Abstract Formation of natural patina on copper and copper alloys objects takes tens of years. There are solutions for patination, which are used in restorers’ practice. However, these artificial patinas are usually based on nitrates, carbonates or chlorides. Patina based on brochantite is the most stable phase under atmospheric conditions. This type of patina was successfully formed in laboratory in a small exposure chamber with higher content of SO2. This work is next step of the experiment to make this method become more practicable. It started with construction 2 m3 exposure chamber and simulation of ideal conditions for patination process. The length of drying phase, homogeneity of conditions, pH of feeding water, colour of patina, placement of samples and final appearance were observed. The chamber construction allows to achieve ideal pH value of feeding water, samples surface became dry during the ventilation and temperature during condensation was stable at 40 °C. These conditions are ideal for patination process.
{"title":"Testing of pilot 2 m3 exposure chamber for formation of brochantite based patina on copper and copper alloys – objects of practical dimensions","authors":"R. Bureš, P. Rak, J. Stoulil","doi":"10.2478/kom-2020-0014","DOIUrl":"https://doi.org/10.2478/kom-2020-0014","url":null,"abstract":"Abstract Formation of natural patina on copper and copper alloys objects takes tens of years. There are solutions for patination, which are used in restorers’ practice. However, these artificial patinas are usually based on nitrates, carbonates or chlorides. Patina based on brochantite is the most stable phase under atmospheric conditions. This type of patina was successfully formed in laboratory in a small exposure chamber with higher content of SO2. This work is next step of the experiment to make this method become more practicable. It started with construction 2 m3 exposure chamber and simulation of ideal conditions for patination process. The length of drying phase, homogeneity of conditions, pH of feeding water, colour of patina, placement of samples and final appearance were observed. The chamber construction allows to achieve ideal pH value of feeding water, samples surface became dry during the ventilation and temperature during condensation was stable at 40 °C. These conditions are ideal for patination process.","PeriodicalId":17911,"journal":{"name":"Koroze a ochrana materialu","volume":"64 1","pages":"95 - 99"},"PeriodicalIF":0.0,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44068571","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract In a coronary angioplasty or orthopaedic surgery, metallic implants are often used to provide mechanical support to the healing tissues. In some situations, this support is really needed only temporarily. After tissue recovery, the implant no longer provides any benefits and can trigger adverse reactions. An optimal solution might be the short-term implants which are able to decompose in situ and can be readily excreted from the body. Iron-based materials are promising candidates for application in biodegradable devices. For the successful application, the ability to control the material’s corrosion rate is important. In this contribution, the corrosion of iron-iron oxide composites is investigated. In order to obtain such materials, iron-oxide granules were incompletely reduced, compacted and sintered. Materials consisting of a pure iron and iron oxides were obtained. Specimens from as-sintered materials and materials reduced once again after sintering were prepared. Potentiodynamic polarization testing in Hanks’ solution indicated that specimens underwent a galvanic corrosion, where the release of ferrous ions from iron surfaces represents the anodic reaction and the oxygen reduction on surfaces of both iron and iron oxides represents the cathodic reaction. Changes in the content of oxides resulted in anticipated shifts in corrosion potential and apparent corrosion current density.
{"title":"Corrosion characteristics of sintered heterogeneous materials composed of iron and iron oxides","authors":"M. Kupková, M. Kupka, R. Oriňaková, R. Gorejová","doi":"10.2478/kom-2020-0011","DOIUrl":"https://doi.org/10.2478/kom-2020-0011","url":null,"abstract":"Abstract In a coronary angioplasty or orthopaedic surgery, metallic implants are often used to provide mechanical support to the healing tissues. In some situations, this support is really needed only temporarily. After tissue recovery, the implant no longer provides any benefits and can trigger adverse reactions. An optimal solution might be the short-term implants which are able to decompose in situ and can be readily excreted from the body. Iron-based materials are promising candidates for application in biodegradable devices. For the successful application, the ability to control the material’s corrosion rate is important. In this contribution, the corrosion of iron-iron oxide composites is investigated. In order to obtain such materials, iron-oxide granules were incompletely reduced, compacted and sintered. Materials consisting of a pure iron and iron oxides were obtained. Specimens from as-sintered materials and materials reduced once again after sintering were prepared. Potentiodynamic polarization testing in Hanks’ solution indicated that specimens underwent a galvanic corrosion, where the release of ferrous ions from iron surfaces represents the anodic reaction and the oxygen reduction on surfaces of both iron and iron oxides represents the cathodic reaction. Changes in the content of oxides resulted in anticipated shifts in corrosion potential and apparent corrosion current density.","PeriodicalId":17911,"journal":{"name":"Koroze a ochrana materialu","volume":"64 1","pages":"72 - 78"},"PeriodicalIF":0.0,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45267221","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract In the collections of Technical Museum in Brno, large number of historical vehicles is placed. During the operation, parts of their motors are being fouled. Frequently, they become even immobile (e. g. due to a fouled fuel system). In this case, the method using ultrasound with a suitable concentrate appears as the most suitable. In fact, ultrasound works also in inaccessible places with large efficiency. Not only the chosen solution influences the cleaning efficiency, but also parameters as time, bath temperature and ultrasound frequency. The cleaning process was evaluated according to the volume of removed dirt and by observing wettability change using the measuring of contact angle of a water drop. The ultrasound shock waves influence the surface to a certain extent also mechanically. That is why, the ultrasound effect on defects in the structure was observed. The aggressivity of cleaning concentrates was evaluated on the ground of determination of dissolved metals in the baths by ET AAS method.
{"title":"Use of ultrasound for cleaning of components of historical vehicles in Technical Museum in Brno","authors":"K. Rapouch, M. Mrázek","doi":"10.2478/kom-2020-0012","DOIUrl":"https://doi.org/10.2478/kom-2020-0012","url":null,"abstract":"Abstract In the collections of Technical Museum in Brno, large number of historical vehicles is placed. During the operation, parts of their motors are being fouled. Frequently, they become even immobile (e. g. due to a fouled fuel system). In this case, the method using ultrasound with a suitable concentrate appears as the most suitable. In fact, ultrasound works also in inaccessible places with large efficiency. Not only the chosen solution influences the cleaning efficiency, but also parameters as time, bath temperature and ultrasound frequency. The cleaning process was evaluated according to the volume of removed dirt and by observing wettability change using the measuring of contact angle of a water drop. The ultrasound shock waves influence the surface to a certain extent also mechanically. That is why, the ultrasound effect on defects in the structure was observed. The aggressivity of cleaning concentrates was evaluated on the ground of determination of dissolved metals in the baths by ET AAS method.","PeriodicalId":17911,"journal":{"name":"Koroze a ochrana materialu","volume":"64 1","pages":"79 - 86"},"PeriodicalIF":0.0,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41617401","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
P. Popovych, L. Poberezhny, O. Shevchuk, I. Murovanyi, L. Poberezhna, A. Hrytsanchuk, Y. Koval
Abstract The processes of corrosion-fatigue failure of materials in contact with mineral fertilizers are insufficiently studied. As a result of joint influence of atmospheric corrosion and mechanical loads, about 70 to 80 % of machine parts get out of order, 20 to 25 % of which are failures caused by operating overload due to the strength loss because of atmospheric corrosion. A large part of metal structures of agricultural vehicles used to transport mineral fertilizers is under the direct influence of aggressive environments and dynamic loads that occur during the motion by field roads. Saturated solutions of the most aggressive working environments used in agricultural production, in particular ammonium sulphate and nitrophosphate are investigated to reduce fatigue resistance of ordinary steels groups – St3 and St5 and quality steels – 10 Steel, 15 Steel, 20 Steel, 25 Steel when loaded at all levels. The fatigue endurance limit decreases in comparison with air up to 2.02 times in a solution of ammonium sulphate, and to 2.32 times in a solution of nitrophosphate. In organic fertilizer environments, compared to distilled water, the conditional fatigue endurance limit increased to 9 %. The properties of the given materials as an inhibitor of corrosion-fatigue failure were discovered and proved.
{"title":"Corrosion-fatigue failure of tractor trailers metal materials in aggressive environments","authors":"P. Popovych, L. Poberezhny, O. Shevchuk, I. Murovanyi, L. Poberezhna, A. Hrytsanchuk, Y. Koval","doi":"10.2478/kom-2020-0007","DOIUrl":"https://doi.org/10.2478/kom-2020-0007","url":null,"abstract":"Abstract The processes of corrosion-fatigue failure of materials in contact with mineral fertilizers are insufficiently studied. As a result of joint influence of atmospheric corrosion and mechanical loads, about 70 to 80 % of machine parts get out of order, 20 to 25 % of which are failures caused by operating overload due to the strength loss because of atmospheric corrosion. A large part of metal structures of agricultural vehicles used to transport mineral fertilizers is under the direct influence of aggressive environments and dynamic loads that occur during the motion by field roads. Saturated solutions of the most aggressive working environments used in agricultural production, in particular ammonium sulphate and nitrophosphate are investigated to reduce fatigue resistance of ordinary steels groups – St3 and St5 and quality steels – 10 Steel, 15 Steel, 20 Steel, 25 Steel when loaded at all levels. The fatigue endurance limit decreases in comparison with air up to 2.02 times in a solution of ammonium sulphate, and to 2.32 times in a solution of nitrophosphate. In organic fertilizer environments, compared to distilled water, the conditional fatigue endurance limit increased to 9 %. The properties of the given materials as an inhibitor of corrosion-fatigue failure were discovered and proved.","PeriodicalId":17911,"journal":{"name":"Koroze a ochrana materialu","volume":"64 1","pages":"45 - 51"},"PeriodicalIF":0.0,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45596703","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract The article deals with the issue of non-destructive testing of riveted joints. In the article, the authors used a non-destructive eddy current array technique, which was applied to detect simulated corrosion in the field of aircraft riveted joints of aluminum sheets. In aircraft maintenance, the eddy current method is used to control the outer surface of the aircraft skin, especially the areas around the riveted joints. This method makes it possible to detect hidden cracks and corrosion that may occur during aircraft operation. Especially hidden are hidden cracks and corrosion of aircraft structures, which cannot be detected during a visual inspection of the aircraft. The aim of the experimental measurements was to reveal simulated corrosion in the area of riveted joints formed on the experimental sample. Corrosion was simulated by gluing aluminum powder to the surface of the aluminum sheets from which the sample was made. The simulated corrosion in the second and third layers of the riveted sample was reliably detected. The settings, the method of control and the results of measurements are given in the article in the experimental part and the results of measurements. Measurements were performed using a defectoscope with an ECA measurement module, with appropriate measuring probes suitable for this type of inspection.
{"title":"Use of non-destructive eddy current technique to detect simulated corrosion of aircraft structures","authors":"M. Janovec, J. Čerňan, F. Škultéty","doi":"10.2478/kom-2020-0008","DOIUrl":"https://doi.org/10.2478/kom-2020-0008","url":null,"abstract":"Abstract The article deals with the issue of non-destructive testing of riveted joints. In the article, the authors used a non-destructive eddy current array technique, which was applied to detect simulated corrosion in the field of aircraft riveted joints of aluminum sheets. In aircraft maintenance, the eddy current method is used to control the outer surface of the aircraft skin, especially the areas around the riveted joints. This method makes it possible to detect hidden cracks and corrosion that may occur during aircraft operation. Especially hidden are hidden cracks and corrosion of aircraft structures, which cannot be detected during a visual inspection of the aircraft. The aim of the experimental measurements was to reveal simulated corrosion in the area of riveted joints formed on the experimental sample. Corrosion was simulated by gluing aluminum powder to the surface of the aluminum sheets from which the sample was made. The simulated corrosion in the second and third layers of the riveted sample was reliably detected. The settings, the method of control and the results of measurements are given in the article in the experimental part and the results of measurements. Measurements were performed using a defectoscope with an ECA measurement module, with appropriate measuring probes suitable for this type of inspection.","PeriodicalId":17911,"journal":{"name":"Koroze a ochrana materialu","volume":"64 1","pages":"52 - 58"},"PeriodicalIF":0.0,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42191071","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract A novel pyridine derivative was synthesized, and its corrosion inhibition effects on mild steel in a 1M hydrochloric acid environment were investigated by gravimetric techniques, The results demonstrated that the inhibitive performance increased with the increasing of inhibitor concentration. At 303, the inhibition efficiency of pyridine derivative 4-hydroxy-3-(pyridin-2-ylaminomethyl)toluene accomplished 96.2% at the inhibitor concentration of 0.005 M. The mechanism of inhibition implicated the forming of a protective layer from inhibitor molecules on the surface of mild steel by a Langmuir adsorption isotherm. The presence of nitrogen and oxygen atoms in the structure of 4-hydroxy-3-(pyridin-2-ylaminomethyl)toluene confirmed by CHN-analysis revealed the adsorption of inhibitor molecules on the surface of mild steel surface.
{"title":"Corrosion inhibition of mild steel using novel pyridine derivative in 1 M hydrochloric acid","authors":"A. Al-amiery, L. M. Shaker","doi":"10.2478/kom-2020-0009","DOIUrl":"https://doi.org/10.2478/kom-2020-0009","url":null,"abstract":"Abstract A novel pyridine derivative was synthesized, and its corrosion inhibition effects on mild steel in a 1M hydrochloric acid environment were investigated by gravimetric techniques, The results demonstrated that the inhibitive performance increased with the increasing of inhibitor concentration. At 303, the inhibition efficiency of pyridine derivative 4-hydroxy-3-(pyridin-2-ylaminomethyl)toluene accomplished 96.2% at the inhibitor concentration of 0.005 M. The mechanism of inhibition implicated the forming of a protective layer from inhibitor molecules on the surface of mild steel by a Langmuir adsorption isotherm. The presence of nitrogen and oxygen atoms in the structure of 4-hydroxy-3-(pyridin-2-ylaminomethyl)toluene confirmed by CHN-analysis revealed the adsorption of inhibitor molecules on the surface of mild steel surface.","PeriodicalId":17911,"journal":{"name":"Koroze a ochrana materialu","volume":"64 1","pages":"59 - 64"},"PeriodicalIF":0.0,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48481307","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A. Braihi, A. Jawad, A. Kadhum, H. S. Aljibori, A. Al-amiery
Abstract In this work, a series of Natural Rubber (NR)/Styrene Butadiene Rubber (SBR) blends were formulated to protect metallic petrochemical storage tanks from corrosive media. Therefore, these blends tested against a 10% HCl solution for 72 hr at room temperature. Blends series were prepared with different ratios of NR/SBR; 25/75, 30/70, 35/65, 40/60, 45/55, 50/50, and 55/45. Three types of carbon black (N-330, N-660, and N-762) were added individually to the 45/55 blend. Hardness, tensile strength, modulus, and elongation properties were tested before and after immersion in the 10% HCl attack media. All these mechanical properties decreased after immersion action accept hardness property. Up to 45 phr NR content, the hardness increased linearly independent on immersion action, but HCl immersion gives higher hardness values. Tensile strength increased up to 40 phr NR content with and without immersion and the immersion action decreased tensile values. The highest elongation value obtained with 35/65 blend with and without immersion. The 45 phr NR content gives the higher modulus, while the lowest value obtained with the 30 phhr content. For 45/55 blend, the hardness increased as the carbon black particle size decreased and immersion action gives higher hardness values. The tensile strength decreased linearly with the carbon black surface area, while with the medium surface area, the highest modulus and lowest elongation obtained.
{"title":"Chemical resistance of NR/SBR rubber blends for surfaces corrosion protection of metallic tanks in petrochemical industries","authors":"A. Braihi, A. Jawad, A. Kadhum, H. S. Aljibori, A. Al-amiery","doi":"10.2478/kom-2020-0010","DOIUrl":"https://doi.org/10.2478/kom-2020-0010","url":null,"abstract":"Abstract In this work, a series of Natural Rubber (NR)/Styrene Butadiene Rubber (SBR) blends were formulated to protect metallic petrochemical storage tanks from corrosive media. Therefore, these blends tested against a 10% HCl solution for 72 hr at room temperature. Blends series were prepared with different ratios of NR/SBR; 25/75, 30/70, 35/65, 40/60, 45/55, 50/50, and 55/45. Three types of carbon black (N-330, N-660, and N-762) were added individually to the 45/55 blend. Hardness, tensile strength, modulus, and elongation properties were tested before and after immersion in the 10% HCl attack media. All these mechanical properties decreased after immersion action accept hardness property. Up to 45 phr NR content, the hardness increased linearly independent on immersion action, but HCl immersion gives higher hardness values. Tensile strength increased up to 40 phr NR content with and without immersion and the immersion action decreased tensile values. The highest elongation value obtained with 35/65 blend with and without immersion. The 45 phr NR content gives the higher modulus, while the lowest value obtained with the 30 phhr content. For 45/55 blend, the hardness increased as the carbon black particle size decreased and immersion action gives higher hardness values. The tensile strength decreased linearly with the carbon black surface area, while with the medium surface area, the highest modulus and lowest elongation obtained.","PeriodicalId":17911,"journal":{"name":"Koroze a ochrana materialu","volume":"64 1","pages":"65 - 71"},"PeriodicalIF":0.0,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48301985","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract Ni-based coatings can be successfully applied under abrasive and adhesive conditions as a substitute for environmentally harmful chrome coatings. The research has been carried out for thermally flame sprayed Ni-based coatings with remelting (so-called the two-step process) with the different chemical composition of starting powders. The structure of coatings was evaluated by optical and scanning electron microscopy. Both the three-body abrasive wear test, according to ASTM G65-4 (Dry-Sand Rubber Wheel Test) and dry sliding wear test by the Falex tester, were performed. The results show the influence of the effective chemical composition of the metal powders on improving the properties of the coating. The higher hardness of the coatings leads to a lower tendency for the creation of adhesive bonds, and as a result, leads to a lower tendency to scuffing. A similar trend shows the influence of higher coating hardness on the increasing of abrasive wear resistance.
{"title":"The corrosion-resistant Ni-based coatings and their tribological properties","authors":"E. Zdravecká, J. Tkáčová","doi":"10.2478/kom-2020-0006","DOIUrl":"https://doi.org/10.2478/kom-2020-0006","url":null,"abstract":"Abstract Ni-based coatings can be successfully applied under abrasive and adhesive conditions as a substitute for environmentally harmful chrome coatings. The research has been carried out for thermally flame sprayed Ni-based coatings with remelting (so-called the two-step process) with the different chemical composition of starting powders. The structure of coatings was evaluated by optical and scanning electron microscopy. Both the three-body abrasive wear test, according to ASTM G65-4 (Dry-Sand Rubber Wheel Test) and dry sliding wear test by the Falex tester, were performed. The results show the influence of the effective chemical composition of the metal powders on improving the properties of the coating. The higher hardness of the coatings leads to a lower tendency for the creation of adhesive bonds, and as a result, leads to a lower tendency to scuffing. A similar trend shows the influence of higher coating hardness on the increasing of abrasive wear resistance.","PeriodicalId":17911,"journal":{"name":"Koroze a ochrana materialu","volume":"64 1","pages":"38 - 44"},"PeriodicalIF":0.0,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48196281","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
J. Hodač, Z. Fulin, P. Mareš, J. Veselá, O. Chocholatý
Abstract To produce realistic test specimens with realistic flaws, it is necessary to develop appropriate procedure for corrosion flaw production. Tested specimens are made from steels commonly used in power plants, such as carbon steels, stainless steels and their dissimilar weldments. In this study, corrosion damage from NaCl water solution and NaCl water mist are compared. Specimens were tested with and without mechanical bending stress. The corrosion processes produced plane, pitting and galvanic corrosion. On dissimilar weldments galvanic corrosion was observed and resulted to the deepest corrosion damage. Deepest corrosion flaws were formed on welded samples. The corrosion rate was also affected by the solution flow in a contact with the specimens, which results in a corrosion-erosive wear. Produced flaws are suitable as natural crack initiators or as realistic corrosion flaws in test specimens.
{"title":"Development of corrosion flaws for the production of realistic test specimens","authors":"J. Hodač, Z. Fulin, P. Mareš, J. Veselá, O. Chocholatý","doi":"10.2478/kom-2020-0004","DOIUrl":"https://doi.org/10.2478/kom-2020-0004","url":null,"abstract":"Abstract To produce realistic test specimens with realistic flaws, it is necessary to develop appropriate procedure for corrosion flaw production. Tested specimens are made from steels commonly used in power plants, such as carbon steels, stainless steels and their dissimilar weldments. In this study, corrosion damage from NaCl water solution and NaCl water mist are compared. Specimens were tested with and without mechanical bending stress. The corrosion processes produced plane, pitting and galvanic corrosion. On dissimilar weldments galvanic corrosion was observed and resulted to the deepest corrosion damage. Deepest corrosion flaws were formed on welded samples. The corrosion rate was also affected by the solution flow in a contact with the specimens, which results in a corrosion-erosive wear. Produced flaws are suitable as natural crack initiators or as realistic corrosion flaws in test specimens.","PeriodicalId":17911,"journal":{"name":"Koroze a ochrana materialu","volume":"64 1","pages":"23 - 28"},"PeriodicalIF":0.0,"publicationDate":"2020-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43286233","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract Exposure of copper in corrosive environment is possible way, how to obtain artificial patina. Various solutions based on chloride, ammonia or polysulfide are commonly use in this purpose. Furthermore, it appears that the patina is also formed in an environment with an increased concentration of SO2 in the atmosphere. This procedure was tested in a small (30 l) exposure chamber, where the aggressiveness of the environment was monitored and where the effect of alternating the condensation and drying phases was shown to be positive. Based on this experiment, a 2 m3 pilot chamber was designed for which a water film sensor was developed and tested to ensure drying of the object surface. Monitoring of the aggressiveness of the environment showed that the pH and SO2 concentrations in the atmosphere are stable after approximately 5 hours and the ideal input SO2 concentration is 17.7 g m-3 at which the pH stabilizes at 2.7-3. By recording the voltage variation on the sensor, it was possible to monitor the formation and drying of the water film during the cycling of the condensation and drying phases.
{"title":"Monitoring of corrosive environment aggressiveness and development of a sensor for monitoring of the water film in exposure chamber","authors":"R. Bures, P. Rak, J. Stoulil","doi":"10.2478/kom-2020-0003","DOIUrl":"https://doi.org/10.2478/kom-2020-0003","url":null,"abstract":"Abstract Exposure of copper in corrosive environment is possible way, how to obtain artificial patina. Various solutions based on chloride, ammonia or polysulfide are commonly use in this purpose. Furthermore, it appears that the patina is also formed in an environment with an increased concentration of SO2 in the atmosphere. This procedure was tested in a small (30 l) exposure chamber, where the aggressiveness of the environment was monitored and where the effect of alternating the condensation and drying phases was shown to be positive. Based on this experiment, a 2 m3 pilot chamber was designed for which a water film sensor was developed and tested to ensure drying of the object surface. Monitoring of the aggressiveness of the environment showed that the pH and SO2 concentrations in the atmosphere are stable after approximately 5 hours and the ideal input SO2 concentration is 17.7 g m-3 at which the pH stabilizes at 2.7-3. By recording the voltage variation on the sensor, it was possible to monitor the formation and drying of the water film during the cycling of the condensation and drying phases.","PeriodicalId":17911,"journal":{"name":"Koroze a ochrana materialu","volume":"64 1","pages":"19 - 22"},"PeriodicalIF":0.0,"publicationDate":"2020-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45722439","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}