Georgios Kafkopoulos, Joost Duvigneau, G. Julius Vancso
Joining thermoplastic polymers (TPMs) and metals to form lightweight hybrid structures is of growing industrial and commercial importance. The performance of such materials relies on the bonding strength and endurance of the formed TPM–metal interfaces. The available joining technologies and the mechanisms that govern interfacial adhesion are reviewed in this contribution, highlighting thermal bonding as a commercially attractive joining method. By focusing on molecular interactions to optimize interfacial adhesion, the use of dopamine as a building block to form polydopamine (PDA) based adhesive interlayers in such interfaces is discussed. This work also highlights the potential of PDA to be applied as a load-bearing adhesive—a notion considered to date unfeasible.
{"title":"Polydopamine as a Materials Platform to Promote Strong and Durable Interfaces in Thermoplastic Polymer-Titanium Joints","authors":"Georgios Kafkopoulos, Joost Duvigneau, G. Julius Vancso","doi":"10.1002/mame.202300396","DOIUrl":"10.1002/mame.202300396","url":null,"abstract":"<p>Joining thermoplastic polymers (TPMs) and metals to form lightweight hybrid structures is of growing industrial and commercial importance. The performance of such materials relies on the bonding strength and endurance of the formed TPM–metal interfaces. The available joining technologies and the mechanisms that govern interfacial adhesion are reviewed in this contribution, highlighting thermal bonding as a commercially attractive joining method. By focusing on molecular interactions to optimize interfacial adhesion, the use of dopamine as a building block to form polydopamine (PDA) based adhesive interlayers in such interfaces is discussed. This work also highlights the potential of PDA to be applied as a load-bearing adhesive—a notion considered to date unfeasible.</p>","PeriodicalId":18151,"journal":{"name":"Macromolecular Materials and Engineering","volume":"309 6","pages":""},"PeriodicalIF":3.9,"publicationDate":"2024-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mame.202300396","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140169059","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Aaron R. J. Hutton, Melissa Kirkby, Tom Van Bogaert, Peter Casteels, Christelle Nonne, Veronique De Brabandere, Ortwin Van de Vyver, Lalit K. Vora, Ismaiel A. Tekko, Helen O. McCarthy, Ryan F. Donnelly
Nanobody molecules, derived from heavy-chain only antibodies in camelids, represent the next generation of biotherapeutics. In addition to low immunogenicity, high stability, and potency, their single-domain format facilitates the construction of multivalent molecules for therapeutic applications. Although predominantly administered using a hypodermic syringe and needle, alternative delivery methods are under investigation. That said, the transdermal route has yet to be explored. Therefore, microarray patch (MAP) technology, offering a potentially high dose, pain-free transdermal system, is employed in this study. Trivalent Nanobody molecules, with and without half-life extension (VHH and VHH[HLE]), are formulated into hydrogel-forming MAPs, with pharmacokinetic parameters assessed in Sprague–Dawley rats. VHH MAPs exhibited a sustained release profile, with a serum concentration of 19 ± 9 ng mL−1 24 h post-administration. In contrast, a subcutaneous (SC) injection showed faster clearance, with a serum concentration of 1.1 ± 0.4 ng mL−1 at 24 h. For VHH(HLE), both SC and MAP cohorts achieved a maximum serum concentration (Tmax) at 24 h. The MAP cohort displayed a notable increase in VHH(HLE) serum levels between 6–24 h, dropping after MAP removal. This study has exemplified MAPs potential for delivering advanced biologics, indicating the transdermal route's promise for pain-free, patient-friendly administration of Nanobody molecules.
{"title":"Transdermal Administration of Nanobody Molecules using Hydrogel-Forming Microarray Patch Technology: A Unique Delivery Approach","authors":"Aaron R. J. Hutton, Melissa Kirkby, Tom Van Bogaert, Peter Casteels, Christelle Nonne, Veronique De Brabandere, Ortwin Van de Vyver, Lalit K. Vora, Ismaiel A. Tekko, Helen O. McCarthy, Ryan F. Donnelly","doi":"10.1002/mame.202400029","DOIUrl":"10.1002/mame.202400029","url":null,"abstract":"<p>Nanobody molecules, derived from heavy-chain only antibodies in camelids, represent the next generation of biotherapeutics. In addition to low immunogenicity, high stability, and potency, their single-domain format facilitates the construction of multivalent molecules for therapeutic applications. Although predominantly administered using a hypodermic syringe and needle, alternative delivery methods are under investigation. That said, the transdermal route has yet to be explored. Therefore, microarray patch (MAP) technology, offering a potentially high dose, pain-free transdermal system, is employed in this study. Trivalent Nanobody molecules, with and without half-life extension (VHH and VHH[HLE]), are formulated into hydrogel-forming MAPs, with pharmacokinetic parameters assessed in Sprague–Dawley rats. VHH MAPs exhibited a sustained release profile, with a serum concentration of 19 ± 9 ng mL<sup>−1</sup> 24 h post-administration. In contrast, a subcutaneous (SC) injection showed faster clearance, with a serum concentration of 1.1 ± 0.4 ng mL<sup>−1</sup> at 24 h. For VHH(HLE), both SC and MAP cohorts achieved a maximum serum concentration (<i>T</i><sub>max</sub>) at 24 h. The MAP cohort displayed a notable increase in VHH(HLE) serum levels between 6–24 h, dropping after MAP removal. This study has exemplified MAPs potential for delivering advanced biologics, indicating the transdermal route's promise for pain-free, patient-friendly administration of Nanobody molecules.</p>","PeriodicalId":18151,"journal":{"name":"Macromolecular Materials and Engineering","volume":"309 6","pages":""},"PeriodicalIF":3.9,"publicationDate":"2024-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mame.202400029","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140169736","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Angelika Seliwjorstow, Marius Bach, Susanne Kirchner, Sarah Palloks, Zbigniew L. Pianowski
Amphiphilic cyclic dipeptides are efficient supramolecular hydrogelators. They can be combined with molecular photoswitches to produce light-responsive soft materials, which can be applied in controlled drug delivery. Here it is reported that an arginine-containing cyclic dipeptide decorated with ortho-fluorinated azobenzene forms hydrogels under physiological conditions that can be reversibly liquefied upon exposure to visible light frequencies (green and violet, respectively). The addition of sodium alginate results in composite supramolecular hydrogels with increased gelating capacity supported with Coulombic interactions, which also reversibly dissipate upon irradiation.
{"title":"Visible Light-Triggered Supramolecular Hydrogel Based on Cyclic Dipeptides Stabilized with Coulomb Interactions","authors":"Angelika Seliwjorstow, Marius Bach, Susanne Kirchner, Sarah Palloks, Zbigniew L. Pianowski","doi":"10.1002/mame.202400007","DOIUrl":"10.1002/mame.202400007","url":null,"abstract":"<p>Amphiphilic cyclic dipeptides are efficient supramolecular hydrogelators. They can be combined with molecular photoswitches to produce light-responsive soft materials, which can be applied in controlled drug delivery. Here it is reported that an arginine-containing cyclic dipeptide decorated with ortho-fluorinated azobenzene forms hydrogels under physiological conditions that can be reversibly liquefied upon exposure to visible light frequencies (green and violet, respectively). The addition of sodium alginate results in composite supramolecular hydrogels with increased gelating capacity supported with Coulombic interactions, which also reversibly dissipate upon irradiation.</p>","PeriodicalId":18151,"journal":{"name":"Macromolecular Materials and Engineering","volume":"309 5","pages":""},"PeriodicalIF":3.9,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mame.202400007","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140148912","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ofir Aharon Kuperman, Peterson de Andrade, Tanguy Terlier, Jacob Judas Kain Kirkensgaard, Robert A. Field, Filipe Natalio
Front Cover: The cover page of article 2300337 by Filipe Natalio and co-workers shows the chemosynthesis of a glucose derivative depicted in the upper part of the illustration. This last compound is fed to a floating cotton ovule in vitro culture (central illustration), becoming integrated into the fibers (blue dots). These modified fibers show increased mechanical properties, as depicted with the clamps in the lower part of the illustration.