首页 > 最新文献

Magnetochemistry最新文献

英文 中文
A Study of the Structure and Physicochemical Properties of the Mixed Basicity Iron Ore Sinter 混合碱度铁矿烧结矿的结构与理化性质研究
4区 化学 Q2 Chemistry Pub Date : 2023-09-22 DOI: 10.3390/magnetochemistry9100212
Andrey N. Dmitriev, Elena A. Vyaznikova, Galina Yu. Vitkina, Antonina I. Karlina
To study the influence of sinter basicity on the microstructure, phase composition, and physicochemical and metallurgical properties, samples of agglomerates with different basicities were sintered and investigated. A comprehensive study of the structure, composition, chemical, and metallurgical properties of the sinter was conducted, and the optimum values for these properties were determined. The results of the mineralogical transformations that occurred during the sintering process are also presented. The magnetite contained in the concentrate partially dissolves in the silicate component and flux during agglomeration, forming a complex silicate SFCA with the general formula M14O20 (M–Ca, Si, Al, and Mg), which is the binder of the ore phases of the agglomerate. The proportion of ferrosilicates of calcium and aluminum in the sinter depends on the basicity of the sinter charge, and the morphology of the SFCA phase depends on the cooling rate of the sinter. The more CaO in the sinter charge, the more SFCA phase is formed in the sinter, and slow cooling results in the growth of large lamellar and dendritic SFCA phases.
为了研究烧结矿碱度对烧结矿显微组织、相组成、物理化学和冶金性能的影响,对不同碱度的烧结矿样品进行了烧结研究。对烧结矿的结构、组成、化学和冶金性能进行了全面的研究,并确定了这些性能的最佳值。还介绍了烧结过程中发生的矿物学转变的结果。精矿中所含的磁铁矿在团聚过程中部分溶解于硅酸盐组分和助熔剂中,形成通式为M14O20 (M-Ca, Si, Al, Mg)的复合硅酸盐SFCA,是团聚矿矿相的粘结剂。烧结矿中钙铝硅酸铁的比例取决于烧结矿电荷的碱度,SFCA相的形貌取决于烧结矿的冷却速度。烧结料中CaO含量越多,烧结矿中形成的SFCA相越多,缓慢冷却导致大的片层状和枝晶状SFCA相生长。
{"title":"A Study of the Structure and Physicochemical Properties of the Mixed Basicity Iron Ore Sinter","authors":"Andrey N. Dmitriev, Elena A. Vyaznikova, Galina Yu. Vitkina, Antonina I. Karlina","doi":"10.3390/magnetochemistry9100212","DOIUrl":"https://doi.org/10.3390/magnetochemistry9100212","url":null,"abstract":"To study the influence of sinter basicity on the microstructure, phase composition, and physicochemical and metallurgical properties, samples of agglomerates with different basicities were sintered and investigated. A comprehensive study of the structure, composition, chemical, and metallurgical properties of the sinter was conducted, and the optimum values for these properties were determined. The results of the mineralogical transformations that occurred during the sintering process are also presented. The magnetite contained in the concentrate partially dissolves in the silicate component and flux during agglomeration, forming a complex silicate SFCA with the general formula M14O20 (M–Ca, Si, Al, and Mg), which is the binder of the ore phases of the agglomerate. The proportion of ferrosilicates of calcium and aluminum in the sinter depends on the basicity of the sinter charge, and the morphology of the SFCA phase depends on the cooling rate of the sinter. The more CaO in the sinter charge, the more SFCA phase is formed in the sinter, and slow cooling results in the growth of large lamellar and dendritic SFCA phases.","PeriodicalId":18194,"journal":{"name":"Magnetochemistry","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136094445","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Surface Modifications of Superparamagnetic Iron Oxide Nanoparticles with Polyvinyl Alcohol and Activated Charcoal as Methylene Blue Adsorbents 聚乙烯醇和活性炭作为亚甲基蓝吸附剂对超顺磁性氧化铁纳米颗粒的表面改性
4区 化学 Q2 Chemistry Pub Date : 2023-09-20 DOI: 10.3390/magnetochemistry9090211
Linh Doan
As novel methylene blue adsorbents, polyvinyl alcohol and activated charcoal were used to modify the surface of superparamagnetic iron oxide nanoparticles. The adsorption capacity after 69 h was 26.50 ± 0.99–40.21 ± 1.30 mg/g, depending on the temperature (333.15, 310.15, and 298.15 K) and the initial concentration of methylene blue, which was between 0.017 and 0.020 mg/mL. Based on thermodynamics parameters, the adsorption process can be considered to be spontaneous endothermic physisorption. Kinetics studies show that the pseudo-second-order model was the best-fitted model. Adsorption isotherm studies show that the best-fitted models were the Langmuir, Langmuir, and Temkin and Pyzhev isotherm models when adsorbing MB at 333.15, 310.15, and 298.15 K, respectively.
聚乙烯醇和活性炭作为新型亚甲基蓝吸附剂,对超顺磁性氧化铁纳米颗粒进行了表面改性。不同温度(333.15、310.15和298.15 K)和亚甲基蓝初始浓度(0.017 ~ 0.020 mg/mL)的吸附量在69 h后的吸附量为26.50±0.99 ~ 40.21±1.30 mg/g。根据热力学参数,吸附过程可以认为是自发吸热物理吸附。动力学研究表明,拟二阶模型是最佳拟合模型。吸附等温线研究表明,在333.15、310.15和298.15 K下吸附MB时,Langmuir、Langmuir、Temkin和Pyzhev等温线模型最适合。
{"title":"Surface Modifications of Superparamagnetic Iron Oxide Nanoparticles with Polyvinyl Alcohol and Activated Charcoal as Methylene Blue Adsorbents","authors":"Linh Doan","doi":"10.3390/magnetochemistry9090211","DOIUrl":"https://doi.org/10.3390/magnetochemistry9090211","url":null,"abstract":"As novel methylene blue adsorbents, polyvinyl alcohol and activated charcoal were used to modify the surface of superparamagnetic iron oxide nanoparticles. The adsorption capacity after 69 h was 26.50 ± 0.99–40.21 ± 1.30 mg/g, depending on the temperature (333.15, 310.15, and 298.15 K) and the initial concentration of methylene blue, which was between 0.017 and 0.020 mg/mL. Based on thermodynamics parameters, the adsorption process can be considered to be spontaneous endothermic physisorption. Kinetics studies show that the pseudo-second-order model was the best-fitted model. Adsorption isotherm studies show that the best-fitted models were the Langmuir, Langmuir, and Temkin and Pyzhev isotherm models when adsorbing MB at 333.15, 310.15, and 298.15 K, respectively.","PeriodicalId":18194,"journal":{"name":"Magnetochemistry","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136373256","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Comparative Study of Magnetic Properties of (Mn1−xAxIV)Bi2Te4 AIV = Ge, Pb, Sn (Mn1−xAxIV)Bi2Te4 AIV = Ge, Pb, Sn磁性能的比较研究
4区 化学 Q2 Chemistry Pub Date : 2023-09-13 DOI: 10.3390/magnetochemistry9090210
Dmitry A. Estyunin, Anna A. Rybkina, Konstantin A. Kokh, Oleg E. Tereshchenko, Marina V. Likholetova, Ilya I. Klimovskikh, Alexander M. Shikin
We investigated the magnetic properties of the antiferromagnetic (AFM) topological insulator MnBi2Te4 with a partial substitution of Mn atoms by non-magnetic elements (AIV = Ge, Pb, Sn). Samples with various element concentrations (10–80%) were studied using SQUID magnetometry. The results demonstrate that, for all substitutes the type of magnetic ordering remains AFM, while the Néel temperature (TN) and spin-flop transition field (HSF) decrease with an increasing AIV = Ge, Pb, Sn concentration. The rate of decrease varies among the elements, being highest for Pb, followed by Sn and Ge. This behavior is attributed to the combined effects of the magnetic dilution and lattice parameter increase on magnetic properties, most prominent in (Mn1−xPbx)Bi2Te4. Besides this, the linear approximation of the experimental data of TN and HSF suggests higher magnetic parameters for pure MnBi2Te4 than observed experimentally, indicating the possibility of their non-monotonic variation at low concentrations and the potential for enhancing magnetic properties through doping MnBi2Te4 with small amounts of nonmagnetic impurities. Notably, the (Mn1−xPbx)Bi2Te4 sample with 10% Pb substitution indeed exhibits increased magnetic parameters, which is also validated by local-probe analyses using ARPES. Our findings shed light on tailoring the magnetic behavior of MnBi2Te4-based materials, offering insights into the potential applications in device technologies.
我们研究了非磁性元素(AIV = Ge, Pb, Sn)部分取代Mn原子的反铁磁(AFM)拓扑绝缘体MnBi2Te4的磁性。采用SQUID磁强计对不同元素浓度(10-80%)的样品进行了研究。结果表明,随着AIV = Ge, Pb, Sn浓度的增加,所有替代材料的磁有序类型仍然是AFM,而n温度(TN)和自旋翻转跃迁场(HSF)降低。不同元素的下降率不同,Pb的下降率最高,其次是Sn和Ge。这种行为归因于磁稀释和晶格参数增加对磁性能的综合影响,在(Mn1−xPbx)Bi2Te4中最为突出。此外,TN和HSF实验数据的线性近似表明,纯MnBi2Te4的磁性参数比实验观察到的要高,这表明它们在低浓度下可能发生非单调变化,并且通过少量非磁性杂质掺杂MnBi2Te4可以增强磁性。值得注意的是,含有10% Pb取代的(Mn1−xPbx)Bi2Te4样品确实表现出增加的磁性参数,这也通过ARPES的局部探针分析得到了验证。我们的研究结果揭示了定制mnbi2te4基材料的磁性行为,为器件技术的潜在应用提供了见解。
{"title":"Comparative Study of Magnetic Properties of (Mn1−xAxIV)Bi2Te4 AIV = Ge, Pb, Sn","authors":"Dmitry A. Estyunin, Anna A. Rybkina, Konstantin A. Kokh, Oleg E. Tereshchenko, Marina V. Likholetova, Ilya I. Klimovskikh, Alexander M. Shikin","doi":"10.3390/magnetochemistry9090210","DOIUrl":"https://doi.org/10.3390/magnetochemistry9090210","url":null,"abstract":"We investigated the magnetic properties of the antiferromagnetic (AFM) topological insulator MnBi2Te4 with a partial substitution of Mn atoms by non-magnetic elements (AIV = Ge, Pb, Sn). Samples with various element concentrations (10–80%) were studied using SQUID magnetometry. The results demonstrate that, for all substitutes the type of magnetic ordering remains AFM, while the Néel temperature (TN) and spin-flop transition field (HSF) decrease with an increasing AIV = Ge, Pb, Sn concentration. The rate of decrease varies among the elements, being highest for Pb, followed by Sn and Ge. This behavior is attributed to the combined effects of the magnetic dilution and lattice parameter increase on magnetic properties, most prominent in (Mn1−xPbx)Bi2Te4. Besides this, the linear approximation of the experimental data of TN and HSF suggests higher magnetic parameters for pure MnBi2Te4 than observed experimentally, indicating the possibility of their non-monotonic variation at low concentrations and the potential for enhancing magnetic properties through doping MnBi2Te4 with small amounts of nonmagnetic impurities. Notably, the (Mn1−xPbx)Bi2Te4 sample with 10% Pb substitution indeed exhibits increased magnetic parameters, which is also validated by local-probe analyses using ARPES. Our findings shed light on tailoring the magnetic behavior of MnBi2Te4-based materials, offering insights into the potential applications in device technologies.","PeriodicalId":18194,"journal":{"name":"Magnetochemistry","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135740553","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Influence of the Particle Size on the Electrical, Magnetic and Biological Properties of the Bioglass® Containing Iron Oxide 颗粒尺寸对含氧化铁生物玻璃®电、磁和生物性能的影响
4区 化学 Q2 Chemistry Pub Date : 2023-09-12 DOI: 10.3390/magnetochemistry9090209
Joana Soares Regadas, Sílvia Rodrigues Gavinho, Sílvia Soreto Teixeira, Juliana Vieira de Jesus, Ana Sofia Pádua, Jorge Carvalho Silva, Susana Devesa, Manuel Pedro Fernandes Graça
Bioglasses have been used throughout the past century as a biomaterial in the bone regeneration field. However, recent studies have attempted to use them as a therapeutic material as well, mainly in the treatment of osteosarcomas. The most widely recognized bioglass is the 45S5 Bioglass, invented by Larry Hench et al., which presents higher bioactivity. A possible application of this bioglass in the treatment of osteosarcomas can be accomplished by adding specific ions, such as iron, that will allow the use of magnetic hyperthermia and Fenton reaction as therapeutic mechanisms. In this study, a 45S5 Bioglass containing 10%mol of Fe2O3 was produced using the melt-quenching method. A group of samples was prepared by changing the overall ball milling time, from 1 h up to 48 h, to analyze the effects of iron in the bioactive glass matrix and evaluate the influence of particle size on their physical and biological properties. The studied bioglasses showed no evidence of changes in the amorphous structural nature compared to the 45S5 Bioglass. The data of the impedance spectroscopy study revealed that the addition of Fe2O3 can increase the standard rate constant of the Electro-Fenton reaction, with the sample milled for 12 h showing the most promising results. The reduction in the particle size influenced the cytotoxicity and the bioactivity. The samples with lower particle sizes showed a higher level of cytotoxicity.
在过去的一个世纪里,生物玻璃作为一种生物材料被广泛应用于骨再生领域。然而,最近的研究也试图将它们作为一种治疗材料,主要用于骨肉瘤的治疗。最广为人知的生物玻璃是由Larry Hench等人发明的45S5生物玻璃,它具有更高的生物活性。这种生物玻璃在骨肉瘤治疗中的可能应用可以通过添加特定离子(如铁)来实现,这将允许使用磁热疗和芬顿反应作为治疗机制。本研究采用熔淬法制备了含10% Fe2O3的45S5生物玻璃。通过改变球磨时间,从1 h到48 h,制备了一组样品,以分析铁在生物活性玻璃基质中的作用,并评估颗粒尺寸对其物理和生物性能的影响。与45S5生物玻璃相比,所研究的生物玻璃没有显示出非晶结构性质变化的证据。阻抗谱研究数据表明,Fe2O3的加入可以提高电fenton反应的标准速率常数,其中研磨12 h的效果最好。颗粒大小的减小影响了细胞毒性和生物活性。粒径较小的样品显示出较高的细胞毒性。
{"title":"Influence of the Particle Size on the Electrical, Magnetic and Biological Properties of the Bioglass® Containing Iron Oxide","authors":"Joana Soares Regadas, Sílvia Rodrigues Gavinho, Sílvia Soreto Teixeira, Juliana Vieira de Jesus, Ana Sofia Pádua, Jorge Carvalho Silva, Susana Devesa, Manuel Pedro Fernandes Graça","doi":"10.3390/magnetochemistry9090209","DOIUrl":"https://doi.org/10.3390/magnetochemistry9090209","url":null,"abstract":"Bioglasses have been used throughout the past century as a biomaterial in the bone regeneration field. However, recent studies have attempted to use them as a therapeutic material as well, mainly in the treatment of osteosarcomas. The most widely recognized bioglass is the 45S5 Bioglass, invented by Larry Hench et al., which presents higher bioactivity. A possible application of this bioglass in the treatment of osteosarcomas can be accomplished by adding specific ions, such as iron, that will allow the use of magnetic hyperthermia and Fenton reaction as therapeutic mechanisms. In this study, a 45S5 Bioglass containing 10%mol of Fe2O3 was produced using the melt-quenching method. A group of samples was prepared by changing the overall ball milling time, from 1 h up to 48 h, to analyze the effects of iron in the bioactive glass matrix and evaluate the influence of particle size on their physical and biological properties. The studied bioglasses showed no evidence of changes in the amorphous structural nature compared to the 45S5 Bioglass. The data of the impedance spectroscopy study revealed that the addition of Fe2O3 can increase the standard rate constant of the Electro-Fenton reaction, with the sample milled for 12 h showing the most promising results. The reduction in the particle size influenced the cytotoxicity and the bioactivity. The samples with lower particle sizes showed a higher level of cytotoxicity.","PeriodicalId":18194,"journal":{"name":"Magnetochemistry","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135886210","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Electromagnetic Property Modulation of Flaky Ferromagnetic 304 Stainless-Steel Powders for Microwave Absorption at Elevated Temperatures 片状铁磁304不锈钢高温微波吸收粉末的电磁特性调制
IF 2.7 4区 化学 Q2 Chemistry Pub Date : 2023-09-05 DOI: 10.3390/magnetochemistry9090208
Bolin Yang, Yifan Xu, Zhihong Chen, Hang Yang, Yuchen Hu, Haoqin Wu, Mingfeng Xing, Jianguo Guan, Wei Li
Soft magnetic metallic absorbents suffer from severe oxidation, reduction in permeability and deterioration in microwave absorption when exposed to high temperatures. In this study, we prepared flaky 304 stainless-steel powders as new microwave absorbents via deformation-induced ferromagnetism. The 304 stainless-steel powders showed significant increases in saturation magnetization (Ms) from 1.03 to 82.46 emu/g when their shape was changed from spheroids to flakes; the Ms further increased to 92.29 emu/g after heat treatment at 500 °C in air. The permeability of 304 alloy powders also showed an obvious increase after ball milling and remained roughly stable after heat treatment at 500 °C in air. Moreover, the permittivity exhibited a sharp decrease after heat treatment, enabling the improvement of impedance matching and microwave absorption. After heat treatment at 500 °C in air for 100 h, the simulated reflection loss of 304 stainless-steel powders with wax still showed attractive levels, giving a minimum value of −22 dB and remaining below −6 dB over 8.5–16.5 GHz at a thickness of 2 mm. Our work can help to include paramagnetic alloy systems as new microwave absorbents for working in harsh environments.
软磁性金属吸附剂在高温下会发生严重的氧化、磁导率降低和微波吸收性能下降。本研究采用变形诱导铁磁法制备片状304不锈钢粉末作为新型微波吸收剂。304不锈钢粉末由球状变为片状时,饱和磁化强度(Ms)由1.03增加到82.46 emu/g;500℃空气热处理后,Ms进一步提高到92.29 emu/g。304合金粉末经球磨后渗透率也有明显提高,500℃空气热处理后渗透率基本保持稳定。热处理后的介电常数显著降低,提高了材料的阻抗匹配性能和微波吸收性能。在500℃空气中热处理100 h后,304不锈钢蜡粉的模拟反射损失仍然显示出吸引人的水平,在8.5-16.5 GHz范围内,在厚度为2mm的情况下,最小值为- 22 dB,保持在- 6 dB以下。我们的工作有助于将顺磁合金系统作为在恶劣环境下工作的新型微波吸收剂。
{"title":"Electromagnetic Property Modulation of Flaky Ferromagnetic 304 Stainless-Steel Powders for Microwave Absorption at Elevated Temperatures","authors":"Bolin Yang, Yifan Xu, Zhihong Chen, Hang Yang, Yuchen Hu, Haoqin Wu, Mingfeng Xing, Jianguo Guan, Wei Li","doi":"10.3390/magnetochemistry9090208","DOIUrl":"https://doi.org/10.3390/magnetochemistry9090208","url":null,"abstract":"Soft magnetic metallic absorbents suffer from severe oxidation, reduction in permeability and deterioration in microwave absorption when exposed to high temperatures. In this study, we prepared flaky 304 stainless-steel powders as new microwave absorbents via deformation-induced ferromagnetism. The 304 stainless-steel powders showed significant increases in saturation magnetization (Ms) from 1.03 to 82.46 emu/g when their shape was changed from spheroids to flakes; the Ms further increased to 92.29 emu/g after heat treatment at 500 °C in air. The permeability of 304 alloy powders also showed an obvious increase after ball milling and remained roughly stable after heat treatment at 500 °C in air. Moreover, the permittivity exhibited a sharp decrease after heat treatment, enabling the improvement of impedance matching and microwave absorption. After heat treatment at 500 °C in air for 100 h, the simulated reflection loss of 304 stainless-steel powders with wax still showed attractive levels, giving a minimum value of −22 dB and remaining below −6 dB over 8.5–16.5 GHz at a thickness of 2 mm. Our work can help to include paramagnetic alloy systems as new microwave absorbents for working in harsh environments.","PeriodicalId":18194,"journal":{"name":"Magnetochemistry","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2023-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44987998","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Influence of Magnetic Fields on Electrophoretic Processes in Magnetic Colloids with Different Stabilization Mechanisms 磁场对不同稳定机制磁性胶体电泳过程的影响
IF 2.7 4区 化学 Q2 Chemistry Pub Date : 2023-08-30 DOI: 10.3390/magnetochemistry9090207
Yuri Dikansky, A. Drozdov, Inna V. Eskova, E. Beketova
Electrophoretic nanostructuring is a promising approach for the creation of functional surfaces and active layers. The potency of this approach may be further enhanced by additional factors of various natures, such as magnetic fields. In this work, we have studied the process of electrophoresis in thin layers of water- and kerosene-based magnetic liquids and the effect of additional magnetic fields on the occurring processes. It was found that the electrophoresis process can be significantly affected by inhomogeneous magnetic fields. The possibility of compensating electrophoresis processes in such systems by means of inhomogeneous magnetic field influence was shown. Structural changes in magnetic colloids on hydrocarbon bases under the influence of an electric field have been studied. The role of electrohydrodynamic flows arising in this process is considered, and the influence of the magnetic field on the configuration of the formed labyrinth structure is studied. The dependence of the threshold value of the electric field strength corresponding to the emergence of the structure on the temperature and additionally applied magnetic field has been established. The obtained results could contribute to the development of an original method for determining the charge and magnetic moment of a single nanoparticle.
电泳纳米结构是创造功能表面和活性层的一种很有前途的方法。这种方法的效力可能会被其他各种性质的因素进一步增强,比如磁场。在本工作中,我们研究了水基和煤油基磁性液体的薄层电泳过程以及附加磁场对发生过程的影响。结果表明,不均匀磁场对电泳过程有显著影响。指出了利用非均匀磁场影响对电泳过程进行补偿的可能性。本文研究了电场作用下烃基磁性胶体的结构变化。考虑了在此过程中产生的电流体动力流的作用,并研究了磁场对形成的迷宫结构形态的影响。建立了结构出现所对应的电场强度阈值与温度和外加磁场的关系。所得结果有助于发展一种测定单个纳米粒子的电荷和磁矩的原始方法。
{"title":"The Influence of Magnetic Fields on Electrophoretic Processes in Magnetic Colloids with Different Stabilization Mechanisms","authors":"Yuri Dikansky, A. Drozdov, Inna V. Eskova, E. Beketova","doi":"10.3390/magnetochemistry9090207","DOIUrl":"https://doi.org/10.3390/magnetochemistry9090207","url":null,"abstract":"Electrophoretic nanostructuring is a promising approach for the creation of functional surfaces and active layers. The potency of this approach may be further enhanced by additional factors of various natures, such as magnetic fields. In this work, we have studied the process of electrophoresis in thin layers of water- and kerosene-based magnetic liquids and the effect of additional magnetic fields on the occurring processes. It was found that the electrophoresis process can be significantly affected by inhomogeneous magnetic fields. The possibility of compensating electrophoresis processes in such systems by means of inhomogeneous magnetic field influence was shown. Structural changes in magnetic colloids on hydrocarbon bases under the influence of an electric field have been studied. The role of electrohydrodynamic flows arising in this process is considered, and the influence of the magnetic field on the configuration of the formed labyrinth structure is studied. The dependence of the threshold value of the electric field strength corresponding to the emergence of the structure on the temperature and additionally applied magnetic field has been established. The obtained results could contribute to the development of an original method for determining the charge and magnetic moment of a single nanoparticle.","PeriodicalId":18194,"journal":{"name":"Magnetochemistry","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2023-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44852247","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Magnetic and Impedance Analysis of Fe2O3 Nanoparticles for Chemical Warfare Agent Sensing Applications 用于化学战剂传感应用的Fe2O3纳米粒子的磁性和阻抗分析
IF 2.7 4区 化学 Q2 Chemistry Pub Date : 2023-08-25 DOI: 10.3390/magnetochemistry9090206
J. Soliz, Smriti Ranjit, Joshua Phillips, R. Rosenberg, A. Hauser
A dire need for real-time detection of toxic chemical compounds exists in both civilian and military spheres. In this paper, we demonstrate that inexpensive, commercially available Fe2O3 nanoparticles are capable of selective sensing of chemical warfare agents (CWAs) using frequency-dependent impedance spectroscopy, with additional potential as an orthogonal magnetic sensor. X-ray magnetic circular dichroism analysis shows that Fe2O3 nanoparticles possess moderately lowered moment upon exposure to 2-chloroethyl ethyl sulfide (2-CEES) and diisopropyl methylphosphonate (DIMP) and significantly lowered moment upon exposure to dimethyl methylphosphonate (DMMP) and dimethyl chlorophosphate (DMCP). Associated X-ray absorption spectra confirm a redox reaction in the Fe2O3 nanoparticles due to CWA structural analog exposure, with differentiable energy-dependent features that suggest selective sensing is possible, given the correct method. Impedance spectroscopy performed on samples dosed with DMMP, DMCP, and tabun (GA, chemical warfare nerve agent) showed strong, differentiable, frequency-dependent responses. The frequency profiles provide unique “shift fingerprints” with which high specificity can be determined, even amongst similar analytes. The results suggest that frequency-dependent impedance fingerprinting using commercially available Fe2O3 nanoparticles as a sensor material is a feasible route to selective detection.
民用和军事领域都迫切需要实时检测有毒化合物。在本文中,我们证明了廉价的市售Fe2O3纳米颗粒能够使用频率相关阻抗谱对化学战剂(CWA)进行选择性传感,并具有作为正交磁传感器的额外潜力。X射线磁圆二色性分析表明,Fe2O3纳米粒子在暴露于2-氯乙基乙基硫醚(2-CEES)和甲基膦酸二异丙酯(DIMP)时具有适度降低的力矩,在暴露于甲基膦酸甲酯(DMMP)和氯磷酸二甲酯(DMCP)时具有显著降低的力矩。相关的X射线吸收光谱证实,由于CWA结构类似物暴露,Fe2O3纳米颗粒中发生了氧化还原反应,具有可微分的能量依赖性特征,表明如果采用正确的方法,选择性传感是可能的。对服用DMMP、DMCP和tabun(GA,化学战神经毒剂)的样品进行的阻抗谱显示出强烈的、可微分的、频率依赖性的反应。频率分布提供了独特的“偏移指纹”,即使在类似的分析物中也可以确定高特异性。结果表明,使用市售的Fe2O3纳米颗粒作为传感器材料的频率依赖性阻抗指纹是选择性检测的可行途径。
{"title":"Magnetic and Impedance Analysis of Fe2O3 Nanoparticles for Chemical Warfare Agent Sensing Applications","authors":"J. Soliz, Smriti Ranjit, Joshua Phillips, R. Rosenberg, A. Hauser","doi":"10.3390/magnetochemistry9090206","DOIUrl":"https://doi.org/10.3390/magnetochemistry9090206","url":null,"abstract":"A dire need for real-time detection of toxic chemical compounds exists in both civilian and military spheres. In this paper, we demonstrate that inexpensive, commercially available Fe2O3 nanoparticles are capable of selective sensing of chemical warfare agents (CWAs) using frequency-dependent impedance spectroscopy, with additional potential as an orthogonal magnetic sensor. X-ray magnetic circular dichroism analysis shows that Fe2O3 nanoparticles possess moderately lowered moment upon exposure to 2-chloroethyl ethyl sulfide (2-CEES) and diisopropyl methylphosphonate (DIMP) and significantly lowered moment upon exposure to dimethyl methylphosphonate (DMMP) and dimethyl chlorophosphate (DMCP). Associated X-ray absorption spectra confirm a redox reaction in the Fe2O3 nanoparticles due to CWA structural analog exposure, with differentiable energy-dependent features that suggest selective sensing is possible, given the correct method. Impedance spectroscopy performed on samples dosed with DMMP, DMCP, and tabun (GA, chemical warfare nerve agent) showed strong, differentiable, frequency-dependent responses. The frequency profiles provide unique “shift fingerprints” with which high specificity can be determined, even amongst similar analytes. The results suggest that frequency-dependent impedance fingerprinting using commercially available Fe2O3 nanoparticles as a sensor material is a feasible route to selective detection.","PeriodicalId":18194,"journal":{"name":"Magnetochemistry","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2023-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43210184","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Recent Research Developments of 4D Printing Technology for Magnetically Controlled Smart Materials: A Review 磁控智能材料4D打印技术研究进展综述
IF 2.7 4区 化学 Q2 Chemistry Pub Date : 2023-08-14 DOI: 10.3390/magnetochemistry9080204
Hujun Wang, Jinqiu Zhao, Zhuo Luo, Zhenkun Li
Traditional printed products have to some extent affected the development of smart structures and their application in multiple fields, especially in harsh environments, due to their complex mechanisms and control principles. The 4D printing technology based on magnetically controlled smart materials exploits the advantages of magnetically controlled smart materials with good operability and security, and its printed smart structures can be obtained under magnetic field drive for unfettered remote manipulation and wireless motion control, which expands the application of printed products in complex environments, such as sealed and narrow, and has broad development prospects. At present, magnetically controlled smart material 4D printing technology is still in its infancy, and its theory and application need further in–depth study. To this end, this paper introduces the current status of research on magnetically controlled smart material 4D printing, discusses the printing process, and provides an outlook on its application prospects.
传统印刷产品由于其复杂的机理和控制原理,在一定程度上影响了智能结构的发展及其在多个领域的应用,特别是在恶劣环境下的应用。基于磁控智能材料的4D打印技术,利用了磁控智能材料具有良好的可操作性和安全性的优点,在磁场驱动下可获得打印出的智能结构,实现不受约束的远程操作和无线运动控制,拓展了打印产品在密闭、狭窄等复杂环境下的应用,具有广阔的发展前景。目前,磁控智能材料4D打印技术还处于起步阶段,其理论和应用有待进一步深入研究。为此,本文介绍了磁控智能材料4D打印的研究现状,讨论了打印工艺,并对其应用前景进行了展望。
{"title":"Recent Research Developments of 4D Printing Technology for Magnetically Controlled Smart Materials: A Review","authors":"Hujun Wang, Jinqiu Zhao, Zhuo Luo, Zhenkun Li","doi":"10.3390/magnetochemistry9080204","DOIUrl":"https://doi.org/10.3390/magnetochemistry9080204","url":null,"abstract":"Traditional printed products have to some extent affected the development of smart structures and their application in multiple fields, especially in harsh environments, due to their complex mechanisms and control principles. The 4D printing technology based on magnetically controlled smart materials exploits the advantages of magnetically controlled smart materials with good operability and security, and its printed smart structures can be obtained under magnetic field drive for unfettered remote manipulation and wireless motion control, which expands the application of printed products in complex environments, such as sealed and narrow, and has broad development prospects. At present, magnetically controlled smart material 4D printing technology is still in its infancy, and its theory and application need further in–depth study. To this end, this paper introduces the current status of research on magnetically controlled smart material 4D printing, discusses the printing process, and provides an outlook on its application prospects.","PeriodicalId":18194,"journal":{"name":"Magnetochemistry","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2023-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43096245","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Modi-Red Mud Loaded CoCatalyst Activated Persulfate Degradation of Ofloxacin 莫迪红泥负载钴催化剂活化过硫酸盐降解氧氟沙星
IF 2.7 4区 化学 Q2 Chemistry Pub Date : 2023-08-11 DOI: 10.3390/magnetochemistry9080203
Qu-Li Wu, Wenquan Sun, K. J. Shah, Yongjun Sun
As an abundant potentially dangerous waste, red mud (RM) requires a straightforward method of resource management. In this paper, an RM catalyst loaded with cobalt (Co-RM) was prepared by the coprecipitation method for the efficient activation of persulfate (PS). Its degradation performance and mechanism of ofloxacin (OFL) were investigated. The characterization results of scanning electron microscopy, X-ray diffractometer, and energy dispersive spectrometer showed cobalt was successfully loaded onto the surface of RM, and the catalyst produced could effectively activate PS. Under the conditions of 15 mg/L OFL, 0.4 g/L Co-RM, 4 g/L PDS, 3.0 pH, and 40 °C temperature, the maximum removal rate of OFL by the Co-RM/PDS system was 80.06%. Free radical scavenging experiments confirmed sulfate radicals were the main active substances in the reaction system. The intermediates in OFL degradation were further identified by gas chromatography-mass spectrometry, and a possible degradation pathway was proposed. Finally, the relationship between defluorination rate and time in the Co-RM/PDS degradation OFL system was described by the first-order kinetic equation. This work reports an economical, environmental solution to the use of waste RM and provides a research basis for the further exploration of RM-based catalysts.
作为一种丰富的潜在危险废物,赤泥需要一种直接的资源管理方法。本文采用共沉淀法制备了一种负载钴的RM催化剂(Co-RM),用于过硫酸盐(PS)的有效活化。研究了其对氧氟沙星的降解性能及降解机理。扫描电子显微镜、X射线衍射仪和能谱仪的表征结果表明,钴成功地负载在RM表面,所制备的催化剂能够有效地活化PS。在15 mg/L OFL、0.4 g/L Co-RM、4 g/L PDS、3.0 pH和40°C温度的条件下,Co-RM/PDS体系对OFL的最大去除率为80.06%。自由基清除实验证实硫酸根是反应体系中的主要活性物质。通过气相色谱-质谱法进一步鉴定了OFL降解过程中的中间体,并提出了可能的降解途径。最后,用一阶动力学方程描述了Co-RM/PDS降解OFL系统中脱氟速率与时间的关系。这项工作报告了一种经济、环保的废RM使用解决方案,并为进一步探索RM基催化剂提供了研究基础。
{"title":"Modi-Red Mud Loaded CoCatalyst Activated Persulfate Degradation of Ofloxacin","authors":"Qu-Li Wu, Wenquan Sun, K. J. Shah, Yongjun Sun","doi":"10.3390/magnetochemistry9080203","DOIUrl":"https://doi.org/10.3390/magnetochemistry9080203","url":null,"abstract":"As an abundant potentially dangerous waste, red mud (RM) requires a straightforward method of resource management. In this paper, an RM catalyst loaded with cobalt (Co-RM) was prepared by the coprecipitation method for the efficient activation of persulfate (PS). Its degradation performance and mechanism of ofloxacin (OFL) were investigated. The characterization results of scanning electron microscopy, X-ray diffractometer, and energy dispersive spectrometer showed cobalt was successfully loaded onto the surface of RM, and the catalyst produced could effectively activate PS. Under the conditions of 15 mg/L OFL, 0.4 g/L Co-RM, 4 g/L PDS, 3.0 pH, and 40 °C temperature, the maximum removal rate of OFL by the Co-RM/PDS system was 80.06%. Free radical scavenging experiments confirmed sulfate radicals were the main active substances in the reaction system. The intermediates in OFL degradation were further identified by gas chromatography-mass spectrometry, and a possible degradation pathway was proposed. Finally, the relationship between defluorination rate and time in the Co-RM/PDS degradation OFL system was described by the first-order kinetic equation. This work reports an economical, environmental solution to the use of waste RM and provides a research basis for the further exploration of RM-based catalysts.","PeriodicalId":18194,"journal":{"name":"Magnetochemistry","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2023-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45027291","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Synthesis and Characterization of Magnetite/Gold Core Shell Nanoparticles Stabilized with a β-Cyclodextrin Nanosponge to Develop a Magneto-Plasmonic System β-环糊精纳米海绵稳定磁铁矿/金核壳纳米粒子的合成与表征
4区 化学 Q2 Chemistry Pub Date : 2023-08-09 DOI: 10.3390/magnetochemistry9080202
Sebastián Salazar Sandoval, Daniel Santibáñez, Ana Riveros, Fabián Araneda, Tamara Bruna, Nataly Silva, Nicolás Yutronic, Marcelo J. Kogan, Paul Jara
Magnetite/gold core-shell nanoparticles (magnetite/gold NPs) have important optical and magnetic properties that provide potential for applications, especially biomedical ones. However, their preparation is not exempt from difficulties that might lead to unexpected or undesired structures. This work reports the synthesis and characterization of magnetite/gold NPs using tetramethylammonium hydroxide (TMAH) to promote the formation of a continuous interface between the magnetite core and the thin gold shell. The synthesized magnetite/gold NPs were characterized using transmission electron microscopy (TEM), energy-dispersive spectroscopy (EDS), field emission scanning electron microscope (FE-SEM), ζ-potential, vibrating sample magnetometer (VSM), selected area electron diffraction (SAED), UV-Visible spectroscopy, and dynamic light scattering (DLS), confirming the core-shell structure of the NPs with narrow size distribution while evidencing its plasmonic and superparamagnetic properties as well. Further, the magnetite/gold NPs were associated and stabilized with a β-cyclodextrin nanosponge (β-CDNSs), obtaining a versatile magneto-plasmonic system for potential applications in the encapsulation and controlled release of drugs.
磁铁矿/金核壳纳米粒子(磁铁矿/金NPs)具有重要的光学和磁性能,具有潜在的应用潜力,特别是在生物医学领域。然而,它们的制备也不能避免可能导致意外或不希望的结构的困难。本文报道了利用四甲基氢氧化铵(TMAH)促进磁铁矿核和薄金壳之间形成连续界面的磁铁矿/金NPs的合成和表征。利用透射电子显微镜(TEM)、能谱(EDS)、场发射扫描电子显微镜(FE-SEM)、ζ-电位、振动样品磁强计(VSM)、选择区域电子衍射(SAED)、紫外可见光谱和动态光散射(DLS)对合成的磁铁矿/金NPs进行了表征,证实了NPs具有窄尺寸分布的核壳结构,同时证明了其等离子体和超顺磁性能。此外,将磁铁矿/金NPs与β-环糊精纳米海绵(β-CDNSs)结合并稳定,获得了一种多功能磁等离子体系统,在药物的包封和控释方面具有潜在的应用前景。
{"title":"Synthesis and Characterization of Magnetite/Gold Core Shell Nanoparticles Stabilized with a β-Cyclodextrin Nanosponge to Develop a Magneto-Plasmonic System","authors":"Sebastián Salazar Sandoval, Daniel Santibáñez, Ana Riveros, Fabián Araneda, Tamara Bruna, Nataly Silva, Nicolás Yutronic, Marcelo J. Kogan, Paul Jara","doi":"10.3390/magnetochemistry9080202","DOIUrl":"https://doi.org/10.3390/magnetochemistry9080202","url":null,"abstract":"Magnetite/gold core-shell nanoparticles (magnetite/gold NPs) have important optical and magnetic properties that provide potential for applications, especially biomedical ones. However, their preparation is not exempt from difficulties that might lead to unexpected or undesired structures. This work reports the synthesis and characterization of magnetite/gold NPs using tetramethylammonium hydroxide (TMAH) to promote the formation of a continuous interface between the magnetite core and the thin gold shell. The synthesized magnetite/gold NPs were characterized using transmission electron microscopy (TEM), energy-dispersive spectroscopy (EDS), field emission scanning electron microscope (FE-SEM), ζ-potential, vibrating sample magnetometer (VSM), selected area electron diffraction (SAED), UV-Visible spectroscopy, and dynamic light scattering (DLS), confirming the core-shell structure of the NPs with narrow size distribution while evidencing its plasmonic and superparamagnetic properties as well. Further, the magnetite/gold NPs were associated and stabilized with a β-cyclodextrin nanosponge (β-CDNSs), obtaining a versatile magneto-plasmonic system for potential applications in the encapsulation and controlled release of drugs.","PeriodicalId":18194,"journal":{"name":"Magnetochemistry","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135653806","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Magnetochemistry
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1