Purpose: Deep learning reconstruction (DLR) has been recommended as useful for improving image quality. Moreover, compressed sensing (CS) or DLR has been proposed as useful for improving temporal resolution and image quality on MR sequences in different body fields. However, there have been no reports regarding the utility of DLR for image quality and T-factor assessment improvements on T2-weighted imaging (T2WI), short inversion time (TI) inversion recovery (STIR) imaging, and unenhanced- and contrast-enhanced (CE) 3D fast spoiled gradient echo (GRE) imaging with and without CS in comparison with thin-section multidetector-row CT (MDCT) for non-small cell lung cancer (NSCLC) patients. The purpose of this study was to determine the utility of DLR for improving image quality and the appropriate sequence for T-category assessment for NSCLC patients.
Methods: As subjects for this study, 213 pathologically diagnosed NSCLC patients who underwent thin-section MDCT and MR imaging as well as T-factor diagnosis were retrospectively enrolled. SNR of each tumor was calculated and compared by paired t-test for each sequence with and without DLR. T-factor for each patient was assessed with thin-section MDCT and all MR sequences, and the accuracy for T-factor diagnosis was compared among all sequences and thin-section CT by means of McNemar's test.
Results: SNRs of T2WI, STIR imaging, unenhanced thin-section Quick 3D imaging, and CE-thin-section Quick 3D imaging with DLR were significantly higher than SNRs of those without DLR (P < 0.05). Diagnostic accuracy of STIR imaging and CE-thick- or thin-section Quick 3D imaging was significantly higher than that of thin-section CT, T2WI, and unenhanced thick- or thin-section Quick 3D imaging (P < 0.05).
Conclusion: DLR is thus considered useful for image quality improvement on MR imaging. STIR imaging and CE-Quick 3D imaging with or without CS were validated as appropriate MR sequences for T-factor evaluation in NSCLC patients.
目的:深度学习重建(DLR)被认为有助于提高图像质量。此外,压缩传感(CS)或 DLR 也被认为有助于提高不同体场磁共振序列的时间分辨率和图像质量。然而,目前还没有任何报告显示,在非小细胞肺癌(NSCLC)患者的 T2 加权成像(T2WI)、短反转时间(TI)反转恢复(STIR)成像、有 CS 和无 CS 的未增强和对比增强(CE)三维快速破坏梯度回波(GRE)成像中,DLR 对改善图像质量和 T 因子评估的效用与薄截面多切片排计算机断层扫描(MDCT)进行了比较。本研究的目的是确定 DLR 在改善 NSCLC 患者图像质量方面的效用以及 T 类评估的适当序列:方法:本研究以 213 例经病理诊断的 NSCLC 患者为研究对象,这些患者均接受过薄层 MDCT 和 MR 成像检查以及 T 因子诊断。计算每个肿瘤的信噪比,并通过配对 t 检验比较有无 DLR 的每个序列。用薄层 MDCT 和所有 MR 序列评估每位患者的 T 因子,并通过 McNemar 检验比较所有序列和薄层 CT 诊断 T 因子的准确性:有DLR的T2WI、STIR成像、未增强薄层快速三维成像和CE-薄层快速三维成像的信噪比明显高于无DLR的信噪比(P<0.05)。STIR成像和CE-厚或薄切片快速三维成像的诊断准确性明显高于薄切片CT、T2WI和未增强的厚或薄切片快速三维成像(P < 0.05):结论:因此,DLR 被认为有助于提高磁共振成像的图像质量。STIR成像和带或不带CS的CE-快速三维成像被证实是用于NSCLC患者T因子评估的合适磁共振序列。
{"title":"Deep Learning Reconstruction to Improve the Quality of MR Imaging: Evaluating the Best Sequence for T-category Assessment in Non-small Cell Lung Cancer Patients.","authors":"Daisuke Takenaka, Yoshiyuki Ozawa, Kaori Yamamoto, Maiko Shinohara, Masato Ikedo, Masao Yui, Yuka Oshima, Nayu Hamabuchi, Hiroyuki Nagata, Takahiro Ueda, Hirotaka Ikeda, Akiyoshi Iwase, Takeshi Yoshikawa, Hiroshi Toyama, Yoshiharu Ohno","doi":"10.2463/mrms.mp.2023-0068","DOIUrl":"10.2463/mrms.mp.2023-0068","url":null,"abstract":"<p><strong>Purpose: </strong>Deep learning reconstruction (DLR) has been recommended as useful for improving image quality. Moreover, compressed sensing (CS) or DLR has been proposed as useful for improving temporal resolution and image quality on MR sequences in different body fields. However, there have been no reports regarding the utility of DLR for image quality and T-factor assessment improvements on T2-weighted imaging (T2WI), short inversion time (TI) inversion recovery (STIR) imaging, and unenhanced- and contrast-enhanced (CE) 3D fast spoiled gradient echo (GRE) imaging with and without CS in comparison with thin-section multidetector-row CT (MDCT) for non-small cell lung cancer (NSCLC) patients. The purpose of this study was to determine the utility of DLR for improving image quality and the appropriate sequence for T-category assessment for NSCLC patients.</p><p><strong>Methods: </strong>As subjects for this study, 213 pathologically diagnosed NSCLC patients who underwent thin-section MDCT and MR imaging as well as T-factor diagnosis were retrospectively enrolled. SNR of each tumor was calculated and compared by paired t-test for each sequence with and without DLR. T-factor for each patient was assessed with thin-section MDCT and all MR sequences, and the accuracy for T-factor diagnosis was compared among all sequences and thin-section CT by means of McNemar's test.</p><p><strong>Results: </strong>SNRs of T2WI, STIR imaging, unenhanced thin-section Quick 3D imaging, and CE-thin-section Quick 3D imaging with DLR were significantly higher than SNRs of those without DLR (P < 0.05). Diagnostic accuracy of STIR imaging and CE-thick- or thin-section Quick 3D imaging was significantly higher than that of thin-section CT, T2WI, and unenhanced thick- or thin-section Quick 3D imaging (P < 0.05).</p><p><strong>Conclusion: </strong>DLR is thus considered useful for image quality improvement on MR imaging. STIR imaging and CE-Quick 3D imaging with or without CS were validated as appropriate MR sequences for T-factor evaluation in NSCLC patients.</p>","PeriodicalId":18119,"journal":{"name":"Magnetic Resonance in Medical Sciences","volume":" ","pages":"487-501"},"PeriodicalIF":2.5,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11447466/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10202082","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-01Epub Date: 2023-05-13DOI: 10.2463/mrms.mp.2022-0144
Minkyeong Kim, Tae Young Lee, Byeong Seong Kang, Woon Jung Kwon, Soyeoun Lim, Gyeong Min Park, Minseo Bang
Purpose: Although diffusion-weighted imaging (DWI) with ultra-high b-values is reported to be advantageous in the detection of some tumors, its applicability is not yet known in biliary malignancy. Therefore, this study aimed to evaluate the impact of measured b = 1400 s/mm2 (M1400) and calculated b = 1400 s/mm2 (C1400) DWI on image quality and quality of lesion discernibility using a modern 3T MR system compared to conventional b = 800 s/mm2 DWI (M800).
Methods: We evaluated 56 patients who had pathologically proven biliary malignancy. All the patients underwent preoperative or baseline 3T MRI using DWI (b = 50, 400, 800, and 1400 s/mm2). The calculated DWI was obtained using a conventional DWI set (b = 50, 400, and 800). The tumor-to-bile contrast ratio (CR) and tumor SNR were compared between the different DWI images. Likert scores were given on a 5-point scale to assess the overall image quality, overall artifacts, ghost artifacts, misregistration artifacts, margin sharpness, and lesion discernibility. Repeated-measures analysis of variance with post hoc analyses was used for statistical evaluations.
Results: The CR of the tumor-to-bile was significantly higher in both M1400 and C1400 than in M800 (Pa < 0.01). SNRs were significantly higher in M800, followed by C1400 and M1400 (Pa < 0.01). Lesion discernibility was significantly improved for M1400, followed by C1400 and M800 for both readers (Pa < 0.01).
Conclusion: Using a 3T MRI, both measured and calculated DWI with an ultra-high b-value offer superior lesion discernibility for biliary malignancy compared to the conventional DWI.
{"title":"Evaluating Biliary Malignancy with Measured and Calculated Ultra-high b-value Diffusion-weighted MR Imaging at 3T.","authors":"Minkyeong Kim, Tae Young Lee, Byeong Seong Kang, Woon Jung Kwon, Soyeoun Lim, Gyeong Min Park, Minseo Bang","doi":"10.2463/mrms.mp.2022-0144","DOIUrl":"10.2463/mrms.mp.2022-0144","url":null,"abstract":"<p><strong>Purpose: </strong>Although diffusion-weighted imaging (DWI) with ultra-high b-values is reported to be advantageous in the detection of some tumors, its applicability is not yet known in biliary malignancy. Therefore, this study aimed to evaluate the impact of measured b = 1400 s/mm<sup>2</sup> (M1400) and calculated b = 1400 s/mm<sup>2</sup> (C1400) DWI on image quality and quality of lesion discernibility using a modern 3T MR system compared to conventional b = 800 s/mm<sup>2</sup> DWI (M800).</p><p><strong>Methods: </strong>We evaluated 56 patients who had pathologically proven biliary malignancy. All the patients underwent preoperative or baseline 3T MRI using DWI (b = 50, 400, 800, and 1400 s/mm<sup>2</sup>). The calculated DWI was obtained using a conventional DWI set (b = 50, 400, and 800). The tumor-to-bile contrast ratio (CR) and tumor SNR were compared between the different DWI images. Likert scores were given on a 5-point scale to assess the overall image quality, overall artifacts, ghost artifacts, misregistration artifacts, margin sharpness, and lesion discernibility. Repeated-measures analysis of variance with post hoc analyses was used for statistical evaluations.</p><p><strong>Results: </strong>The CR of the tumor-to-bile was significantly higher in both M1400 and C1400 than in M800 (P<sup>a</sup> < 0.01). SNRs were significantly higher in M800, followed by C1400 and M1400 (P<sup>a</sup> < 0.01). Lesion discernibility was significantly improved for M1400, followed by C1400 and M800 for both readers (P<sup>a</sup> < 0.01).</p><p><strong>Conclusion: </strong>Using a 3T MRI, both measured and calculated DWI with an ultra-high b-value offer superior lesion discernibility for biliary malignancy compared to the conventional DWI.</p>","PeriodicalId":18119,"journal":{"name":"Magnetic Resonance in Medical Sciences","volume":" ","pages":"428-437"},"PeriodicalIF":2.5,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11447472/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9462855","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Purpose: Burning mouth syndrome (BMS) is defined by a burning sensation or pain in the tongue or other oral sites despite the presence of normal mucosa on inspection. Both psychiatric and neuroimaging investigations have examined BMS; however, there have been no analyses using the neurite orientation dispersion and density imaging (NODDI) model, which provides detailed information of intra- and extracellular microstructures. Therefore, we performed voxel-wise analyses using both NODDI and diffusion tensor imaging (DTI) models and compared the results to better comprehend the pathology of BMS.
Methods: Fourteen patients with BMS and 11 age- and sex-matched healthy control subjects were prospectively scanned using a 3T-MRI machine using 2-shell diffusion imaging. Diffusion tensor metrics (fractional anisotropy [FA], mean diffusivity [MD], axial diffusivity [AD], and radial diffusivity [RD]) and neurite orientation and dispersion index metrics (intracellular volume fraction [ICVF], isotropic volume fraction [ISO], and orientation dispersion index [ODI]) were retrieved from diffusion MRI data. These data were analyzed using tract-based spatial statistics (TBSS) and gray matter-based spatial statistics (GBSS).
Results: TBSS analysis showed that patients with BMS had significantly higher FA and ICVF and lower MD and RD than the healthy control subjects (family-wise error [FWE] corrected P < 0.05). Changes in ICVF, MD, and RD were observed in widespread white matter areas. Fairly small areas with different FA were included. GBSS analysis showed that patients with BMS had significantly higher ISO and lower MD and RD than the healthy control subjects (FWE-corrected P < 0.05), mainly limited to the amygdala.
Conclusion: The increased ICVF in the BMS group may represent myelination and/or astrocytic hypertrophy, and microstructural changes in the amygdala in GBSS analysis indicate the emotional-affective profile of BMS.
{"title":"White and Gray Matter Abnormality in Burning Mouth Syndrome Evaluated with Diffusion Tensor Imaging and Neurite Orientation Dispersion and Density Imaging.","authors":"Shimpei Kato, Ryo Kurokawa, Fumio Suzuki, Shiori Amemiya, Takahiro Shinozaki, Daiki Takanezawa, Ryutaro Kohashi, Osamu Abe","doi":"10.2463/mrms.mp.2022-0099","DOIUrl":"10.2463/mrms.mp.2022-0099","url":null,"abstract":"<p><strong>Purpose: </strong>Burning mouth syndrome (BMS) is defined by a burning sensation or pain in the tongue or other oral sites despite the presence of normal mucosa on inspection. Both psychiatric and neuroimaging investigations have examined BMS; however, there have been no analyses using the neurite orientation dispersion and density imaging (NODDI) model, which provides detailed information of intra- and extracellular microstructures. Therefore, we performed voxel-wise analyses using both NODDI and diffusion tensor imaging (DTI) models and compared the results to better comprehend the pathology of BMS.</p><p><strong>Methods: </strong>Fourteen patients with BMS and 11 age- and sex-matched healthy control subjects were prospectively scanned using a 3T-MRI machine using 2-shell diffusion imaging. Diffusion tensor metrics (fractional anisotropy [FA], mean diffusivity [MD], axial diffusivity [AD], and radial diffusivity [RD]) and neurite orientation and dispersion index metrics (intracellular volume fraction [ICVF], isotropic volume fraction [ISO], and orientation dispersion index [ODI]) were retrieved from diffusion MRI data. These data were analyzed using tract-based spatial statistics (TBSS) and gray matter-based spatial statistics (GBSS).</p><p><strong>Results: </strong>TBSS analysis showed that patients with BMS had significantly higher FA and ICVF and lower MD and RD than the healthy control subjects (family-wise error [FWE] corrected P < 0.05). Changes in ICVF, MD, and RD were observed in widespread white matter areas. Fairly small areas with different FA were included. GBSS analysis showed that patients with BMS had significantly higher ISO and lower MD and RD than the healthy control subjects (FWE-corrected P < 0.05), mainly limited to the amygdala.</p><p><strong>Conclusion: </strong>The increased ICVF in the BMS group may represent myelination and/or astrocytic hypertrophy, and microstructural changes in the amygdala in GBSS analysis indicate the emotional-affective profile of BMS.</p>","PeriodicalId":18119,"journal":{"name":"Magnetic Resonance in Medical Sciences","volume":" ","pages":"204-213"},"PeriodicalIF":3.0,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11024709/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9205157","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Purpose: Despite the usefulness of blood oxygenation level-dependent (BOLD) MRI in assessing glomerulonephritis activity, its relationship with histological findings remains unclear. Because glomerulonephritis presents multiple complex injury patterns, analysis of each pattern is essential. We aimed to elucidate the relationship between the histological findings of the kidney and BOLD MRI findings in mesangial proliferative glomerulonephritis.
Methods: Children under 16 years of age diagnosed with mesangial proliferative glomerulonephritis by kidney biopsy at our university hospital between January 2013 and September 2022 were included in this study. Cortical and medullary spin relaxation rate (R2*) values were measured using BOLD MRI at 3T within two weeks before and after the kidney biopsy. The R2* values, including the fluctuations with low-dose oxygen administration, were retrospectively examined in relation to the cortical (mesangial proliferation, endothelial cell proliferation, crescent, sclerosis, and fibrosis) and medullary findings (fibrosis).
Results: Sixteen times kidney biopsies were performed for glomerulonephritis during the study period, and one patient was excluded because of comorbidities; the remaining 14 patients included six boys with a mean age of 11.9 ± 3.5 years at the BOLD examination. None of the patients had medullary fibrosis. Among the kidney tissue parameters, only sclerosis showed a significant correlation with R2* values: medulla with R2* values under atmospheric pressure (r = 0.53, P < 0.05) and cortex with the rate of change in R2* values with low-dose oxygen administration (r = -0.57, P < 0.03). In the multiple regression analysis, only sclerosis was an independent contributor to the change in R2* values with oxygen administration in the cortex (regression coefficient -0.109, P < 0.05).
Conclusion: Since the R2* values reflect histological changes in the kidney, BOLD MRI may facilitate the evaluation of mesangial proliferative glomerulonephritis, potentially reducing the patient burden.
{"title":"Pathological Factors Affecting the R2* Values of the Kidney in Blood Oxygenation Level-dependent MR Imaging: A Retrospective Study.","authors":"Tomohiko Nishino, Kazuhiro Takahashi, Sayaka Ono, Masakazu Mimaki","doi":"10.2463/mrms.mp.2022-0140","DOIUrl":"10.2463/mrms.mp.2022-0140","url":null,"abstract":"<p><strong>Purpose: </strong>Despite the usefulness of blood oxygenation level-dependent (BOLD) MRI in assessing glomerulonephritis activity, its relationship with histological findings remains unclear. Because glomerulonephritis presents multiple complex injury patterns, analysis of each pattern is essential. We aimed to elucidate the relationship between the histological findings of the kidney and BOLD MRI findings in mesangial proliferative glomerulonephritis.</p><p><strong>Methods: </strong>Children under 16 years of age diagnosed with mesangial proliferative glomerulonephritis by kidney biopsy at our university hospital between January 2013 and September 2022 were included in this study. Cortical and medullary spin relaxation rate (R2*) values were measured using BOLD MRI at 3T within two weeks before and after the kidney biopsy. The R2* values, including the fluctuations with low-dose oxygen administration, were retrospectively examined in relation to the cortical (mesangial proliferation, endothelial cell proliferation, crescent, sclerosis, and fibrosis) and medullary findings (fibrosis).</p><p><strong>Results: </strong>Sixteen times kidney biopsies were performed for glomerulonephritis during the study period, and one patient was excluded because of comorbidities; the remaining 14 patients included six boys with a mean age of 11.9 ± 3.5 years at the BOLD examination. None of the patients had medullary fibrosis. Among the kidney tissue parameters, only sclerosis showed a significant correlation with R2* values: medulla with R2* values under atmospheric pressure (r = 0.53, P < 0.05) and cortex with the rate of change in R2* values with low-dose oxygen administration (r = -0.57, P < 0.03). In the multiple regression analysis, only sclerosis was an independent contributor to the change in R2* values with oxygen administration in the cortex (regression coefficient -0.109, P < 0.05).</p><p><strong>Conclusion: </strong>Since the R2* values reflect histological changes in the kidney, BOLD MRI may facilitate the evaluation of mesangial proliferative glomerulonephritis, potentially reducing the patient burden.</p>","PeriodicalId":18119,"journal":{"name":"Magnetic Resonance in Medical Sciences","volume":" ","pages":"153-160"},"PeriodicalIF":3.0,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11024711/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10681255","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Purpose: Diffusion MRI is a physical measurement method that quantitatively indicates the displacement of water molecules diffusing in voxels. However, there are insufficient data to characterize the diffusion process physically in a uniform structure such as a phantom. This study investigated the transitional relationship between structure scale, temperature, and diffusion time for simple restricted diffusion using a capillary phantom.
Methods: We performed diffusion-weighted pulsed-gradient stimulated-echo acquisition mode (STEAM) MRI with a 9.4 Tesla MRI system (Bruker BioSpin, Ettlingen, Germany) and a quadrature coil with an inner diameter of 86 mm (Bruker BioSpin). We measured the diffusion coefficients (radial diffusivity [RD]) of capillary plates (pore sizes 6, 12, 25, 50, and 100 μm) with uniformly restricted structures at various temperatures (10ºC, 20ºC, 30ºC, and 40ºC) and multiple diffusion times (12-800 ms). We evaluated the characteristics of scale, temperature, and diffusion time for restricted diffusion.
Results: The RD decayed and became constant depending on the structural scale. Diffusion coefficient fluctuations with temperature occurred mostly under conditions of a large structural scale and short diffusion time. We obtained data suggesting that temperature-dependent changes in the diffusion coefficients follow physical laws.
Conclusion: No water molecules were observed outside the glass tubes in the capillary plates, and the capillary plates only reflected a restricted diffusion process within the structure.We experimentally evaluated the characteristics of simple restricted diffusion to reveal the transitional relationship of the diffusion coefficient with diffusion time, structure scale, and temperature through composite measurement.
{"title":"Influence of Diffusion Time and Temperature on Restricted Diffusion Signal: A Phantom Study.","authors":"Hinako Oshiro, Junichi Hata, Daisuke Nakashima, Naoya Hayashi, Yawara Haga, Kei Hagiya, Daisuke Yoshimaru, Hideyuki Okano","doi":"10.2463/mrms.mp.2022-0103","DOIUrl":"10.2463/mrms.mp.2022-0103","url":null,"abstract":"<p><strong>Purpose: </strong>Diffusion MRI is a physical measurement method that quantitatively indicates the displacement of water molecules diffusing in voxels. However, there are insufficient data to characterize the diffusion process physically in a uniform structure such as a phantom. This study investigated the transitional relationship between structure scale, temperature, and diffusion time for simple restricted diffusion using a capillary phantom.</p><p><strong>Methods: </strong>We performed diffusion-weighted pulsed-gradient stimulated-echo acquisition mode (STEAM) MRI with a 9.4 Tesla MRI system (Bruker BioSpin, Ettlingen, Germany) and a quadrature coil with an inner diameter of 86 mm (Bruker BioSpin). We measured the diffusion coefficients (radial diffusivity [RD]) of capillary plates (pore sizes 6, 12, 25, 50, and 100 μm) with uniformly restricted structures at various temperatures (10ºC, 20ºC, 30ºC, and 40ºC) and multiple diffusion times (12-800 ms). We evaluated the characteristics of scale, temperature, and diffusion time for restricted diffusion.</p><p><strong>Results: </strong>The RD decayed and became constant depending on the structural scale. Diffusion coefficient fluctuations with temperature occurred mostly under conditions of a large structural scale and short diffusion time. We obtained data suggesting that temperature-dependent changes in the diffusion coefficients follow physical laws.</p><p><strong>Conclusion: </strong>No water molecules were observed outside the glass tubes in the capillary plates, and the capillary plates only reflected a restricted diffusion process within the structure.We experimentally evaluated the characteristics of simple restricted diffusion to reveal the transitional relationship of the diffusion coefficient with diffusion time, structure scale, and temperature through composite measurement.</p>","PeriodicalId":18119,"journal":{"name":"Magnetic Resonance in Medical Sciences","volume":" ","pages":"136-145"},"PeriodicalIF":3.0,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11024708/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10681256","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Purpose: Brain MRI with high spatial resolution allows for a more detailed delineation of multiple sclerosis (MS) lesions. The recently developed deep learning-based reconstruction (DLR) technique enables image denoising with sharp edges and reduced artifacts, which improves the image quality of thin-slice 2D MRI. We, therefore, assessed the diagnostic value of 1 mm-slice-thickness 2D T2-weighted imaging (T2WI) with DLR (1 mm T2WI with DLR) compared with conventional MRI for identifying MS lesions.
Methods: Conventional MRI (5 mm T2WI, 2D and 3D fluid-attenuated inversion recovery) and 1 mm T2WI with DLR (imaging time: 7 minutes) were performed in 42 MS patients. For lesion detection, two neuroradiologists counted the MS lesions in two reading sessions (conventional MRI interpretation with 5 mm T2WI and MRI interpretations with 1 mm T2WI with DLR). The numbers of lesions per region category (cerebral hemisphere, basal ganglia, brain stem, cerebellar hemisphere) were then compared between the two reading sessions.
Results: For the detection of MS lesions by 2 neuroradiologists, the total number of detected MS lesions was significantly higher for MRI interpretation with 1 mm T2WI with DLR than for conventional MRI interpretation with 5 mm T2WI (765 lesions vs. 870 lesions at radiologist A, < 0.05). In particular, of the 33 lesions in the brain stem, radiologist A detected 21 (63.6%) additional lesions by 1 mm T2WI with DLR.
Conclusion: Using the DLR technique, whole-brain 1 mm T2WI can be performed in about 7 minutes, which is feasible for routine clinical practice. MRI with 1 mm T2WI with DLR enabled increased MS lesion detection, particularly in the brain stem.
{"title":"Thin-slice Two-dimensional T2-weighted Imaging with Deep Learning-based Reconstruction: Improved Lesion Detection in the Brain of Patients with Multiple Sclerosis.","authors":"Masatoshi Iwamura, Satoru Ide, Kenya Sato, Akihisa Kakuta, Soichiro Tatsuo, Atsushi Nozaki, Tetsuya Wakayama, Tatsuya Ueno, Rie Haga, Misako Kakizaki, Yoko Yokoyama, Ryoichi Yamauchi, Fumiyasu Tsushima, Koichi Shibutani, Masahiko Tomiyama, Shingo Kakeda","doi":"10.2463/mrms.mp.2022-0112","DOIUrl":"10.2463/mrms.mp.2022-0112","url":null,"abstract":"<p><strong>Purpose: </strong>Brain MRI with high spatial resolution allows for a more detailed delineation of multiple sclerosis (MS) lesions. The recently developed deep learning-based reconstruction (DLR) technique enables image denoising with sharp edges and reduced artifacts, which improves the image quality of thin-slice 2D MRI. We, therefore, assessed the diagnostic value of 1 mm-slice-thickness 2D T2-weighted imaging (T2WI) with DLR (1 mm T2WI with DLR) compared with conventional MRI for identifying MS lesions.</p><p><strong>Methods: </strong>Conventional MRI (5 mm T2WI, 2D and 3D fluid-attenuated inversion recovery) and 1 mm T2WI with DLR (imaging time: 7 minutes) were performed in 42 MS patients. For lesion detection, two neuroradiologists counted the MS lesions in two reading sessions (conventional MRI interpretation with 5 mm T2WI and MRI interpretations with 1 mm T2WI with DLR). The numbers of lesions per region category (cerebral hemisphere, basal ganglia, brain stem, cerebellar hemisphere) were then compared between the two reading sessions.</p><p><strong>Results: </strong>For the detection of MS lesions by 2 neuroradiologists, the total number of detected MS lesions was significantly higher for MRI interpretation with 1 mm T2WI with DLR than for conventional MRI interpretation with 5 mm T2WI (765 lesions vs. 870 lesions at radiologist A, < 0.05). In particular, of the 33 lesions in the brain stem, radiologist A detected 21 (63.6%) additional lesions by 1 mm T2WI with DLR.</p><p><strong>Conclusion: </strong>Using the DLR technique, whole-brain 1 mm T2WI can be performed in about 7 minutes, which is feasible for routine clinical practice. MRI with 1 mm T2WI with DLR enabled increased MS lesion detection, particularly in the brain stem.</p>","PeriodicalId":18119,"journal":{"name":"Magnetic Resonance in Medical Sciences","volume":" ","pages":"184-192"},"PeriodicalIF":3.0,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11024714/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9180524","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-01Epub Date: 2023-03-11DOI: 10.2463/mrms.mp.2023-0005
Mitsue Miyazaki, Vadim Malis, Asako Yamamoto, Jirach Kungsamutr, Linda K McEvoy, Marin A McDonald, Won C Bae
Purpose: Cerebrospinal fluid (CSF) clearance is essential for maintaining a healthy brain and cognition by removal of metabolic waste from the central nervous system. Physical exercise has been shown to improve human health; however, the effect of physical exercise on intrinsic CSF outflow in humans remains unexplored. The purpose of this study was to investigate intrinsic CSF outflow pathways and quantitative metrics of healthy individuals with active and sedentary lifestyles. In addition, the effect of exercise was investigated among the sedentary subjects before and after 3 weeks of physical activity.
Methods: This study was performed on 18 healthy adults with informed consent, using a clinical 3-Tesla MRI scanner. We classified participants into two groups based on reported time spent sitting per day (active group: < 7 hours sitting per day and sedentary group: ≥ 7 hours sitting per day). To elucidate the effect of exercise, sedentary individuals increased their activity to 3.5 hours for 3 weeks.
Results: We show that there are two intrinsic CSF egress pathways of the dura mater and lower parasagittal dura (PSD). The adults with an active lifestyle had greater intrinsic CSF outflow metrics than adults with a more sedentary lifestyle. However, after increased physical activity, the sedentary group showed improved CSF outflow metrics. This improvement was particularly notable at the lower PSD, where outflow metrics were highest among the active group.
Conclusion: Our findings describe the relationship between physical activity and intrinsic CSF outflow and show a potential selective outflow pathway with increasing physical activity in the lower PSD pathway, potentially from the perivascular space or cortical venous subpial space.
{"title":"Physical Exercise Alters Egress Pathways for Intrinsic CSF Outflow: An Investigation Performed with Spin-labeling MR Imaging.","authors":"Mitsue Miyazaki, Vadim Malis, Asako Yamamoto, Jirach Kungsamutr, Linda K McEvoy, Marin A McDonald, Won C Bae","doi":"10.2463/mrms.mp.2023-0005","DOIUrl":"10.2463/mrms.mp.2023-0005","url":null,"abstract":"<p><strong>Purpose: </strong>Cerebrospinal fluid (CSF) clearance is essential for maintaining a healthy brain and cognition by removal of metabolic waste from the central nervous system. Physical exercise has been shown to improve human health; however, the effect of physical exercise on intrinsic CSF outflow in humans remains unexplored. The purpose of this study was to investigate intrinsic CSF outflow pathways and quantitative metrics of healthy individuals with active and sedentary lifestyles. In addition, the effect of exercise was investigated among the sedentary subjects before and after 3 weeks of physical activity.</p><p><strong>Methods: </strong>This study was performed on 18 healthy adults with informed consent, using a clinical 3-Tesla MRI scanner. We classified participants into two groups based on reported time spent sitting per day (active group: < 7 hours sitting per day and sedentary group: ≥ 7 hours sitting per day). To elucidate the effect of exercise, sedentary individuals increased their activity to 3.5 hours for 3 weeks.</p><p><strong>Results: </strong>We show that there are two intrinsic CSF egress pathways of the dura mater and lower parasagittal dura (PSD). The adults with an active lifestyle had greater intrinsic CSF outflow metrics than adults with a more sedentary lifestyle. However, after increased physical activity, the sedentary group showed improved CSF outflow metrics. This improvement was particularly notable at the lower PSD, where outflow metrics were highest among the active group.</p><p><strong>Conclusion: </strong>Our findings describe the relationship between physical activity and intrinsic CSF outflow and show a potential selective outflow pathway with increasing physical activity in the lower PSD pathway, potentially from the perivascular space or cortical venous subpial space.</p>","PeriodicalId":18119,"journal":{"name":"Magnetic Resonance in Medical Sciences","volume":" ","pages":"171-183"},"PeriodicalIF":3.0,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11024710/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9092522","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Purpose: To compare the effects of deep learning reconstruction (DLR) on respiratory-triggered T2-weighted MRI of the liver between single-shot fast spin-echo (SSFSE) and fast spin-echo (FSE) sequences.
Methods: Respiratory-triggered fat-suppressed liver T2-weighted MRI was obtained with the FSE and SSFSE sequences at the same spatial resolution in 55 patients. Conventional reconstruction (CR) and DLR were applied to each sequence, and the SNR and liver-to-lesion contrast were measured on FSE-CR, FSE-DLR, SSFSE-CR, and SSFSE-DLR images. Image quality was independently assessed by three radiologists. The results of the qualitative and quantitative analyses were compared among the four types of images using repeated-measures analysis of variance or Friedman's test for normally and non-normally distributed data, respectively, and a visual grading characteristics (VGC) analysis was performed to evaluate the image quality improvement by DLR on the FSE and SSFSE sequences.
Results: The liver SNR was lowest on SSFSE-CR and highest on FSE-DLR and SSFSE-DLR (P < 0.01). The liver-to-lesion contrast did not differ significantly among the four types of images. Qualitatively, noise scores were worst on SSFSE-CR but best on SSFSE-DLR because DLR significantly reduced noise (P < 0.01). In contrast, artifact scores were worst both on FSE-CR and FSE-DLR (P < 0.01) because DLR did not reduce the artifacts. Lesion conspicuity was significantly improved by DLR compared with CR in the SSFSE (P < 0.01) but not in FSE sequences for all readers. Overall image quality was significantly improved by DLR compared with CR for all readers in the SSFSE (P < 0.01) but only one reader in the FSE (P < 0.01). The mean area under the VGC curve values for the FSE-DLR and SSFSE-DLR sequences were 0.65 and 0.94, respectively.
Conclusion: In liver T2-weighted MRI, DLR produced more marked improvements in image quality in SSFSE than in FSE.
{"title":"Effect of Deep Learning Reconstruction on Respiratory-triggered T2-weighted MR Imaging of the Liver: A Comparison between the Single-shot Fast Spin-echo and Fast Spin-echo Sequences.","authors":"Kengo Kiso, Takahiro Tsuboyama, Hiromitsu Onishi, Kazuya Ogawa, Atsushi Nakamoto, Mitsuaki Tatsumi, Takashi Ota, Hideyuki Fukui, Keigo Yano, Toru Honda, Shinji Kakemoto, Yoshihiro Koyama, Hiroyuki Tarewaki, Noriyuki Tomiyama","doi":"10.2463/mrms.mp.2022-0111","DOIUrl":"10.2463/mrms.mp.2022-0111","url":null,"abstract":"<p><strong>Purpose: </strong>To compare the effects of deep learning reconstruction (DLR) on respiratory-triggered T2-weighted MRI of the liver between single-shot fast spin-echo (SSFSE) and fast spin-echo (FSE) sequences.</p><p><strong>Methods: </strong>Respiratory-triggered fat-suppressed liver T2-weighted MRI was obtained with the FSE and SSFSE sequences at the same spatial resolution in 55 patients. Conventional reconstruction (CR) and DLR were applied to each sequence, and the SNR and liver-to-lesion contrast were measured on FSE-CR, FSE-DLR, SSFSE-CR, and SSFSE-DLR images. Image quality was independently assessed by three radiologists. The results of the qualitative and quantitative analyses were compared among the four types of images using repeated-measures analysis of variance or Friedman's test for normally and non-normally distributed data, respectively, and a visual grading characteristics (VGC) analysis was performed to evaluate the image quality improvement by DLR on the FSE and SSFSE sequences.</p><p><strong>Results: </strong>The liver SNR was lowest on SSFSE-CR and highest on FSE-DLR and SSFSE-DLR (P < 0.01). The liver-to-lesion contrast did not differ significantly among the four types of images. Qualitatively, noise scores were worst on SSFSE-CR but best on SSFSE-DLR because DLR significantly reduced noise (P < 0.01). In contrast, artifact scores were worst both on FSE-CR and FSE-DLR (P < 0.01) because DLR did not reduce the artifacts. Lesion conspicuity was significantly improved by DLR compared with CR in the SSFSE (P < 0.01) but not in FSE sequences for all readers. Overall image quality was significantly improved by DLR compared with CR for all readers in the SSFSE (P < 0.01) but only one reader in the FSE (P < 0.01). The mean area under the VGC curve values for the FSE-DLR and SSFSE-DLR sequences were 0.65 and 0.94, respectively.</p><p><strong>Conclusion: </strong>In liver T2-weighted MRI, DLR produced more marked improvements in image quality in SSFSE than in FSE.</p>","PeriodicalId":18119,"journal":{"name":"Magnetic Resonance in Medical Sciences","volume":" ","pages":"214-224"},"PeriodicalIF":3.0,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11024712/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9205156","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Purpose: To evaluate the feasibility of breath-hold (BH) high-resolution (HR) T1-weighted gradient echo hepatobiliary phase (HBP) imaging using compressed sensing (CS) in gadoxetic acid-enhanced liver MRI in comparison with standard HBP imaging using parallel imaging (PI).
Methods: The study included 122 patients with liver tumors with hypointensity in the HBP who underwent both HR HBP imaging with CS and standard HBP imaging with PI. Two radiologists evaluated the liver edge sharpness, hepatic vessel conspicuity, bile duct conspicuity, image noise, and overall image quality, as well as the lesion conspicuity on HR and standard HBP imaging and the contrast-enhanced (CE) MR cholangiography (MRC) image quality reconstructed from HBP images. As a quantitative analysis, the SNR of the liver and the liver to lesion signal intensity ratio (LLSIR) were also determined.
Results: The liver edge sharpness, hepatic vessel conspicuity, bile duct conspicuity, and overall image quality as well as the lesion conspicuity and the LLSIR on HR HBP imaging with CS were significantly higher than those on standard HBP imaging (all of P < 0.001). The image quality of CE-MRC reconstructed from HR HBP imaging with CS was also significantly higher than that from standard HBP imaging (P < 0.001). Conversely, the SNR of liver in standard HBP was significantly higher than that in HR HBP with CS (P < 0.001).
Conclusion: BH HR HBP imaging with CS provided an improved overall image quality, lesion conspicuity, and CE-MRC visualization when compared with standard HBP imaging without extending the acquisition time.
{"title":"Breath-hold High-resolution T1-weighted Gradient Echo Liver MR Imaging with Compressed Sensing Obtained during the Gadoxetic Acid-enhanced Hepatobiliary Phase: Image Quality and Lesion Visibility Compared with a Standard T1-weighted Sequence.","authors":"Kenichiro Ihara, Hideko Onoda, Masahiro Tanabe, Etsushi Iida, Takaaki Ueda, Taiga Kobayashi, Mayumi Higashi, Marcel Dominik Nickel, Hiroshi Imai, Katsuyoshi Ito","doi":"10.2463/mrms.mp.2022-0137","DOIUrl":"10.2463/mrms.mp.2022-0137","url":null,"abstract":"<p><strong>Purpose: </strong>To evaluate the feasibility of breath-hold (BH) high-resolution (HR) T1-weighted gradient echo hepatobiliary phase (HBP) imaging using compressed sensing (CS) in gadoxetic acid-enhanced liver MRI in comparison with standard HBP imaging using parallel imaging (PI).</p><p><strong>Methods: </strong>The study included 122 patients with liver tumors with hypointensity in the HBP who underwent both HR HBP imaging with CS and standard HBP imaging with PI. Two radiologists evaluated the liver edge sharpness, hepatic vessel conspicuity, bile duct conspicuity, image noise, and overall image quality, as well as the lesion conspicuity on HR and standard HBP imaging and the contrast-enhanced (CE) MR cholangiography (MRC) image quality reconstructed from HBP images. As a quantitative analysis, the SNR of the liver and the liver to lesion signal intensity ratio (LLSIR) were also determined.</p><p><strong>Results: </strong>The liver edge sharpness, hepatic vessel conspicuity, bile duct conspicuity, and overall image quality as well as the lesion conspicuity and the LLSIR on HR HBP imaging with CS were significantly higher than those on standard HBP imaging (all of P < 0.001). The image quality of CE-MRC reconstructed from HR HBP imaging with CS was also significantly higher than that from standard HBP imaging (P < 0.001). Conversely, the SNR of liver in standard HBP was significantly higher than that in HR HBP with CS (P < 0.001).</p><p><strong>Conclusion: </strong>BH HR HBP imaging with CS provided an improved overall image quality, lesion conspicuity, and CE-MRC visualization when compared with standard HBP imaging without extending the acquisition time.</p>","PeriodicalId":18119,"journal":{"name":"Magnetic Resonance in Medical Sciences","volume":" ","pages":"146-152"},"PeriodicalIF":3.0,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11024715/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9221470","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Free-running 5D whole-heart coronary MR angiography (MRA) is gaining in popularity because it reduces scanning complexity by removing the need for specific slice orientations, respiratory gating, or cardiac triggering. At 3T, a gradient echo (GRE) sequence is preferred in combination with contrast injection. However, neither the injection scheme of the gadolinium (Gd) contrast medium, the choice of the RF excitation angle, nor the dedicated image reconstruction parameters have been established for 3T GRE free-running 5D whole-heart coronary MRA. In this study, a Gd injection scheme, RF excitation angles of lipid-insensitive binominal off-resonance RF excitation (LIBRE) pulse for valid fat suppression and continuous data acquisition, and compressed-sensing reconstruction regularization parameters were optimized for contrast-enhanced free-running 5D whole-heart coronary MRA using a GRE sequence at 3T. Using this optimized protocol, contrast-enhanced free-running 5D whole-heart coronary MRA using a GRE sequence is feasible with good image quality at 3T.
自由运行的 5D 全心冠状动脉磁共振血管成像(MRA)无需特定的切片方向、呼吸门控或心脏触发,从而降低了扫描的复杂性,因此越来越受欢迎。在 3T 下,梯度回波(GRE)序列与造影剂注射相结合是首选。然而,3T GRE 自由运行 5D 全心冠状动脉 MRA 的钆(Gd)造影剂注射方案、射频激发角的选择和专用图像重建参数都尚未确定。本研究优化了钆注射方案、用于有效脂肪抑制和连续数据采集的对脂质不敏感的双全离共振射频激发(LIBRE)脉冲的射频激发角度以及压缩传感重建正则化参数,用于在 3T 下使用 GRE 序列进行对比度增强的自由运行 5D 全心冠状动脉 MRA。使用该优化方案,在 3T 下使用 GRE 序列进行对比度增强自由运行 5D 全心冠状动脉 MRA 可获得良好的图像质量。
{"title":"Optimal Protocol for Contrast-enhanced Free-running 5D Whole-heart Coronary MR Angiography at 3T.","authors":"Masaki Ishida, Jérôme Yerly, Haruno Ito, Masafumi Takafuji, Shiro Nakamori, Shinichi Takase, Yoshito Ichiba, Yoshiaki Komori, Kaoru Dohi, Davide Piccini, Jessica A M Bastiaansen, Matthias Stuber, Hajime Sakuma","doi":"10.2463/mrms.tn.2022-0086","DOIUrl":"10.2463/mrms.tn.2022-0086","url":null,"abstract":"<p><p>Free-running 5D whole-heart coronary MR angiography (MRA) is gaining in popularity because it reduces scanning complexity by removing the need for specific slice orientations, respiratory gating, or cardiac triggering. At 3T, a gradient echo (GRE) sequence is preferred in combination with contrast injection. However, neither the injection scheme of the gadolinium (Gd) contrast medium, the choice of the RF excitation angle, nor the dedicated image reconstruction parameters have been established for 3T GRE free-running 5D whole-heart coronary MRA. In this study, a Gd injection scheme, RF excitation angles of lipid-insensitive binominal off-resonance RF excitation (LIBRE) pulse for valid fat suppression and continuous data acquisition, and compressed-sensing reconstruction regularization parameters were optimized for contrast-enhanced free-running 5D whole-heart coronary MRA using a GRE sequence at 3T. Using this optimized protocol, contrast-enhanced free-running 5D whole-heart coronary MRA using a GRE sequence is feasible with good image quality at 3T.</p>","PeriodicalId":18119,"journal":{"name":"Magnetic Resonance in Medical Sciences","volume":" ","pages":"225-237"},"PeriodicalIF":3.0,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11024717/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10567397","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}