首页 > 最新文献

Macromolecular Materials and Engineering最新文献

英文 中文
Sustainable Jute Fiber Sandwich Composites with Hybridization of Short Fiber and Woven Fabric Structures in Core and Skin Layers 在芯层和表皮层混合短纤维和编织布结构的可持续黄麻纤维三明治复合材料
IF 4.2 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-06-28 DOI: 10.1002/mame.202400138
Ahasan Habib, Humaira Rajoni, Abu Sayeed, Mainul Islam, Abu Taher Md. Sajedujjaman, Abu Saifullah, Forkan Sarker

Sustainable hybrid composites, made of two different natural plant fiber types, are increasingly being attracted by composite researchers, for their cost effectiveness and ability to control mechanical performances through varying weight ratios of different fibers. In contrast, their lower mechanical properties are reported in the literature, because of strength variations of different fiber types and an improper fiber-matrix stress distribution. Therefore, it is aimed to develop sustainable hybrid composites from two dry fiber preforms—woven fabric and short fiber preform—originated from same fiber type (jute). A highly packed short fiber preform is used as the core layer, while woven fabrics (plain/twill–rib/twill–diamond) are used in the skin layers for producing sandwiched hybrid jute composites. Mechanical tests and scanning electron microscopy images show that hybridized plain fabric/short fiber preform composites have better mechanical properties (≈58 MPa tensile strength/≈117 MPa flexural strength/≈112.12 kJm−2 impact strength with an ≈487.4% improvement) compared to other fabric structures hybrid/nonhybrid composites. This enhancement is related to the interlocking of short fibers with long plain fabric leading to a strong fiber-matrix interfacial bonding. Thus, this developed hybrid composites, can be applied in many semi-structural applications, wherein composites’ low cost and mechanical performances are primary concerns.

可持续混合复合材料由两种不同的天然植物纤维制成,由于其成本效益高,并且能够通过改变不同纤维的重量比来控制机械性能,因此越来越受到复合材料研究人员的青睐。与此相反,文献报道其机械性能较低,原因是不同纤维类型的强度存在差异,以及纤维-基体应力分布不当。因此,我们的目标是利用同一种纤维(黄麻)制成的两种干纤维预型件--编织物和短纤维预型件--开发可持续的混合复合材料。高密度短纤维预型件被用作芯层,而机织织物(平纹/捻肋/捻钻)被用作表层,用于生产夹层混合黄麻复合材料。机械测试和扫描电子显微镜图像显示,与其他织物结构的杂交/非杂交复合材料相比,杂交平纹织物/短纤维预成型复合材料具有更好的机械性能(拉伸强度≈58 MPa/ 抗折强度≈117 MPa/ 冲击强度≈112.12 kJm-2 ,提高了≈487.4%)。这种提高与短纤维与长平纹织物的交锁作用有关,交锁作用导致了纤维与基体之间的强界面粘合。因此,所开发的这种混合复合材料可应用于许多半结构应用中,其中复合材料的低成本和机械性能是首要考虑因素。
{"title":"Sustainable Jute Fiber Sandwich Composites with Hybridization of Short Fiber and Woven Fabric Structures in Core and Skin Layers","authors":"Ahasan Habib,&nbsp;Humaira Rajoni,&nbsp;Abu Sayeed,&nbsp;Mainul Islam,&nbsp;Abu Taher Md. Sajedujjaman,&nbsp;Abu Saifullah,&nbsp;Forkan Sarker","doi":"10.1002/mame.202400138","DOIUrl":"10.1002/mame.202400138","url":null,"abstract":"<p>Sustainable hybrid composites, made of two different natural plant fiber types, are increasingly being attracted by composite researchers, for their cost effectiveness and ability to control mechanical performances through varying weight ratios of different fibers. In contrast, their lower mechanical properties are reported in the literature, because of strength variations of different fiber types and an improper fiber-matrix stress distribution. Therefore, it is aimed to develop sustainable hybrid composites from two dry fiber preforms—woven fabric and short fiber preform—originated from same fiber type (jute). A highly packed short fiber preform is used as the core layer, while woven fabrics (plain/twill–rib/twill–diamond) are used in the skin layers for producing sandwiched hybrid jute composites. Mechanical tests and scanning electron microscopy images show that hybridized plain fabric/short fiber preform composites have better mechanical properties (≈58 MPa tensile strength/≈117 MPa flexural strength/≈112.12 kJm<sup>−2</sup> impact strength with an ≈487.4% improvement) compared to other fabric structures hybrid/nonhybrid composites. This enhancement is related to the interlocking of short fibers with long plain fabric leading to a strong fiber-matrix interfacial bonding. Thus, this developed hybrid composites, can be applied in many semi-structural applications, wherein composites’ low cost and mechanical performances are primary concerns.</p>","PeriodicalId":18151,"journal":{"name":"Macromolecular Materials and Engineering","volume":"309 11","pages":""},"PeriodicalIF":4.2,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mame.202400138","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141505923","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Melt‐Processable and Electrospinnable Shape‐Memory Hydrogels 可熔融加工和可电纺丝的形状记忆水凝胶
IF 3.9 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-06-28 DOI: 10.1002/mame.202400166
Turdimuhammad Abdullah, Cagatay Altınkok, Oguz Okay
Due to their ability to adapt to subtle changes in response to various external and internal stimuli, smart hydrogels have become increasingly popular in research and industry. However, many currently available hydrogels suffer from poor processability and inferior mechanical properties. For example, the preparation of a hydrogel network that can be subjected to melt processing and electrospinning is challenging. Herein, a series of mechanically strong, shape‐memory hydrogels based on polyacrylic acid (PAAc) chains containing 20–50 mol% of crystallizable n‐octadecylacrylate (C18A) segments are prepared by an organosolv method followed by in situ physical cross‐linking via hydrophobic interactions. The hydrogels exhibit a reversible strong to weak gel transition at 50–60 °C and can be melt‐processed at 60–100 °C, depending on the molar fraction of C18A. Additionally, the hydrogels can be dissolved in chloroform/ethanol mixture to form a viscous solution, which can then be used to produce a nanofibrous network by electrospinning. Effects of polymer concentration, volume ratio of solvents, and mole fraction of C18A on electrospinning are investigated to produce smooth, uniform nanofibers with small fiber diameter. The produced nanofibers, while maintaining their chemical structure, show significantly improved water adsorption capacity, enhanced mechanical properties, and fast shape‐memory performance.
由于智能水凝胶能够适应各种外部和内部刺激的微妙变化,因此在研究和工业领域越来越受欢迎。然而,目前市面上的许多水凝胶都存在加工性能差、机械性能低等问题。例如,制备可进行熔融加工和电纺丝的水凝胶网络就具有挑战性。本文采用有机溶剂法制备了一系列机械强度高、形状记忆强的水凝胶,这些水凝胶基于聚丙烯酸(PAAc)链,其中含有 20-50 mol% 的可结晶正十八烷基丙烯酸酯(C18A)段,然后通过疏水作用进行原位物理交联。根据 C18A 的摩尔分数,水凝胶在 50-60 °C时会出现从强凝胶到弱凝胶的可逆转变,并可在 60-100 °C时进行熔融加工。此外,水凝胶还可以溶解在氯仿/乙醇混合物中形成粘稠溶液,然后通过电纺丝生成纳米纤维网络。研究了聚合物浓度、溶剂体积比和 C18A 摩尔分数对电纺丝的影响,以生产出光滑、均匀、纤维直径小的纳米纤维。制得的纳米纤维在保持其化学结构的同时,吸水能力显著提高,机械性能增强,并具有快速形状记忆性能。
{"title":"Melt‐Processable and Electrospinnable Shape‐Memory Hydrogels","authors":"Turdimuhammad Abdullah, Cagatay Altınkok, Oguz Okay","doi":"10.1002/mame.202400166","DOIUrl":"https://doi.org/10.1002/mame.202400166","url":null,"abstract":"Due to their ability to adapt to subtle changes in response to various external and internal stimuli, smart hydrogels have become increasingly popular in research and industry. However, many currently available hydrogels suffer from poor processability and inferior mechanical properties. For example, the preparation of a hydrogel network that can be subjected to melt processing and electrospinning is challenging. Herein, a series of mechanically strong, shape‐memory hydrogels based on polyacrylic acid (PAAc) chains containing 20–50 mol% of crystallizable n‐octadecylacrylate (C18A) segments are prepared by an organosolv method followed by in situ physical cross‐linking via hydrophobic interactions. The hydrogels exhibit a reversible strong to weak gel transition at 50–60 °C and can be melt‐processed at 60–100 °C, depending on the molar fraction of C18A. Additionally, the hydrogels can be dissolved in chloroform/ethanol mixture to form a viscous solution, which can then be used to produce a nanofibrous network by electrospinning. Effects of polymer concentration, volume ratio of solvents, and mole fraction of C18A on electrospinning are investigated to produce smooth, uniform nanofibers with small fiber diameter. The produced nanofibers, while maintaining their chemical structure, show significantly improved water adsorption capacity, enhanced mechanical properties, and fast shape‐memory performance.","PeriodicalId":18151,"journal":{"name":"Macromolecular Materials and Engineering","volume":"40 1","pages":""},"PeriodicalIF":3.9,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141526778","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Negative Voltage Electrospinning for the Production of Highly Efficient PVDF Filters 负压电纺丝法生产高效 PVDF 过滤器
IF 4.2 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-06-26 DOI: 10.1002/mame.202300442
Carlo Gotti, Monica Torsello, Riccardo Onesti, Gianmarco Tanganelli, Alberto Sensini, Cristiana Boi, Davide Fabiani, Maria Letizia Focarete, Andrea Zucchelli

In recent years, the demand for filter media has increased dramatically, driven by the need to manufacture personal protective equipment and for various applications in the industrial and civil sectors. Nanofiber-based membranes are proposed as potential alternatives to commercial filtration devices. This study presents the design and implementation of an innovative pre-industrial electrospinning setup, combining a negatively charged spinneret and a positively charged counter-electrode, capable of producing polyvinylidene fluoride (PVDF) nanofibers with an average diameter of 410 nm and electrostatic surface potential values 3.7 times higher compared to a conventional electrospinning process, eliminating the need for further post-treatment. These properties are essential for improving mechanical and electrostatic filtration of small particles, including infectious droplets. The surface potential of the membranes is also long-lasting, as evidenced by tests one year after manufacture. As a case-study, these filters are used to manufacture surgical masks, reporting excellent performance in terms of bacterial filtration efficiency (BFE) up to 99.9%, and breathability (29.8±4.5 Pa cm−2) when compared to commercially available meltblown polypropylene (PP) face masks, and also complied with the stringent European standard (EN14683:2019) for type-II surgical masks. Furthermore, the pre-industrial setup allows for increased production capacity of up to 42 000 m2 per year, suitable for large-scale production.

近年来,由于生产个人防护设备的需要以及工业和民用领域的各种应用,对过滤介质的需求急剧增加。基于纳米纤维的膜被提议作为商业过滤设备的潜在替代品。本研究介绍了一种创新的预工业电纺丝装置的设计和实施,该装置结合了带负电的喷丝板和带正电的反电极,能够生产出平均直径为 410 纳米的聚偏二氟乙烯(PVDF)纳米纤维,其静电表面电位值是传统电纺丝工艺的 3.7 倍,无需进一步的后处理。这些特性对于改善包括传染性液滴在内的小颗粒的机械和静电过滤至关重要。膜的表面电位也很持久,制造一年后的测试证明了这一点。作为一项案例研究,这些过滤器被用于制造外科口罩,与市售的熔喷聚丙烯(PP)口罩相比,细菌过滤效率(BFE)高达 99.9%,透气性(29.8±4.5 Pa cm-2)也表现出色,而且还符合严格的欧洲二类外科口罩标准(EN14683:2019)。此外,工业化前的设置使生产能力提高到每年 42 000 平方米,适合大规模生产。
{"title":"Negative Voltage Electrospinning for the Production of Highly Efficient PVDF Filters","authors":"Carlo Gotti,&nbsp;Monica Torsello,&nbsp;Riccardo Onesti,&nbsp;Gianmarco Tanganelli,&nbsp;Alberto Sensini,&nbsp;Cristiana Boi,&nbsp;Davide Fabiani,&nbsp;Maria Letizia Focarete,&nbsp;Andrea Zucchelli","doi":"10.1002/mame.202300442","DOIUrl":"10.1002/mame.202300442","url":null,"abstract":"<p>In recent years, the demand for filter media has increased dramatically, driven by the need to manufacture personal protective equipment and for various applications in the industrial and civil sectors. Nanofiber-based membranes are proposed as potential alternatives to commercial filtration devices. This study presents the design and implementation of an innovative pre-industrial electrospinning setup, combining a negatively charged spinneret and a positively charged counter-electrode, capable of producing polyvinylidene fluoride (PVDF) nanofibers with an average diameter of 410 nm and electrostatic surface potential values 3.7 times higher compared to a conventional electrospinning process, eliminating the need for further post-treatment. These properties are essential for improving mechanical and electrostatic filtration of small particles, including infectious droplets. The surface potential of the membranes is also long-lasting, as evidenced by tests one year after manufacture. As a case-study, these filters are used to manufacture surgical masks, reporting excellent performance in terms of bacterial filtration efficiency (BFE) up to 99.9%, and breathability (29.8±4.5 Pa cm<sup>−2</sup>) when compared to commercially available meltblown polypropylene (PP) face masks, and also complied with the stringent European standard (EN14683:2019) for type-II surgical masks. Furthermore, the pre-industrial setup allows for increased production capacity of up to 42 000 m<sup>2</sup> per year, suitable for large-scale production.</p>","PeriodicalId":18151,"journal":{"name":"Macromolecular Materials and Engineering","volume":"309 11","pages":""},"PeriodicalIF":4.2,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mame.202300442","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141526779","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Material Testing for Physicists: Unraveling the Dissipative Nature of Silicone Elastomers via Ball Drop Testing 物理学家的材料测试:通过落球测试揭示有机硅弹性体的耗散特性
IF 4.2 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-06-25 DOI: 10.1002/mame.202400085
Rene Preuer, Carina Emminger, Umut Cakmak, Ingrid Graz

Isaac Newton once contemplated the fall of an apple, setting in motion a revolution in the understanding of gravity. In a similar spirit of curiosity and inquiry, here a journey is embarked upon to explore the intricate world of viscoelastic damping for polydimethylsiloxanes (PDMS). Inspired by the notion that even the simplest of phenomena can yield profound insights, a novel approach to study damping in silicone elastomers through a simple ball drop test is introduced. This novel solution allowes for precise measuring and analyzing the material's damping characteristics under various conditions. By carefully controlling the release and monitoring, the response of the falling ball by simple video tracking, valuable insights into the key viscoelastic properties of silicone blends are extracted, including rebound resilience, Young's modulus, and complex modulus. Through the analysis of trajectory data generated during the sphere's interaction with the silicone damper, dynamic and static material parameters are determined. Remarkably, these outcomes closely align with results obtained from cost-intensive and high-maintenance industrial measurement setups such as dynamic thermomechanical analysis (DTMA) or tensile testing. This approach not only simplifies the complexity of the system but also offers a cost-effective and efficient means of gaining essential knowledge in material science.

艾萨克-牛顿(Isaac Newton)曾经思考过一个苹果的坠落,从而引发了一场对重力认识的革命。本着类似的好奇心和探索精神,我们开始了探索聚二甲基硅氧烷(PDMS)粘弹性阻尼复杂世界的旅程。即使是最简单的现象也能产生深刻的见解,受这一理念的启发,本文介绍了一种通过简单的落球测试来研究有机硅弹性体阻尼的新方法。这种新颖的解决方案可以精确测量和分析材料在各种条件下的阻尼特性。通过仔细控制释放过程并通过简单的视频跟踪监测落球的反应,可以提取出有机硅混合物的关键粘弹性能,包括回弹弹性、杨氏模量和复合模量。通过分析球体与硅树脂阻尼器相互作用时产生的轨迹数据,确定了材料的动态和静态参数。值得注意的是,这些结果与动态热机械分析(DTMA)或拉伸试验等成本高昂、维护成本高的工业测量装置所获得的结果非常接近。这种方法不仅简化了系统的复杂性,还为获取材料科学的基本知识提供了一种经济高效的方法。
{"title":"Material Testing for Physicists: Unraveling the Dissipative Nature of Silicone Elastomers via Ball Drop Testing","authors":"Rene Preuer,&nbsp;Carina Emminger,&nbsp;Umut Cakmak,&nbsp;Ingrid Graz","doi":"10.1002/mame.202400085","DOIUrl":"10.1002/mame.202400085","url":null,"abstract":"<p>Isaac Newton once contemplated the fall of an apple, setting in motion a revolution in the understanding of gravity. In a similar spirit of curiosity and inquiry, here a journey is embarked upon to explore the intricate world of viscoelastic damping for polydimethylsiloxanes (PDMS). Inspired by the notion that even the simplest of phenomena can yield profound insights, a novel approach to study damping in silicone elastomers through a simple ball drop test is introduced. This novel solution allowes for precise measuring and analyzing the material's damping characteristics under various conditions. By carefully controlling the release and monitoring, the response of the falling ball by simple video tracking, valuable insights into the key viscoelastic properties of silicone blends are extracted, including rebound resilience, Young's modulus, and complex modulus. Through the analysis of trajectory data generated during the sphere's interaction with the silicone damper, dynamic and static material parameters are determined. Remarkably, these outcomes closely align with results obtained from cost-intensive and high-maintenance industrial measurement setups such as dynamic thermomechanical analysis (DTMA) or tensile testing. This approach not only simplifies the complexity of the system but also offers a cost-effective and efficient means of gaining essential knowledge in material science.</p>","PeriodicalId":18151,"journal":{"name":"Macromolecular Materials and Engineering","volume":"309 10","pages":""},"PeriodicalIF":4.2,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mame.202400085","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141529309","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Facile Fabrication of Starch-Based UV Barrier Films with Remolding Ability and Reinforcement for Water Resistance 轻松制备具有重塑能力和增强防水性的淀粉基紫外线阻隔薄膜
IF 4.2 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-06-14 DOI: 10.1002/mame.202400137
Kazuki Shibasaki, Yu-I Hsu, Hiroshi Uyama

Petroleum-derived plastics are harmful to ecosystems because they are not decomposed in the natural environment. Therefore, the replacement of petroleum-derived plastics with biodegradable plastics has attracted considerable attention. UV-barrier films in the agricultural and packaging fields are mainly composed of petroleum-derived plastics, which have a negative impact on the ecosystem when they leak into the environment. Thermoplastic starch (TPS) is an inexpensive and sustainable biodegradable plastic that has recently attracted considerable attention. In this study, the addition of UV barrier properties and remolding ability to TPS for replacing petroleum-derived UV barrier films are investigated. Also, a biodegradable polyester coating is studied to improve the water resistance of the prepared UV-barrier TPS (U-TPS). To prepare U-TPS, a conjugated enamine structure is formed by reacting starch acetoacetate with diamine monomers during melt kneading. U-TPS exhibits high UV barrier properties across the UV regions (200–400 nm) owing to the presence of acetoacetyl groups and enamines. These results indicate the possibility of increasing the utilization of TPS in agriculture and as a packaging material.

石油衍生塑料在自然环境中无法分解,因此对生态系统有害。因此,用生物降解塑料替代石油衍生塑料已引起广泛关注。农业和包装领域的紫外线阻隔膜主要由石油衍生塑料组成,这些塑料一旦泄漏到环境中,就会对生态系统产生负面影响。热塑性淀粉(TPS)是一种价格低廉且可持续的生物降解塑料,最近引起了广泛关注。在这项研究中,研究了如何在热塑性淀粉中添加紫外线阻隔性能和重塑能力,以取代源自石油的紫外线阻隔膜。此外,还研究了一种可生物降解的聚酯涂层,以提高所制备的紫外线阻隔 TPS(U-TPS)的耐水性。在制备 U-TPS 时,淀粉乙酰乙酸酯与二胺单体在熔融捏合过程中发生反应,形成共轭烯胺结构。由于乙酰乙酰基团和烯胺的存在,U-TPS 在紫外线区域(200-400 纳米)具有很高的紫外线阻隔性能。这些结果表明,有可能提高 TPS 在农业和包装材料中的利用率。
{"title":"Facile Fabrication of Starch-Based UV Barrier Films with Remolding Ability and Reinforcement for Water Resistance","authors":"Kazuki Shibasaki,&nbsp;Yu-I Hsu,&nbsp;Hiroshi Uyama","doi":"10.1002/mame.202400137","DOIUrl":"10.1002/mame.202400137","url":null,"abstract":"<p>Petroleum-derived plastics are harmful to ecosystems because they are not decomposed in the natural environment. Therefore, the replacement of petroleum-derived plastics with biodegradable plastics has attracted considerable attention. UV-barrier films in the agricultural and packaging fields are mainly composed of petroleum-derived plastics, which have a negative impact on the ecosystem when they leak into the environment. Thermoplastic starch (TPS) is an inexpensive and sustainable biodegradable plastic that has recently attracted considerable attention. In this study, the addition of UV barrier properties and remolding ability to TPS for replacing petroleum-derived UV barrier films are investigated. Also, a biodegradable polyester coating is studied to improve the water resistance of the prepared UV-barrier TPS (U-TPS). To prepare U-TPS, a conjugated enamine structure is formed by reacting starch acetoacetate with diamine monomers during melt kneading. U-TPS exhibits high UV barrier properties across the UV regions (200–400 nm) owing to the presence of acetoacetyl groups and enamines. These results indicate the possibility of increasing the utilization of TPS in agriculture and as a packaging material.</p>","PeriodicalId":18151,"journal":{"name":"Macromolecular Materials and Engineering","volume":"309 10","pages":""},"PeriodicalIF":4.2,"publicationDate":"2024-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mame.202400137","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141340918","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Investigating the Effect of ABS on the Mechanical Properties, Morphology, Printability, and 4D Printing of PETG-ABS Blends 研究 ABS 对 PETG-ABS 混合物的机械性能、形态、可印刷性和 4D 印刷的影响
IF 3.9 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-06-14 DOI: 10.1002/mame.202470011
Kiandokht Mirasadi, Davood Rahmatabadi, Ismaeil Ghasemi, Mohammad Khodaei, Majid Baniassadi, Mostafa Baghani

Front Cover: The cover image of article 2400038 by Mostafa Baghani and co-workers shows the free shape recovery process of 3D printed PETG-ABS blend in terms of time at a recovery temperature of about 100 °C. This blend is prepared by melt mixing in the internal mixer at a temperature of 200 °C and 60 rpm for 6 minutes, and the final part is 3D printed by granule-based material extrusion method.

封面:Mostafa Baghani 及其合作者撰写的文章 2400038 的封面图片显示了三维打印 PETG-ABS 混合物在约 100 °C 的恢复温度下以时间为单位的自由形状恢复过程。这种混合物是通过在内部混合器中以 200 °C 的温度和 60 rpm 的转速进行 6 分钟的熔融混合制备的,最终部件是通过基于颗粒材料的挤出方法进行 3D 打印的。
{"title":"Investigating the Effect of ABS on the Mechanical Properties, Morphology, Printability, and 4D Printing of PETG-ABS Blends","authors":"Kiandokht Mirasadi,&nbsp;Davood Rahmatabadi,&nbsp;Ismaeil Ghasemi,&nbsp;Mohammad Khodaei,&nbsp;Majid Baniassadi,&nbsp;Mostafa Baghani","doi":"10.1002/mame.202470011","DOIUrl":"https://doi.org/10.1002/mame.202470011","url":null,"abstract":"<p><b>Front Cover</b>: The cover image of article 2400038 by Mostafa Baghani and co-workers shows the free shape recovery process of 3D printed PETG-ABS blend in terms of time at a recovery temperature of about 100 °C. This blend is prepared by melt mixing in the internal mixer at a temperature of 200 °C and 60 rpm for 6 minutes, and the final part is 3D printed by granule-based material extrusion method.\u0000\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":18151,"journal":{"name":"Macromolecular Materials and Engineering","volume":"309 6","pages":""},"PeriodicalIF":3.9,"publicationDate":"2024-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mame.202470011","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141326593","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Masthead: Macromol. Mater. Eng. 6/2024 刊头:Macromol.Mater.Eng.6/2024
IF 3.9 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-06-14 DOI: 10.1002/mame.202470012
{"title":"Masthead: Macromol. Mater. Eng. 6/2024","authors":"","doi":"10.1002/mame.202470012","DOIUrl":"https://doi.org/10.1002/mame.202470012","url":null,"abstract":"","PeriodicalId":18151,"journal":{"name":"Macromolecular Materials and Engineering","volume":"309 6","pages":""},"PeriodicalIF":3.9,"publicationDate":"2024-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mame.202470012","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141326719","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
4D Printing of Magneto-Thermo-Responsive PLA/PMMA/Fe3O4 Nanocomposites with Superior Shape Memory and Remote Actuation 具有优异形状记忆和远程致动功能的磁性热响应聚乳酸/PMMA/Fe3O4 纳米复合材料的 4D 打印技术
IF 4.2 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-06-12 DOI: 10.1002/mame.202400090
Hossein Doostmohammadi, Majid Baniassadi, Mahdi Bodaghi, Mostafa Baghani

This study presents the development and 4D printing of magnetic shape memory polymers (MSMPs) utilizing a composite of polylactic acid (PLA), polymethyl methacrylate (PMMA), and Fe3O4 nanoparticles. The dynamic mechanical analysis reveals that the integration of Fe3O4 maintains the broad thermal transition without significantly affecting α-relaxation time, indicating high compatibility and homogeneous distribution of the nanoparticles within the polymer matrix. Field emission scanning electron microscopy further confirms the high compatibility of PLA and PMMA phases as well as uniform dispersion of Fe3O4 nanoparticles, essential for the effective transfer of heat during the shape memory process. Significantly, the incorporation of magnetic nanoparticles enables remote actuation capabilities, presenting a substantial advancement for biomedical applications. 4D-printed MSMP nanocomposites exhibit exceptional mechanical properties and rapid, efficient shape memory responses under both inductive and direct heating stimuli, achieving 100% shape fixity and 100% recovery within ≈85 s. They are proposed as promising candidates for biomedical implants, specifically for minimally invasive implantation of bone scaffolds, due to their rapid remote actuation, biocompatibility, and mechanical robustness. This research not only demonstrates the 4D printability of high-performance MSMPs but also introduces new possibilities for the application of MSMPs in regenerative medicine.

本研究利用聚乳酸(PLA)、聚甲基丙烯酸甲酯(PMMA)和 Fe3O4 纳米粒子的复合材料,介绍了磁性形状记忆聚合物(MSMP)的开发和 4D 印刷。动态力学分析表明,Fe3O4 的加入保持了宽热转变,而不会明显影响 α 松弛时间,这表明纳米粒子在聚合物基体中具有高度的兼容性和均匀分布。场发射扫描电子显微镜进一步证实了聚乳酸和 PMMA 相的高度相容性以及 Fe3O4 纳米粒子的均匀分布,这对于在形状记忆过程中有效传递热量至关重要。值得注意的是,磁性纳米粒子的加入实现了远程致动功能,为生物医学应用带来了巨大的进步。4D 印刷 MSMP 纳米复合材料在感应和直接加热刺激下均表现出优异的机械性能和快速、高效的形状记忆反应,在≈85 秒内实现了 100% 的形状固定和 100% 的恢复。这项研究不仅证明了高性能 MSMP 的 4D 打印能力,还为 MSMP 在再生医学中的应用带来了新的可能性。
{"title":"4D Printing of Magneto-Thermo-Responsive PLA/PMMA/Fe3O4 Nanocomposites with Superior Shape Memory and Remote Actuation","authors":"Hossein Doostmohammadi,&nbsp;Majid Baniassadi,&nbsp;Mahdi Bodaghi,&nbsp;Mostafa Baghani","doi":"10.1002/mame.202400090","DOIUrl":"10.1002/mame.202400090","url":null,"abstract":"<p>This study presents the development and 4D printing of magnetic shape memory polymers (MSMPs) utilizing a composite of polylactic acid (PLA), polymethyl methacrylate (PMMA), and Fe<sub>3</sub>O<sub>4</sub> nanoparticles. The dynamic mechanical analysis reveals that the integration of Fe<sub>3</sub>O<sub>4</sub> maintains the broad thermal transition without significantly affecting α-relaxation time, indicating high compatibility and homogeneous distribution of the nanoparticles within the polymer matrix. Field emission scanning electron microscopy further confirms the high compatibility of PLA and PMMA phases as well as uniform dispersion of Fe<sub>3</sub>O<sub>4</sub> nanoparticles, essential for the effective transfer of heat during the shape memory process. Significantly, the incorporation of magnetic nanoparticles enables remote actuation capabilities, presenting a substantial advancement for biomedical applications. 4D-printed MSMP nanocomposites exhibit exceptional mechanical properties and rapid, efficient shape memory responses under both inductive and direct heating stimuli, achieving 100% shape fixity and 100% recovery within ≈85 s. They are proposed as promising candidates for biomedical implants, specifically for minimally invasive implantation of bone scaffolds, due to their rapid remote actuation, biocompatibility, and mechanical robustness. This research not only demonstrates the 4D printability of high-performance MSMPs but also introduces new possibilities for the application of MSMPs in regenerative medicine.</p>","PeriodicalId":18151,"journal":{"name":"Macromolecular Materials and Engineering","volume":"309 9","pages":""},"PeriodicalIF":4.2,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mame.202400090","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141352068","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Structural Characteristics of Fibrillar Crystals in Uniaxially Stretched Isotactic Polypropylene Dominated by Temperature and Strain 受温度和应变影响的单轴拉伸同素异形聚丙烯纤维状晶体的结构特征
IF 4.2 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-06-11 DOI: 10.1002/mame.202300448
Hao Lin, Jiang Guo, Xiang Huang, Shengbao Jiang, Mengyi Xu

The spherulitic morphology of isotactic polypropylene can be transformed into the oriented fibrillar morphology through hot stretching processes with varying temperature (Ts) or altering strain (εt). The effects of Ts and εt on the structural characteristics of fibrillar crystals are comprehensively investigated with respect to crystal orientation, long periodic spacing, lamellar thickness (Lc), crystallinity (Xc), melting point, and chain relaxation behavior. Small-angle X-ray scattering patterns illustrate that the fibrillar crystals consist of alternated stacks of crystalline lamellae and amorphous layers. High Ts leads to a low orientation degree of lamellae, whereas large εt facilitates a high orientation level. The Xc and mean Lc are improved continuously with the increasing of Ts or εt, indicating a stretching-enhanced crystallization behavior driven by the two factors. The endothermic profiles reveal that new chain-folded lamellae with relatively thinner thickness form during the hot stretching process. The formation of thinner lamellae is dominated by the melting–recrystallization mechanism. This work would provide guidance for optimizing process conditions to manipulate the microstructure of hot-stretched semicrystalline polymers.

通过改变温度(Ts)或改变应变(εt)的热拉伸过程,可将等规聚丙烯的球状形态转变为取向纤维状形态。我们从晶体取向、长周期间距、薄片厚度(Lc)、结晶度(Xc)、熔点和链松弛行为等方面全面研究了 Ts 和 εt 对纤维状晶体结构特性的影响。小角 X 射线散射图显示,纤维状晶体由晶体薄片和无定形层交替堆叠组成。高 Ts 值导致薄片的取向度较低,而大εt 值则有助于提高取向度。随着 Ts 或 εt 的增大,Xc 和平均 Lc 不断提高,这表明在这两个因素的驱动下存在拉伸增强的结晶行为。内热曲线显示,在热拉伸过程中形成了厚度相对较薄的新的链折叠薄片。较薄薄片的形成主要受熔化-再结晶机制的影响。这项工作将为优化工艺条件以控制热拉伸半结晶聚合物的微观结构提供指导。
{"title":"Structural Characteristics of Fibrillar Crystals in Uniaxially Stretched Isotactic Polypropylene Dominated by Temperature and Strain","authors":"Hao Lin,&nbsp;Jiang Guo,&nbsp;Xiang Huang,&nbsp;Shengbao Jiang,&nbsp;Mengyi Xu","doi":"10.1002/mame.202300448","DOIUrl":"10.1002/mame.202300448","url":null,"abstract":"<p>The spherulitic morphology of isotactic polypropylene can be transformed into the oriented fibrillar morphology through hot stretching processes with varying temperature (<i>T</i><sub>s</sub>) or altering strain (<i>ε</i><sub>t</sub>). The effects of <i>T</i><sub>s</sub> and <i>ε</i><sub>t</sub> on the structural characteristics of fibrillar crystals are comprehensively investigated with respect to crystal orientation, long periodic spacing, lamellar thickness (<i>L</i><sub>c</sub>), crystallinity (<i>X</i><sub>c</sub>), melting point, and chain relaxation behavior. Small-angle X-ray scattering patterns illustrate that the fibrillar crystals consist of alternated stacks of crystalline lamellae and amorphous layers. High <i>T</i><sub>s</sub> leads to a low orientation degree of lamellae, whereas large <i>ε</i><sub>t</sub> facilitates a high orientation level. The <i>X</i><sub>c</sub> and mean <i>L</i><sub>c</sub> are improved continuously with the increasing of <i>T</i><sub>s</sub> or <i>ε</i><sub>t</sub>, indicating a stretching-enhanced crystallization behavior driven by the two factors. The endothermic profiles reveal that new chain-folded lamellae with relatively thinner thickness form during the hot stretching process. The formation of thinner lamellae is dominated by the melting–recrystallization mechanism. This work would provide guidance for optimizing process conditions to manipulate the microstructure of hot-stretched semicrystalline polymers.</p>","PeriodicalId":18151,"journal":{"name":"Macromolecular Materials and Engineering","volume":"309 11","pages":""},"PeriodicalIF":4.2,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mame.202300448","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141356429","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Physical Modifications of Kombucha-Derived Bacterial Nanocellulose: Toward a Functional Bionanocomposite Platform 昆布发酵的细菌纳米纤维素的物理改性:打造功能性仿生复合材料平台
IF 4.2 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-06-03 DOI: 10.1002/mame.202400041
Meruyert Imanbekova, Reza Abbasi, Xinyue Hu, Mohul Sharma, Marion Vandewynckele-Bossut, Rupa Haldavnekar, Sebastian Wachsmann-Hogiu

Sustainable functionalization of bacterial cellulose for cost-effective bionanocomposites with desired properties has received growing attention in recent years. This article presents the results of work aimed at obtaining bionanocomposite materials based on bacterial cellulose, a natural and eco-friendly material. Bacterial cellulose obtained from the Kombucha symbiotic culture of bacteria and yeast (SCOBY) fermentation process is functionalized by embedding with diatom frustules, silver nanoparticles (AgNPs), and poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS). The effects of functionalization on mechanical, optical, plasmonic, electrical, chemiluminescent, and antimicrobial properties are evaluated. Morphological characteristics of the nanocomposites are studied using electron microscopy. Addition of diatom frustules introduced into the SCOBY culture media results in bionanocomposite materials with enhanced tensile strength and increased ultraviolet (UV) blockage properties. In situ functionalization of bacterial cellulose with AgNPs tunes plasmonic and chemiluminescent properties, revealing the biosensing potential of the material. Modified bacterial cellulose shows antimicrobial activity in experiments with gram-positive and gram-negative bacteria. Dual functionalization of bacterial cellulose with PEDOT:PSS and AgNPs results in improved electrical conductivity of the bionanocomposite. Overall, bottom-up physical functionalization approaches and the resulting bionanocomposite materials will open up new opportunities for the low-cost production of green materials and contribute to the development of a sustainable economy.

近年来,对细菌纤维素进行可持续的功能化处理,以获得具有所需性能的经济高效的仿生复合材料日益受到关注。本文介绍了旨在获得基于细菌纤维素这种天然环保材料的仿生复合材料的研究成果。从康普茶细菌和酵母共生培养物(SCOBY)发酵过程中获得的细菌纤维素通过嵌入硅藻颗粒、银纳米粒子(AgNPs)和聚(3,4-亚乙二氧基噻吩):聚苯乙烯磺酸盐(PEDOT:PSS)实现了功能化。评估了功能化对机械、光学、等离子、电学、化学发光和抗菌特性的影响。使用电子显微镜研究了纳米复合材料的形态特征。在 SCOBY 培养基中添加硅藻球,可使仿生复合材料具有更高的拉伸强度和更强的紫外线(UV)阻挡性能。用 AgNPs 对细菌纤维素进行原位功能化可调谐等离子体和化学发光特性,从而揭示了这种材料的生物传感潜力。改性细菌纤维素在革兰氏阳性和革兰氏阴性细菌实验中显示出抗菌活性。细菌纤维素与 PEDOT:PSS 和 AgNPs 的双重功能化提高了仿生复合材料的导电性。总之,自下而上的物理功能化方法和由此产生的仿生复合材料将为低成本生产绿色材料带来新的机遇,并促进可持续经济的发展。
{"title":"Physical Modifications of Kombucha-Derived Bacterial Nanocellulose: Toward a Functional Bionanocomposite Platform","authors":"Meruyert Imanbekova,&nbsp;Reza Abbasi,&nbsp;Xinyue Hu,&nbsp;Mohul Sharma,&nbsp;Marion Vandewynckele-Bossut,&nbsp;Rupa Haldavnekar,&nbsp;Sebastian Wachsmann-Hogiu","doi":"10.1002/mame.202400041","DOIUrl":"10.1002/mame.202400041","url":null,"abstract":"<p>Sustainable functionalization of bacterial cellulose for cost-effective bionanocomposites with desired properties has received growing attention in recent years. This article presents the results of work aimed at obtaining bionanocomposite materials based on bacterial cellulose, a natural and eco-friendly material. Bacterial cellulose obtained from the Kombucha symbiotic culture of bacteria and yeast (SCOBY) fermentation process is functionalized by embedding with diatom frustules, silver nanoparticles (AgNPs), and poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS). The effects of functionalization on mechanical, optical, plasmonic, electrical, chemiluminescent, and antimicrobial properties are evaluated. Morphological characteristics of the nanocomposites are studied using electron microscopy. Addition of diatom frustules introduced into the SCOBY culture media results in bionanocomposite materials with enhanced tensile strength and increased ultraviolet (UV) blockage properties. In situ functionalization of bacterial cellulose with AgNPs tunes plasmonic and chemiluminescent properties, revealing the biosensing potential of the material. Modified bacterial cellulose shows antimicrobial activity in experiments with gram-positive and gram-negative bacteria. Dual functionalization of bacterial cellulose with PEDOT:PSS and AgNPs results in improved electrical conductivity of the bionanocomposite. Overall, bottom-up physical functionalization approaches and the resulting bionanocomposite materials will open up new opportunities for the low-cost production of green materials and contribute to the development of a sustainable economy.</p>","PeriodicalId":18151,"journal":{"name":"Macromolecular Materials and Engineering","volume":"309 10","pages":""},"PeriodicalIF":4.2,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mame.202400041","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141271370","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Macromolecular Materials and Engineering
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1