(MoO4)2 (a = 6.1541(2), c = 7.9267(5) Å, R = 0.0263) and Tl3.14Ag0.86(MoO4)2 (a = 6.0977(3), c = 7.8600(7) Å, R = 0.0174). In the case of the rubidium compound, the splitting of the Rb/Ag position was revealed for the first time am ong molybdates. Both structures are based on layers of alternating MoO4 tetrahedra and AgO6 or (Ag, Tl)O6 octahedra linked by oxygen vertices. The coordination numbers of rubidium and thallium are 12 and 10
采用粉末x射线衍射对Ag2MoO4-Cs2MoO4体系进行了研究,建立了新的双钼酸盐CsAg3(MoO4)2的形成,获得了其单晶,并确定了其结构。发现CsAg3(MoO4)2 (sp. gr. P3¯,Z = 1, a = 5.9718(5), c = 7.6451(3) Å, R = 0.0149)具有Ag2BaMn(VO4)2的结构类型。该结构是基于由氧顶点连接的MoO4四面体和ag106八面体交替形成的glaserite状层,它们由Ag2O4四面体连接成一个完整的3D框架。Ag2原子环境的一个不寻常的特征是它几乎位于Ag2O4四面体氧面的中心。铯原子呈立方面体配位(CN = 12)。我们确定了先前获得的铷和银的双钼酸盐和基于Tl2MoO4六方改性的固溶体晶体的结构,它们都与glaserite K3Na(SO4)2 (sp. gr. P3¯m1)具有相同的结构。根据x射线结构分析数据,两种晶体均具有非化学计量成分Rb2.81Ag1.19(MoO4)2 (a = 6.1541(2), c = 7.9267(5) Å, R = 0.0263)和Tl3.14Ag0.86(MoO4)2 (a = 6.0977(3), c = 7.8600(7) Å, R = 0.0174)。在铷化合物中,首次在钼酸盐中发现了Rb/Ag位置的分裂。这两种结构都是基于由氧顶点连接的MoO4四面体和AgO6或(Ag, Tl)O6八面体的交替层。铷和铊的配位数分别为12和10
{"title":"Double molybdates of silver and monovalent metals","authors":"Tatiana S. Spiridonova, S. F. Solodovnikov, Y. M. Kadyrova, Z. A. Solodovnikova, A. A. Savina, E. G. Khaikina","doi":"10.17308/KCMF.2021.23/3527","DOIUrl":"https://doi.org/10.17308/KCMF.2021.23/3527","url":null,"abstract":"The Ag2MoO4–Cs2MoO4 system was studied by powder X-ray diffraction, the formation of a new double molybdate CsAg3(MoO4)2 was established, its single crystals were obtained, and its structure was determined. CsAg3(MoO4)2 (sp. gr. P3¯, Z = 1, a = 5.9718(5), c = 7.6451(3) Å, R = 0.0149) was found to have the structure type of Ag2BaMn(VO4)2. The structure is based on glaserite-like layers of alternating MoO4 tetrahedra and Ag1O6 octahedra linked by oxygen vertices, which are connected into a whole 3D framework by Ag2O4 tetrahedra. An unusual feature of the Ag2 atom environment is its location almost in the centre of an oxygen face of the Ag2O4 tetrahedron. Caesium atoms are in cuboctahedral coordination (CN = 12).We determined the structures of the double molybdate of rubidium and silver obtained by us previously and a crystal from the solid solution based on the hexagonal modification of Tl2MoO4, which both are isostructural to glaserite K3Na(SO4)2 (sp. gr. P3¯m1). According to X-ray structural analysis data, both crystals have nonstoichiometric compositions Rb2.81Ag1.19(MoO4)2 (a = 6.1541(2), c = 7.9267(5) Å, R = 0.0263) and Tl3.14Ag0.86(MoO4)2 (a = 6.0977(3), c = 7.8600(7) Å, R = 0.0174). In the case of the rubidium compound, the splitting of the Rb/Ag position was revealed for the first time am ong molybdates. Both structures are based on layers of alternating MoO4 tetrahedra and AgO6 or (Ag, Tl)O6 octahedra linked by oxygen vertices. The coordination numbers of rubidium and thallium are 12 and 10","PeriodicalId":17879,"journal":{"name":"Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83633441","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-08-17DOI: 10.17308/KCMF.2021.23/3535
A. M. Khort, A. G. Yakovenko, Yury V. Syrov
Porous silicon is currently one of the most studied materials which is used both in the areas traditional for silicon, such as electronics and optoelectronics, and in completely unconventional ones, such as catalysis, energetics, biology, and medicine. The multiple possibilities of the material are revealed due to the fact that its structure can be radically different depending on the properties of the initial silicon and the methods of obtaining porous phases. The use of any material inevitably leads to the need to classify its various forms. The purpose of the article was to find the most significant parameter that can be used as the basis for the classification of porous silicon.Historically, the terminology defined by the IUPAC pore size classification has been used to classify porous silicon. Due to the authority of IUPAC, many researchers have considered this terminology to be the most successful and important, and the radial pore size has often been regarded as a main parameter containing the most important properties of porous silicon. Meanwhile, the unique properties and practical application of porous silicon are based on its developed inner surface. The method of nitrogen porosimetry, which is simple in its practical implementation, is often used in scientific literature to determine this value.The most suitable integral parameter for the classification of porous silicon, regardless of its structure and morphology, is the total specific internal surface (cm-1) that can be relatively easily established experimentally and is of fundamental importance for almost all applications of porous silicon. The use of this value does not exclude the use of other parameters for a more detailed classification
{"title":"An integral feature of porous silicon and its classification","authors":"A. M. Khort, A. G. Yakovenko, Yury V. Syrov","doi":"10.17308/KCMF.2021.23/3535","DOIUrl":"https://doi.org/10.17308/KCMF.2021.23/3535","url":null,"abstract":"Porous silicon is currently one of the most studied materials which is used both in the areas traditional for silicon, such as electronics and optoelectronics, and in completely unconventional ones, such as catalysis, energetics, biology, and medicine. The multiple possibilities of the material are revealed due to the fact that its structure can be radically different depending on the properties of the initial silicon and the methods of obtaining porous phases. The use of any material inevitably leads to the need to classify its various forms. The purpose of the article was to find the most significant parameter that can be used as the basis for the classification of porous silicon.Historically, the terminology defined by the IUPAC pore size classification has been used to classify porous silicon. Due to the authority of IUPAC, many researchers have considered this terminology to be the most successful and important, and the radial pore size has often been regarded as a main parameter containing the most important properties of porous silicon. Meanwhile, the unique properties and practical application of porous silicon are based on its developed inner surface. The method of nitrogen porosimetry, which is simple in its practical implementation, is often used in scientific literature to determine this value.The most suitable integral parameter for the classification of porous silicon, regardless of its structure and morphology, is the total specific internal surface (cm-1) that can be relatively easily established experimentally and is of fundamental importance for almost all applications of porous silicon. The use of this value does not exclude the use of other parameters for a more detailed classification","PeriodicalId":17879,"journal":{"name":"Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases","volume":"7 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83459451","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-08-17DOI: 10.17308/KCMF.2021.23/3528
M. G. Vasil’ev, A. M. Vasil’ev, A. D. Izotov, Yu. O. Kostin, A. Shelyakin
Semiconductor devices of quantum electronics based on InP/GaInAsP heterostructures require the creation of non-defective chips for emitting devices and photodetectors. The production of such chips is impossible without a thorough technological study of the growth processes of epitaxial structures. One of the important problems in relation to the growth of such structures is the growth defects associated with the process of dissociation of indium phosphide on the surface during their growth. The aim of the work was the investigation of the process and mechanism of destruction (dissociation) of the surface of indium phosphide substrates in the range of growth temperatures of structures, as well as the study of methods andtechniques that allow minimize the process of dissociation of surface of indium phosphide.The work provides studies of the growth processes of InP/GaInAsP heterostructures, from the liquid phase, taking into account the degradation processes of the growth surface and the mechanisms for the formation of dissociation defects.The schemes of the dissociation process of the InP on the surface of the substrate and the formation of the defective surface of the substrate were analysed. At the same time, technological methods allowing to minimize the dissociation of the surface compound during the process of liquid-phase epitaxy were shown. The original design of a graphite cassette allowing to minimize the dissociation of the indium phosphide substrate in the process of liquid-phase epitaxy was proposed
{"title":"Technological features of the method of liquid-phase epitaxy when growing InP/GaInAsP heterostructures","authors":"M. G. Vasil’ev, A. M. Vasil’ev, A. D. Izotov, Yu. O. Kostin, A. Shelyakin","doi":"10.17308/KCMF.2021.23/3528","DOIUrl":"https://doi.org/10.17308/KCMF.2021.23/3528","url":null,"abstract":"Semiconductor devices of quantum electronics based on InP/GaInAsP heterostructures require the creation of non-defective chips for emitting devices and photodetectors. The production of such chips is impossible without a thorough technological study of the growth processes of epitaxial structures. One of the important problems in relation to the growth of such structures is the growth defects associated with the process of dissociation of indium phosphide on the surface during their growth. The aim of the work was the investigation of the process and mechanism of destruction (dissociation) of the surface of indium phosphide substrates in the range of growth temperatures of structures, as well as the study of methods andtechniques that allow minimize the process of dissociation of surface of indium phosphide.The work provides studies of the growth processes of InP/GaInAsP heterostructures, from the liquid phase, taking into account the degradation processes of the growth surface and the mechanisms for the formation of dissociation defects.The schemes of the dissociation process of the InP on the surface of the substrate and the formation of the defective surface of the substrate were analysed. At the same time, technological methods allowing to minimize the dissociation of the surface compound during the process of liquid-phase epitaxy were shown. The original design of a graphite cassette allowing to minimize the dissociation of the indium phosphide substrate in the process of liquid-phase epitaxy was proposed","PeriodicalId":17879,"journal":{"name":"Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases","volume":"3 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79895909","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-08-17DOI: 10.17308/KCMF.2021.23/3530
M. Jaloliddinzoda, S. Marenkin, A. Ril, M. G. Vasil’ev, A. D. Izotov, D. Korkin
High-temperature ferromagnets are widely used on a practical level. Based on them, magnetic memory for computers and various types of magnetic field sensors are created. Therefore, bulk ingots and thin-film samples of ferromagnet manganese antimonide (MnSb) with a high Curie point are of great interest, both from the practical and fundamental sides. Manganese antimonide films are obtained in hybrid structures using molecular-beam epitaxy. The thickness of the films does not exceed tens of nanometers. Despite their high sensitivity to magnetic fields, their small thickness prevents them from being used as magnetic field sensors. The aim of this work was to synthesise thick bulk ingots of manganese antimonide crystalsand films with a thickness of ~ 400 nm on sitall and silicon substrates. MnSb crystals were synthesised using the vacuum-ampoule method and identified using XRD, DTA, and microstructural analysis. The results of studies of bulk samples indicated the presence of an insignificant amount of antimony in additionto the MnSb phase. According to the DTA thermogram of the MnSb alloy, a small endothermic effect was observed at 572 °C, which corresponds to the melting of the eutectic on the part of antimony in the Mn-Sb system. Such composition, according to previous studies, guaranteed the production of manganese antimonide with the maximum Curie temperature. A study of the magnetic properties showed that the synthesised MnSb crystals were a soft ferromagnet with the Curie point ~ 587 K. Thin MnSb films were obtained by an original method using separate sequential deposition in a high vacuum of the Mnand Sb metals with their subsequent annealing. To optimise the process of obtaining films with stoichiometric composition, the dependences of the thickness of metal films on the parameters of the deposition process were calculated. The temperature range of annealing at which the metals interact with the formation of ferromagnetic MnSb films was established, the films were identified, and their electrical and magnetic properties were measured
{"title":"Synthesis of bulk crystals and thin films of the ferromagnetic MnSb","authors":"M. Jaloliddinzoda, S. Marenkin, A. Ril, M. G. Vasil’ev, A. D. Izotov, D. Korkin","doi":"10.17308/KCMF.2021.23/3530","DOIUrl":"https://doi.org/10.17308/KCMF.2021.23/3530","url":null,"abstract":"High-temperature ferromagnets are widely used on a practical level. Based on them, magnetic memory for computers and various types of magnetic field sensors are created. Therefore, bulk ingots and thin-film samples of ferromagnet manganese antimonide (MnSb) with a high Curie point are of great interest, both from the practical and fundamental sides. Manganese antimonide films are obtained in hybrid structures using molecular-beam epitaxy. The thickness of the films does not exceed tens of nanometers. Despite their high sensitivity to magnetic fields, their small thickness prevents them from being used as magnetic field sensors. The aim of this work was to synthesise thick bulk ingots of manganese antimonide crystalsand films with a thickness of ~ 400 nm on sitall and silicon substrates. MnSb crystals were synthesised using the vacuum-ampoule method and identified using XRD, DTA, and microstructural analysis. The results of studies of bulk samples indicated the presence of an insignificant amount of antimony in additionto the MnSb phase. According to the DTA thermogram of the MnSb alloy, a small endothermic effect was observed at 572 °C, which corresponds to the melting of the eutectic on the part of antimony in the Mn-Sb system. Such composition, according to previous studies, guaranteed the production of manganese antimonide with the maximum Curie temperature. A study of the magnetic properties showed that the synthesised MnSb crystals were a soft ferromagnet with the Curie point ~ 587 K. Thin MnSb films were obtained by an original method using separate sequential deposition in a high vacuum of the Mnand Sb metals with their subsequent annealing. To optimise the process of obtaining films with stoichiometric composition, the dependences of the thickness of metal films on the parameters of the deposition process were calculated. The temperature range of annealing at which the metals interact with the formation of ferromagnetic MnSb films was established, the films were identified, and their electrical and magnetic properties were measured ","PeriodicalId":17879,"journal":{"name":"Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases","volume":"57 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73357793","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-08-17DOI: 10.17308/KCMF.2021.23/3529
V. Vorob’eva, A. Zelenaya, V. Lutsyk, M. Lamueva
The research analyses the controversies surrounding the technique for the formation of a CaO-Al2O3 binary system and the nature of melting of compounds in it, i.e. whether the 12:7 compound is technically possible and whether the 1:1 and 1:2 compounds are congruently or incongruently melting compounds. It also discusses whether in the CaO-MgO-Al2O3 ternary system the following compounds can be formed: a 3:1:1 compound alone or, in addition to it, two more compounds of 1:2:8 and 2:2:14. A 3D model of the T-x-y diagram was created for the most common version, with six binary and three ternary compounds. Its high-temperature portion (above 1300°C) consisted of 234 surfaces and 85 phase regions. Ternary compounds were formed as a result of three peritectic reactions. Besides them, six quasi-peritectic and three eutecticinvariant reactions occurred in the system with the participation of the melt. The principle of construction for a threedimensional model involved a gradual transition from a phase reaction scheme (which is transformed into a scheme of uni- and invariant states) presented in a tabulated and then in a graphical form (a template of ruled surfaces and isothermal planes corresponding to invariant reactions) to a T-x-y diagram prototype (graphic images of all liquidus, solidus, and solvus surfaces). The design was concluded with the transformation of the prototype into a 3D model of the real system after the input of the base points coordinates (concentrations and temperatures) and the adjustment of curvatures of lines andsurfaces. The finished model provides a wide range of possibilities for the visualisation of the phase diagram, including the construction of any arbitrarily assigned isothermal sections and isopleths. The 3D model was designed with the help of the author’s software PD Designer (Phase Diagram Designer). To assess the quality of the 3D model, two versions of an isothermal section at 1840 °C were compared: model section and a fragment of an experimental section near Al2O3.
{"title":"A 3D computer model of the CaO-MgO-Al2O3 T-x-y diagram at temperatures above 1300 °C","authors":"V. Vorob’eva, A. Zelenaya, V. Lutsyk, M. Lamueva","doi":"10.17308/KCMF.2021.23/3529","DOIUrl":"https://doi.org/10.17308/KCMF.2021.23/3529","url":null,"abstract":"The research analyses the controversies surrounding the technique for the formation of a CaO-Al2O3 binary system and the nature of melting of compounds in it, i.e. whether the 12:7 compound is technically possible and whether the 1:1 and 1:2 compounds are congruently or incongruently melting compounds. It also discusses whether in the CaO-MgO-Al2O3 ternary system the following compounds can be formed: a 3:1:1 compound alone or, in addition to it, two more compounds of 1:2:8 and 2:2:14. A 3D model of the T-x-y diagram was created for the most common version, with six binary and three ternary compounds. Its high-temperature portion (above 1300°C) consisted of 234 surfaces and 85 phase regions. Ternary compounds were formed as a result of three peritectic reactions. Besides them, six quasi-peritectic and three eutecticinvariant reactions occurred in the system with the participation of the melt. The principle of construction for a threedimensional model involved a gradual transition from a phase reaction scheme (which is transformed into a scheme of uni- and invariant states) presented in a tabulated and then in a graphical form (a template of ruled surfaces and isothermal planes corresponding to invariant reactions) to a T-x-y diagram prototype (graphic images of all liquidus, solidus, and solvus surfaces). The design was concluded with the transformation of the prototype into a 3D model of the real system after the input of the base points coordinates (concentrations and temperatures) and the adjustment of curvatures of lines andsurfaces. The finished model provides a wide range of possibilities for the visualisation of the phase diagram, including the construction of any arbitrarily assigned isothermal sections and isopleths. The 3D model was designed with the help of the author’s software PD Designer (Phase Diagram Designer). To assess the quality of the 3D model, two versions of an isothermal section at 1840 °C were compared: model section and a fragment of an experimental section near Al2O3.","PeriodicalId":17879,"journal":{"name":"Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases","volume":"28 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75826340","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-08-17DOI: 10.17308/KCMF.2021.23/3524
I. Mittova, B. V. Sladkopevtsev, V. Mittova
New directions of development of the scientific school of Yakov Aleksandrovich Ugai “Solid state chemistry and semiconductors” were considered for the direction “Study of semiconductors and nanostructured functional films based on them”, supervised by I. Ya. Mittova. The study of students and followers of the scientific school of Ya. A. Ugai cover materials science topics in the field of solid-state chemistry and inorganic and physical chemistry. At the present stage of research, the emphasis is being placed precisely on nanoscale objects, since in these objects the main mechanisms of modern solid-state chemistry are most clearly revealed: the methods of synthesis - composition - structure (degree of dispersion) - properties. Under the guidance of Professor I. Ya. Mittova DSc (Chem.), research in two key areas is conducted:“Nanoscale semiconductor and dielectric films” and “Doped and undoped nanocrystalline ferrites”. In the first area, the problem of creating high-quality semiconductor and dielectric nanoscale films on AIIIBV by the effect reasonably selected chemostimulators on the process of thermal oxidation of semiconductors and/or directed modification of the composition and properties of the films. They present the specific results achieved to date, reflecting the positive effect of chemostimulators and modifiers on the rate of formation of dielectric and semiconductor films of the nanoscale thickness range and their functional characteristics, which are promising for practical applications.Nanomaterials based on yttrium and lanthanum orthoferrites with a perovskite structure have unique magnetic, optical, and catalytic properties. The use of various approaches to their synthesis and doping allowing to control the structure and properties in a wide range. In the field of magnetic nanocrystals under the supervision of Prof. I. Ya. Mittova studies of the effect of a doping impurity on the composition, structure, and properties of nanoparticles of yttrium and lanthanum orthoferrites by replacing the Y(La)3+ and Fe3+ cations are carried out. In the Socialist Republic of Vietnam one of the talented students of Prof. I. Ya. Mittova, Nguyen Anh Tien, performs studies in this area. To date, new methods for the synthesis ofnanocrystals of doped and undoped ferrites, including ferrites of neodymium, praseodymium, holmium, etc. have been developed.
{"title":"Nanoscale semiconductor and dielectric films and magnetic nanocrystals – new directions of development of the scientific school of Ya. A. Ugai “Solid state chemistry and semiconductors”. Review","authors":"I. Mittova, B. V. Sladkopevtsev, V. Mittova","doi":"10.17308/KCMF.2021.23/3524","DOIUrl":"https://doi.org/10.17308/KCMF.2021.23/3524","url":null,"abstract":"New directions of development of the scientific school of Yakov Aleksandrovich Ugai “Solid state chemistry and semiconductors” were considered for the direction “Study of semiconductors and nanostructured functional films based on them”, supervised by I. Ya. Mittova. The study of students and followers of the scientific school of Ya. A. Ugai cover materials science topics in the field of solid-state chemistry and inorganic and physical chemistry. At the present stage of research, the emphasis is being placed precisely on nanoscale objects, since in these objects the main mechanisms of modern solid-state chemistry are most clearly revealed: the methods of synthesis - composition - structure (degree of dispersion) - properties. Under the guidance of Professor I. Ya. Mittova DSc (Chem.), research in two key areas is conducted:“Nanoscale semiconductor and dielectric films” and “Doped and undoped nanocrystalline ferrites”. In the first area, the problem of creating high-quality semiconductor and dielectric nanoscale films on AIIIBV by the effect reasonably selected chemostimulators on the process of thermal oxidation of semiconductors and/or directed modification of the composition and properties of the films. They present the specific results achieved to date, reflecting the positive effect of chemostimulators and modifiers on the rate of formation of dielectric and semiconductor films of the nanoscale thickness range and their functional characteristics, which are promising for practical applications.Nanomaterials based on yttrium and lanthanum orthoferrites with a perovskite structure have unique magnetic, optical, and catalytic properties. The use of various approaches to their synthesis and doping allowing to control the structure and properties in a wide range. In the field of magnetic nanocrystals under the supervision of Prof. I. Ya. Mittova studies of the effect of a doping impurity on the composition, structure, and properties of nanoparticles of yttrium and lanthanum orthoferrites by replacing the Y(La)3+ and Fe3+ cations are carried out. In the Socialist Republic of Vietnam one of the talented students of Prof. I. Ya. Mittova, Nguyen Anh Tien, performs studies in this area. To date, new methods for the synthesis ofnanocrystals of doped and undoped ferrites, including ferrites of neodymium, praseodymium, holmium, etc. have been developed.","PeriodicalId":17879,"journal":{"name":"Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases","volume":"69 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86795926","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-06-18DOI: 10.17308/kcmf.2021.23/3478
A. Syrkov, V. R. Kabirov, Alexander P. Pomogaibin, Ngo Kuok Kkhan
Stabilisation of the functional properties of dispersed and compact metals, as well as the regulation of their reactivity, improvement of water-repellent, antifriction and anti-corrosion properties by creating the protective films on the surface is an urgent problem in relation to obtaining new materials. Previously, research conducted at REC “Nanotechnology” of the St. Petersburg Mining University proved that chemisorption of ethylhydridesiloxane vapours together with surfactants based on quaternary ammonium compounds has a beneficial effect on the water-repellent properties of metals. In order to obtain the physicochemical mechanism of the hydrophobisation of the surface of modified dispersed metals for the firsttime, the study of the electrophilic-nucleophilic properties of the active substances of the surface modifiers of metals was carried out using the methods of quantum-chemical modelling using HyperChem software package. The dipole moment, energy of the highest occupied and the lowest unoccupied molecular orbitals, electrophilic-nucleophilic properties were determined. The series of enhancement of ucleophilic/electrophilic properties and dipole moment for modifiers were obtained. The donor-acceptor properties, the differences in the characteristics of the molecules of alkamon, triamon, and hydrophobic silicone organic liquid were quantitatively and qualitatively established. The regularities of the formation of hydrophobic and antifriction properties in the composition of industrial oil I-20-surface-modified metal with various electrophilic-nucleophilic properties of the applied substances
{"title":"Electrophilic-nucleophilic properties as a factor in the formation of antifriction and hydrophobic properties of surface-modified metals with ammonium and organosilicon compounds","authors":"A. Syrkov, V. R. Kabirov, Alexander P. Pomogaibin, Ngo Kuok Kkhan","doi":"10.17308/kcmf.2021.23/3478","DOIUrl":"https://doi.org/10.17308/kcmf.2021.23/3478","url":null,"abstract":"Stabilisation of the functional properties of dispersed and compact metals, as well as the regulation of their reactivity, improvement of water-repellent, antifriction and anti-corrosion properties by creating the protective films on the surface is an urgent problem in relation to obtaining new materials. Previously, research conducted at REC “Nanotechnology” of the St. Petersburg Mining University proved that chemisorption of ethylhydridesiloxane vapours together with surfactants based on quaternary ammonium compounds has a beneficial effect on the water-repellent properties of metals. In order to obtain the physicochemical mechanism of the hydrophobisation of the surface of modified dispersed metals for the firsttime, the study of the electrophilic-nucleophilic properties of the active substances of the surface modifiers of metals was carried out using the methods of quantum-chemical modelling using HyperChem software package. The dipole moment, energy of the highest occupied and the lowest unoccupied molecular orbitals, electrophilic-nucleophilic properties were determined. The series of enhancement of ucleophilic/electrophilic properties and dipole moment for modifiers were obtained. The donor-acceptor properties, the differences in the characteristics of the molecules of alkamon, triamon, and hydrophobic silicone organic liquid were quantitatively and qualitatively established. The regularities of the formation of hydrophobic and antifriction properties in the composition of industrial oil I-20-surface-modified metal with various electrophilic-nucleophilic properties of the applied substances","PeriodicalId":17879,"journal":{"name":"Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases","volume":"22 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74264592","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}