Molecular fabrics with fascinating physical characteristics, such as structural flexibility and single-layered thinness, have attracted much attention. Chemists worldwide have been working on building unique molecularly woven structures in two dimensions. However, the synthesis of two-dimensional molecular weaving remains a challenging task, especially in water. Herein, we propose a straightforward and practical method to construct 2D molecular fabrics by enzymatically covalent and noncovalent syntheses in water. In particular, aromatic helical pentamers with two-terminal tyrosine residues (Penta-Tyr) can spontaneously dimerize via π-π interactions into double-helical interlocking structure, and the two-terminal tyrosine moieties of Penta-Tyr can undergo oxidative polymerization catalyzed by horseradish peroxidase (HRP) and hydrogen peroxide (H2O2) for effective covalent cross-linking. The 2D monolayered molecular fabrics can be readily prepared by the catalysis of HRP and H2O2 under mild conditions, which exhibit concentration-dependent weaving behavior. This work not only demonstrates an enzyme-catalyzed approach for the highly efficient synthesis of 2D monolayered molecular fabrics for the first time but also will promote the controllable preparation and application of water-soluble 2D molecular fabrics.
Sequence-controlled polymerization aims to bridge the gap between biopolymers and synthetic macromolecules. In a kinetically controlled approach, the inherent reactivity differences among monomers determine the primary structure or sequence of the monomers linked within the resulting copolymer chains. This report outlines a one-pot synthesis of polypeptide-b-polypeptoid by choosing a suitable pair of N-carboxy anhydride (NCA) monomers with significant reactivity differences. We have demonstrated the preparation of well-defined block copolymers, including polyproline-b-polysarcosine (PLP-b-PSar) and poly(propargyl proline)-b-polysarcosine (PLPP-b-PSar) in a single step. 1H NMR kinetic studies confirmed the sequence-controlled primary structures of these block copolymers. The NMR analysis indicated a striking reactivity ratio difference (rPLP = 925 and rPSar = 0.0014; rPLPP = 860 and rPSar = 0.0015) between the selected monomer pairs, which was crucial for a one-pot block copolymer synthesis. Notably, these sequence-controlled copolymers' secondary structures and stability were remarkably similar to those of block copolymers synthesized through conventional sequential addition methods. This further underscores the practicality of this kinetically controlled approach.
Achiral dynamic helical polymers, poly(quinoxaline-2,3-diyl)s (P1 and P2) bearing achiral carboxylic acid side chains, i.e., carboxymethoxymethyl (in P1) and carboxyethoxymethyl (in P2), with different polymerization degrees were synthesized. They exhibited induced circular dichroism (ICD) in the presence of chiral amines such as 1-phenylethylamine and nicotine, 1,2-amino alcohols such as valinol, leucinol, and prolinol, and the basic amino acid, arginine, in response to the induction of right- or left-handed helical conformation. The efficiency of helix induction depends on the compatibility of the structures of amines and polymers, with no clear structural correlation. The highly sensitive and formulated nature of ICD with the helical polymer-based poly(carboxylic acid)s allowed their use as CD-based sensors to detect and quantify minute imbalances of the enantiomeric excess of chiral molecules. We determined 0.2%-0.6% ee in the commercially available 1-phenylethylamine from three different suppliers, which have the label of "dl" or no indication of enantiopurity using P1 as a chemosensor.