Hom N. Dhakal, Sakib Hossain Khan, Ibrahim A. Alnaser, Mohammad Rezaul Karim, Abu Saifullah, Zhongyi Zhang
This article presents a comprehensive review of the advancements in the use of Date Palm Fiber (DPF) reinforced composites, highlighting their mechanical, thermal, and morphological properties and the enhancements achieved through various modification techniques. Date palm fibers, a sustainable and biodegradable resource, have garnered significant interest due to their potential in reducing environmental impact across several key industries, including building and construction, automotive, and packaging. The review discusses the effects of hybrid approaches and physical and chemical treatments on the mechanical properties of DPF composites, demonstrating improvements in tensile strength, elasticity, and flexural strength through optimized fiber-matrix bonding and reduced moisture absorption. Thermal behavior analyses through Thermogravimetric Analysis (TGA), Dynamic Mechanical Analysis (DMA), and thermal conductivity underscore the composites’ suitability for applications requiring high thermal stability and conductivity for insulation applications. Morphological studies reveal that surface-treated fibers integrate more effectively with various polymeric matrices, leading to enhanced composite performance. The practical applications of DPF composites are explored, emphasizing their role in promoting sustainable manufacturing practices. Challenges such as scalability, cost-efficiency, and performance consistency are addressed, alongside future perspectives that suggest a promising direction for further research and technological development in the field of natural fiber composites. This review aims to solidify the foundation for ongoing advancements and increase the adoption of DPF composites in commercial applications.
{"title":"Potential of Date Palm Fibers (DPFs) as a Sustainable Reinforcement for Bio- Composites and its Property Enhancement for Key Applications: A Review","authors":"Hom N. Dhakal, Sakib Hossain Khan, Ibrahim A. Alnaser, Mohammad Rezaul Karim, Abu Saifullah, Zhongyi Zhang","doi":"10.1002/mame.202400081","DOIUrl":"10.1002/mame.202400081","url":null,"abstract":"<p>This article presents a comprehensive review of the advancements in the use of Date Palm Fiber (DPF) reinforced composites, highlighting their mechanical, thermal, and morphological properties and the enhancements achieved through various modification techniques. Date palm fibers, a sustainable and biodegradable resource, have garnered significant interest due to their potential in reducing environmental impact across several key industries, including building and construction, automotive, and packaging. The review discusses the effects of hybrid approaches and physical and chemical treatments on the mechanical properties of DPF composites, demonstrating improvements in tensile strength, elasticity, and flexural strength through optimized fiber-matrix bonding and reduced moisture absorption. Thermal behavior analyses through Thermogravimetric Analysis (TGA), Dynamic Mechanical Analysis (DMA), and thermal conductivity underscore the composites’ suitability for applications requiring high thermal stability and conductivity for insulation applications. Morphological studies reveal that surface-treated fibers integrate more effectively with various polymeric matrices, leading to enhanced composite performance. The practical applications of DPF composites are explored, emphasizing their role in promoting sustainable manufacturing practices. Challenges such as scalability, cost-efficiency, and performance consistency are addressed, alongside future perspectives that suggest a promising direction for further research and technological development in the field of natural fiber composites. This review aims to solidify the foundation for ongoing advancements and increase the adoption of DPF composites in commercial applications.</p>","PeriodicalId":18151,"journal":{"name":"Macromolecular Materials and Engineering","volume":"309 10","pages":""},"PeriodicalIF":4.2,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mame.202400081","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141193804","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In this work, functional polymeric filters are prepared by electrospinning using four different non-ionic polymers or their blends together with deliberately selected additives, and then tested for quantification of the nano-sized powders. Particle gravimetry is used for the quantitative determination of the dusts. Validation studies are carried out using the ICP-OES technique. The polymeric fibers prepared with different contents consist of PS/PMMA, PVDF/EC/PMMA, chitosan, chitosan/PMMA and PMMA/PVDF, respectively. The ionic liquids of tetra-n-butylammonium tetrafluoroborate, 1-ethyl-3-methylimidazolium hexafluorophosphate and hexadecyltrimethylammonium bromide are used as additives for the preparation of the functional polymeric fibers. The prepared nanoscale dusts and electrospun fibers are characterized by SEM, XRD, XPS, and size distribution analysis techniques, respectively. Among them, the CTAB-modified chitosan fibers exhibit the highest dust retention efficiency. This study introduces a new approach to the quantification of nano-sized powders. In addition, it is concluded that the proposed method can be used in pre-concentration before testing, cleaning powders from the working environment and quantitative analysis of nanoscale powders. The presented materials can also be used to improve indoor air quality and potential worker exposure in workplaces.
{"title":"Quantification of Airborne Concentrations of Nanoscale Dusts by Particle Gravimetry Using Ionic-Liquid Modified Polymeric Electrospun Fibers","authors":"Zeki Tok, Kadriye Ertekin","doi":"10.1002/mame.202400062","DOIUrl":"10.1002/mame.202400062","url":null,"abstract":"<p>In this work, functional polymeric filters are prepared by electrospinning using four different non-ionic polymers or their blends together with deliberately selected additives, and then tested for quantification of the nano-sized powders. Particle gravimetry is used for the quantitative determination of the dusts. Validation studies are carried out using the ICP-OES technique. The polymeric fibers prepared with different contents consist of PS/PMMA, PVDF/EC/PMMA, chitosan, chitosan/PMMA and PMMA/PVDF, respectively. The ionic liquids of tetra-n-butylammonium tetrafluoroborate, 1-ethyl-3-methylimidazolium hexafluorophosphate and hexadecyltrimethylammonium bromide are used as additives for the preparation of the functional polymeric fibers. The prepared nanoscale dusts and electrospun fibers are characterized by SEM, XRD, XPS, and size distribution analysis techniques, respectively. Among them, the CTAB-modified chitosan fibers exhibit the highest dust retention efficiency. This study introduces a new approach to the quantification of nano-sized powders. In addition, it is concluded that the proposed method can be used in pre-concentration before testing, cleaning powders from the working environment and quantitative analysis of nanoscale powders. The presented materials can also be used to improve indoor air quality and potential worker exposure in workplaces.</p>","PeriodicalId":18151,"journal":{"name":"Macromolecular Materials and Engineering","volume":"309 7","pages":""},"PeriodicalIF":4.2,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mame.202400062","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141103698","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lesego Tabea Temane, Suprakas Sinha Ray, Jonathan Tersur Orasugh
This paper presents recent developments in graphene-based nanomaterial (GNM)-containing flame-retardant (FR) polyethylene (PE) composites for advanced applications and introduces knowledge gaps and potential solutions. Various nanomaterials have been used to improve the FR properties of PEs. Among these, GNMs score highly because of their superior performance and multifunctional characteristics. By offering a holistic overview of the fundamentals of the FR characteristics of GNMs, the processing and characterization of PE/GNM composites, and the critical aspects related to the development of FR PE/GNM composites for advanced applications, this review provides insights into advances in this area as well as prospects. Furthermore, the kinetics of the FR characteristics of PE and PE/GNM composites are critically discussed in the context of how the FR properties of PE/GNM composites can be tailored by modifying either the surface of the GNM, PE or both, an area seldom discussed in the literature. Moreover, the FR performance of PE/GNM composites is compared with PE/Expandable Graphite (EG) composites because EG has been recognized as a highly efficient and eco-friendly intumescent FR. In summary, this review offers new insights into the design of advanced PE/GNM composites for automotive, construction, aerospace, and electronic packaging applications.
{"title":"Review on Processing, Flame-Retardant Properties, and Applications of Polyethylene Composites with Graphene-Based Nanomaterials","authors":"Lesego Tabea Temane, Suprakas Sinha Ray, Jonathan Tersur Orasugh","doi":"10.1002/mame.202400104","DOIUrl":"10.1002/mame.202400104","url":null,"abstract":"<p>This paper presents recent developments in graphene-based nanomaterial (GNM)-containing flame-retardant (FR) polyethylene (PE) composites for advanced applications and introduces knowledge gaps and potential solutions. Various nanomaterials have been used to improve the FR properties of PEs. Among these, GNMs score highly because of their superior performance and multifunctional characteristics. By offering a holistic overview of the fundamentals of the FR characteristics of GNMs, the processing and characterization of PE/GNM composites, and the critical aspects related to the development of FR PE/GNM composites for advanced applications, this review provides insights into advances in this area as well as prospects. Furthermore, the kinetics of the FR characteristics of PE and PE/GNM composites are critically discussed in the context of how the FR properties of PE/GNM composites can be tailored by modifying either the surface of the GNM, PE or both, an area seldom discussed in the literature. Moreover, the FR performance of PE/GNM composites is compared with PE/Expandable Graphite (EG) composites because EG has been recognized as a highly efficient and eco-friendly intumescent FR. In summary, this review offers new insights into the design of advanced PE/GNM composites for automotive, construction, aerospace, and electronic packaging applications.</p>","PeriodicalId":18151,"journal":{"name":"Macromolecular Materials and Engineering","volume":"309 8","pages":""},"PeriodicalIF":4.2,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mame.202400104","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141106614","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ahmadreza Zaeri, Kai Cao, Fucheng Zhang, Ralf Zgeib, Robert C. Chang
Advanced manufacturing of 3D-structured materials enables the production of biomimetic muscle tissues. While models of muscle tissue exist, current approaches possess a limited ability to capture essential elements of the muscle tissue microarchitecture. Therefore, this paper aims to engineer the intrinsically complex muscle spindle-like ellipsoid geometry using a polymer melt-based electrohydrodynamic (EHD) printing system. EHD systems have conventionally reported fiber deposition in a layerwise fashion. However, without mitigation, the observed fiber sagging and residual charge phenomena for the melt electrowriting (MEW) process limit the ability to produce layered fibrous 3D constructs with in-plane fiber alignment. However, in this work, fiber sagging and residual charge phenomena are leveraged as part of the design intent to deposit nonoverlapping suspended fibers between two stationary walls toward spindle-like construct fabrication. Specifically, herein the structural and mechanical properties of the MEW-enabled spindle-like constructs are analyzed as a function of the process and design parameters that govern control over fiber sagging and residual charge. The results indicate that the collector speed and wall-to-wall distance are the key parameters for tuning the spindle morphology. Moreover, cycle number and fiber diameter are identified as effective parameters for tuning the spindle mechanical properties.
{"title":"Design and Fabrication of Fibrous Spindle-Like Constructs Using a Melt Electrohydrodynamic Writing Process","authors":"Ahmadreza Zaeri, Kai Cao, Fucheng Zhang, Ralf Zgeib, Robert C. Chang","doi":"10.1002/mame.202400080","DOIUrl":"10.1002/mame.202400080","url":null,"abstract":"<p>Advanced manufacturing of 3D-structured materials enables the production of biomimetic muscle tissues. While models of muscle tissue exist, current approaches possess a limited ability to capture essential elements of the muscle tissue microarchitecture. Therefore, this paper aims to engineer the intrinsically complex muscle spindle-like ellipsoid geometry using a polymer melt-based electrohydrodynamic (EHD) printing system. EHD systems have conventionally reported fiber deposition in a layerwise fashion. However, without mitigation, the observed fiber sagging and residual charge phenomena for the melt electrowriting (MEW) process limit the ability to produce layered fibrous 3D constructs with in-plane fiber alignment. However, in this work, fiber sagging and residual charge phenomena are leveraged as part of the design intent to deposit nonoverlapping suspended fibers between two stationary walls toward spindle-like construct fabrication. Specifically, herein the structural and mechanical properties of the MEW-enabled spindle-like constructs are analyzed as a function of the process and design parameters that govern control over fiber sagging and residual charge. The results indicate that the collector speed and wall-to-wall distance are the key parameters for tuning the spindle morphology. Moreover, cycle number and fiber diameter are identified as effective parameters for tuning the spindle mechanical properties.</p>","PeriodicalId":18151,"journal":{"name":"Macromolecular Materials and Engineering","volume":"309 11","pages":""},"PeriodicalIF":4.2,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mame.202400080","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141122551","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The tunability of the lower critical solution temperature (LCST) of poly(N-isopropylacrylamide) (PNIPAM) to lower or higher temperatures, as well as the ease of modulation of the LCST phase transition kinetics broadens the scope of application of PNIPAM-based materials in biomedical fields. This work reports a facile approach to formulate a smart, injectable cellulose nanofibril (CNF)/PNIPAM hybrid gel. Hofmeister salts are used to induce ion-mediated gelation of the nanofibrils and PNIPAM chains, resulting in an interpenetrating network (IPN) structure. From rheological measurements, the hybrid material displays excellent structural integrity at room temperature and tunable thermo-stiffening around body temperature. De-swelling kinetics can be modulated by varying the nature and concentration of the Hofmeister ion used. The successful realization of the IPN hybrid gel structure is dependent on the molecular weight of PNIPAM used. Moreover, the hybrid gels show good thermo-reversibility during thermal cycling, as well as excellent injectability and remarkable self-healing post-injection, owing to shear-thinning and thixotropic characters. Since rheology is a crucial technique in the analysis of soft matter and flow behavior is fundamental for the design and synthesis of application-specific viscoelastic materials, the work reported herein provides a rheological basis for careful design and synthesis of smart gels.
{"title":"Ion-Mediated Gelation of Thermo-Responsive Cellulose Nanofibril/Poly(N-isopropylacrylamide) Hybrid Hydrogels with Tunable De-Swelling Kinetics","authors":"Bennie Motloung, Rueben Pfukwa, Bert Klumperman","doi":"10.1002/mame.202300457","DOIUrl":"10.1002/mame.202300457","url":null,"abstract":"<p>The tunability of the lower critical solution temperature (LCST) of poly(<i>N</i>-isopropylacrylamide) (PNIPAM) to lower or higher temperatures, as well as the ease of modulation of the LCST phase transition kinetics broadens the scope of application of PNIPAM-based materials in biomedical fields. This work reports a facile approach to formulate a smart, injectable cellulose nanofibril (CNF)/PNIPAM hybrid gel. Hofmeister salts are used to induce ion-mediated gelation of the nanofibrils and PNIPAM chains, resulting in an interpenetrating network (IPN) structure. From rheological measurements, the hybrid material displays excellent structural integrity at room temperature and tunable thermo-stiffening around body temperature. De-swelling kinetics can be modulated by varying the nature and concentration of the Hofmeister ion used. The successful realization of the IPN hybrid gel structure is dependent on the molecular weight of PNIPAM used. Moreover, the hybrid gels show good thermo-reversibility during thermal cycling, as well as excellent injectability and remarkable self-healing post-injection, owing to shear-thinning and thixotropic characters. Since rheology is a crucial technique in the analysis of soft matter and flow behavior is fundamental for the design and synthesis of application-specific viscoelastic materials, the work reported herein provides a rheological basis for careful design and synthesis of smart gels.</p>","PeriodicalId":18151,"journal":{"name":"Macromolecular Materials and Engineering","volume":"309 8","pages":""},"PeriodicalIF":4.2,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mame.202300457","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140967112","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Wenqing Yan, Jimena de la Vega, Özen Eroğlu, Lavinia Heisenberg, Deyi Wang
Front Cover: High power, sunlight-simulated UV light induces radical polymerizations of (meth)acrylate-based monomers. During this process, mono-radicals can be generated through the H-abstraction mechanism, while bi-radicals can arise from photodissociation or oxygen initiation mechanisms. The generated free radicals facilitate self-initiation and self-crosslinking, rendering this technology efficient for synthesizing polymer networks without the need for added initiators or crosslinkers. This is reported by Wenqing Yan and co-workers in article 2399456.