首页 > 最新文献

mAbs最新文献

英文 中文
Applications and challenges in designing VHH-based bispecific antibodies: leveraging machine learning solutions. 设计基于 VHH 的双特异性抗体的应用与挑战:利用机器学习解决方案。
IF 5.3 2区 医学 Q1 Medicine Pub Date : 2024-01-01 Epub Date: 2024-04-26 DOI: 10.1080/19420862.2024.2341443
Michael Mullin, James McClory, Winston Haynes, Justin Grace, Nathan Robertson, Gino van Heeke

The development of bispecific antibodies that bind at least two different targets relies on bringing together multiple binding domains with different binding properties and biophysical characteristics to produce a drug-like therapeutic. These building blocks play an important role in the overall quality of the molecule and can influence many important aspects from potency and specificity to stability and half-life. Single-domain antibodies, particularly camelid-derived variable heavy domain of heavy chain (VHH) antibodies, are becoming an increasingly popular choice for bispecific construction due to their single-domain modularity, favorable biophysical properties, and potential to work in multiple antibody formats. Here, we review the use of VHH domains as building blocks in the construction of multispecific antibodies and the challenges in creating optimized molecules. In addition to exploring traditional approaches to VHH development, we review the integration of machine learning techniques at various stages of the process. Specifically, the utilization of machine learning for structural prediction, lead identification, lead optimization, and humanization of VHH antibodies.

开发至少能结合两个不同靶点的双特异性抗体,需要将具有不同结合特性和生物物理特征的多个结合域结合在一起,以产生类似药物的疗法。这些构件对分子的整体质量起着重要作用,并能影响从效力和特异性到稳定性和半衰期等许多重要方面。单域抗体,尤其是来源于驼科动物的重链可变重域(VHH)抗体,由于其单域模块化、良好的生物物理特性以及在多种抗体形式中发挥作用的潜力,正日益成为双特异性构建的热门选择。在这里,我们回顾了将 VHH 结构域作为构建多特异性抗体的构件的使用情况,以及创建优化分子所面临的挑战。除了探讨 VHH 开发的传统方法外,我们还回顾了机器学习技术在这一过程各个阶段的整合情况。具体来说,机器学习可用于 VHH 抗体的结构预测、先导物鉴定、先导物优化和人源化。
{"title":"Applications and challenges in designing VHH-based bispecific antibodies: leveraging machine learning solutions.","authors":"Michael Mullin, James McClory, Winston Haynes, Justin Grace, Nathan Robertson, Gino van Heeke","doi":"10.1080/19420862.2024.2341443","DOIUrl":"https://doi.org/10.1080/19420862.2024.2341443","url":null,"abstract":"<p><p>The development of bispecific antibodies that bind at least two different targets relies on bringing together multiple binding domains with different binding properties and biophysical characteristics to produce a drug-like therapeutic. These building blocks play an important role in the overall quality of the molecule and can influence many important aspects from potency and specificity to stability and half-life. Single-domain antibodies, particularly camelid-derived variable heavy domain of heavy chain (VHH) antibodies, are becoming an increasingly popular choice for bispecific construction due to their single-domain modularity, favorable biophysical properties, and potential to work in multiple antibody formats. Here, we review the use of VHH domains as building blocks in the construction of multispecific antibodies and the challenges in creating optimized molecules. In addition to exploring traditional approaches to VHH development, we review the integration of machine learning techniques at various stages of the process. Specifically, the utilization of machine learning for structural prediction, lead identification, lead optimization, and humanization of VHH antibodies.</p>","PeriodicalId":18206,"journal":{"name":"mAbs","volume":null,"pages":null},"PeriodicalIF":5.3,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11057648/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140867231","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Expanding the structural resolution of glycosylation microheterogeneity in therapeutic proteins by salt-free hydrophilic interaction liquid chromatography tandem mass spectrometry. 通过无盐亲水相互作用液相色谱串联质谱法扩大治疗蛋白质糖基化微异质性的结构解析。
IF 5.6 2区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL Pub Date : 2024-01-01 Epub Date: 2024-08-27 DOI: 10.1080/19420862.2024.2395503
Yutian Gan, Steffen Lippold, John Stobaugh, Christian Schöneich, Feng Yang

Glycosylation affects the safety and efficacy of therapeutic proteins and is often considered a critical quality attribute (CQA). Therefore, it is important to identify and quantify glycans during drug development. Glycosylation is a highly complex post-translational modification (PTM) due to its structural heterogeneity, i.e. glycosylation site occupancy, glycan compositions, modifications, and isomers. Current analytical tools compromise either structural resolution or site specificity. Hydrophilic interaction liquid chromatography-fluorescence-mass spectrometry (HILIC-FLR-MS) is the gold standard for structural analysis of released glycans, but lacks information on site specificity and occupation. However, HILIC-FLR-MS often uses salt in the solvent, which impairs analysis robustness and sensitivity. Site-specific glycosylation analysis via glycopeptides, upon proteolytic digestion, is commonly performed by reversed-phase liquid chromatography-tandem mass spectrometry (RPLC-MS/MS), but provides only compositional and limited structural glycan information. In this study, we introduce a salt-free, glycopeptide-based HILIC-tandem mass spectrometry (HILIC-MS/MS) method that provides glycan identification, glycan isomer separation and site-specific information simultaneously. Moreover, HILIC-MS/MS demonstrated comparable relative quantification results as released glycan HILIC-FLR-MS. Further, our new method improves the retention of hydrophilic peptides, allowing simultaneous analysis of important CQAs such as deamidation in antibodies. The developed method offers a valuable tool to streamline the site-specific glycosylation analysis of glycoproteins, which is particularly important for the expanding landscape of novel therapeutic formats in the biopharmaceutical industry.

糖基化会影响治疗蛋白质的安全性和有效性,通常被认为是关键质量属性(CQA)。因此,在药物开发过程中识别和量化聚糖非常重要。糖基化是一种高度复杂的翻译后修饰 (PTM),因为其结构具有异质性,即糖基化位点占有率、糖组成、修饰和异构体。目前的分析工具在结构分辨率或位点特异性方面都不尽如人意。亲水作用液相色谱-荧光质谱法(HILIC-FLR-MS)是对释放的聚糖进行结构分析的黄金标准,但缺乏关于位点特异性和占据情况的信息。然而,HILIC-FLR-MS 通常在溶剂中使用盐,这会影响分析的稳健性和灵敏度。通常采用反相液相色谱-串联质谱(RPLC-MS/MS)对蛋白酶消化后的糖肽进行位点特异性糖基化分析,但只能提供组成和有限的结构聚糖信息。在本研究中,我们介绍了一种无盐、基于糖肽的 HILIC-串联质谱(HILIC-MS/MS)方法,该方法可同时提供聚糖鉴定、聚糖异构体分离和特定位点信息。此外,HILIC-MS/MS 与释放糖 HILIC-FLR-MS 的相对定量结果相当。此外,我们的新方法还提高了亲水肽的保留率,可同时分析重要的 CQAs,如抗体中的脱酰胺。所开发的方法为简化糖蛋白的特异位点糖基化分析提供了宝贵的工具,这对于生物制药行业中不断扩大的新型治疗模式尤为重要。
{"title":"Expanding the structural resolution of glycosylation microheterogeneity in therapeutic proteins by salt-free hydrophilic interaction liquid chromatography tandem mass spectrometry.","authors":"Yutian Gan, Steffen Lippold, John Stobaugh, Christian Schöneich, Feng Yang","doi":"10.1080/19420862.2024.2395503","DOIUrl":"10.1080/19420862.2024.2395503","url":null,"abstract":"<p><p>Glycosylation affects the safety and efficacy of therapeutic proteins and is often considered a critical quality attribute (CQA). Therefore, it is important to identify and quantify glycans during drug development. Glycosylation is a highly complex post-translational modification (PTM) due to its structural heterogeneity, i.e. glycosylation site occupancy, glycan compositions, modifications, and isomers. Current analytical tools compromise either structural resolution or site specificity. Hydrophilic interaction liquid chromatography-fluorescence-mass spectrometry (HILIC-FLR-MS) is the gold standard for structural analysis of released glycans, but lacks information on site specificity and occupation. However, HILIC-FLR-MS often uses salt in the solvent, which impairs analysis robustness and sensitivity. Site-specific glycosylation analysis via glycopeptides, upon proteolytic digestion, is commonly performed by reversed-phase liquid chromatography-tandem mass spectrometry (RPLC-MS/MS), but provides only compositional and limited structural glycan information. In this study, we introduce a salt-free, glycopeptide-based HILIC-tandem mass spectrometry (HILIC-MS/MS) method that provides glycan identification, glycan isomer separation and site-specific information simultaneously. Moreover, HILIC-MS/MS demonstrated comparable relative quantification results as released glycan HILIC-FLR-MS. Further, our new method improves the retention of hydrophilic peptides, allowing simultaneous analysis of important CQAs such as deamidation in antibodies. The developed method offers a valuable tool to streamline the site-specific glycosylation analysis of glycoproteins, which is particularly important for the expanding landscape of novel therapeutic formats in the biopharmaceutical industry.</p>","PeriodicalId":18206,"journal":{"name":"mAbs","volume":null,"pages":null},"PeriodicalIF":5.6,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11364061/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142080727","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A tailored lectin microarray for rapid glycan profiling of therapeutic monoclonal antibodies. 用于快速分析治疗性单克隆抗体糖谱的定制凝集素芯片。
IF 5.3 2区 医学 Q1 Medicine Pub Date : 2024-01-01 Epub Date: 2024-01-22 DOI: 10.1080/19420862.2024.2304268
Shen Luo, Baolin Zhang

Glycosylation plays a crucial role in determining the quality and efficacy of therapeutic antibodies. This necessitates a thorough analysis and monitoring process to ensure consistent product quality during manufacturing. In this study, we introduce a custom-designed lectin microarray featuring nine distinct lectins: rPhoSL, rOTH3, RCA120, rMan2, MAL_I, rPSL1a, PHAE, rMOA, and PHAL. These lectins have been specifically tailored to selectively bind to common N-glycan epitopes found in therapeutic IgG antibodies. By utilizing intact glycoprotein samples, our nine-lectin microarray provides a high-throughput platform for rapid glycan profiling, enabling comparative analysis of glycosylation patterns. Our results demonstrate the practical utility of this microarray in assessing glycosylation across various manufacturing batches or between biosimilar and innovator products. This capacity empowers informed decision-making in the development and production of therapeutic antibodies.

糖基化在决定治疗性抗体的质量和疗效方面起着至关重要的作用。这就需要进行全面的分析和监测,以确保生产过程中产品质量的一致性。在这项研究中,我们介绍了一种定制设计的凝集素微阵列,其中包含九种不同的凝集素:rPhoSL、rOTH3、RCA120、rMan2、MAL_I、rPSL1a、PHAE、rMOA 和 PHAL。这些凝集素经过专门定制,可选择性地与治疗性 IgG 抗体中常见的 N-糖表位结合。通过利用完整的糖蛋白样本,我们的九种凝集素芯片为快速糖谱分析提供了一个高通量平台,使糖基化模式的比较分析成为可能。我们的研究结果证明了这种芯片在评估不同生产批次或生物仿制药与创新药之间的糖基化方面的实用性。这种能力有助于在治疗性抗体的开发和生产过程中做出明智的决策。
{"title":"A tailored lectin microarray for rapid glycan profiling of therapeutic monoclonal antibodies.","authors":"Shen Luo, Baolin Zhang","doi":"10.1080/19420862.2024.2304268","DOIUrl":"10.1080/19420862.2024.2304268","url":null,"abstract":"<p><p>Glycosylation plays a crucial role in determining the quality and efficacy of therapeutic antibodies. This necessitates a thorough analysis and monitoring process to ensure consistent product quality during manufacturing. In this study, we introduce a custom-designed lectin microarray featuring nine distinct lectins: rPhoSL, rOTH3, RCA120, rMan2, MAL_I, rPSL1a, PHAE, rMOA, and PHAL. These lectins have been specifically tailored to selectively bind to common N-glycan epitopes found in therapeutic IgG antibodies. By utilizing intact glycoprotein samples, our nine-lectin microarray provides a high-throughput platform for rapid glycan profiling, enabling comparative analysis of glycosylation patterns. Our results demonstrate the practical utility of this microarray in assessing glycosylation across various manufacturing batches or between biosimilar and innovator products. This capacity empowers informed decision-making in the development and production of therapeutic antibodies.</p>","PeriodicalId":18206,"journal":{"name":"mAbs","volume":null,"pages":null},"PeriodicalIF":5.3,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10807468/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139521322","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correction. 更正。
IF 5.3 2区 医学 Q1 Medicine Pub Date : 2024-01-01 Epub Date: 2024-02-08 DOI: 10.1080/19420862.2024.2312050
{"title":"Correction.","authors":"","doi":"10.1080/19420862.2024.2312050","DOIUrl":"10.1080/19420862.2024.2312050","url":null,"abstract":"","PeriodicalId":18206,"journal":{"name":"mAbs","volume":null,"pages":null},"PeriodicalIF":5.3,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10857669/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139702817","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Impact of antibody architecture and paratope valency on effector functions of bispecific NKp30 x EGFR natural killer cell engagers. 抗体结构和副配位价对双特异性 NKp30 x 表皮生长因子受体自然杀伤细胞吸引器效应功能的影响。
IF 5.3 2区 医学 Q1 Medicine Pub Date : 2024-01-01 Epub Date: 2024-02-19 DOI: 10.1080/19420862.2024.2315640
Ammelie Svea Boje, Lukas Pekar, Katharina Koep, Britta Lipinski, Brian Rabinovich, Andreas Evers, Carina Lynn Gehlert, Steffen Krohn, Yanping Xiao, Simon Krah, Rinat Zaynagetdinov, Lars Toleikis, Sven Poetzsch, Matthias Peipp, Stefan Zielonka, Katja Klausz

Natural killer (NK) cells emerged as a promising effector population that can be harnessed for anti-tumor therapy. In this work, we constructed NK cell engagers (NKCEs) based on NKp30-targeting single domain antibodies (sdAbs) that redirect the cytotoxic potential of NK cells toward epidermal growth factor receptor (EGFR)-expressing tumor cells. We investigated the impact of crucial parameters such as sdAb location, binding valencies, the targeted epitope on NKp30, and the overall antibody architecture on the redirection capacity. Our study exploited two NKp30-specific sdAbs, one of which binds a similar epitope on NKp30 as its natural ligand B7-H6, while the other sdAb addresses a non-competing epitope. For EGFR-positive tumor targeting, humanized antigen-binding domains of therapeutic antibody cetuximab were used. We demonstrate that NKCEs bivalently targeting EGFR and bivalently engaging NKp30 are superior to monovalent NKCEs in promoting NK cell-mediated tumor cell lysis and that the architecture of the NKCE can substantially influence killing capacities depending on the NKp30-targeting sdAb utilized. While having a pronounced impact on NK cell killing efficacy, the capabilities of triggering antibody-dependent cellular phagocytosis or complement-dependent cytotoxicity were not significantly affected comparing the bivalent IgG-like NKCEs with cetuximab. However, the fusion of sdAbs can have a slight impact on the NK cell release of immunomodulatory cytokines, as well as on the pharmacokinetic profile of the NKCE due to unfavorable spatial orientation within the molecule architecture. Ultimately, our findings reveal novel insights for the engineering of potent NKCEs triggering the NKp30 axis.

自然杀伤(NK)细胞是一种很有前景的效应细胞群,可用于抗肿瘤治疗。在这项研究中,我们构建了基于 NKp30 靶向单域抗体(sdAb)的 NK 细胞吞噬因子(NKCEs),它能将 NK 细胞的细胞毒性潜能重新导向表皮生长因子受体(EGFR)表达的肿瘤细胞。我们研究了 sdAb 的位置、结合价、NKp30 上的靶标表位和整体抗体结构等关键参数对重定向能力的影响。我们的研究利用了两种 NKp30 特异性 sdAb,其中一种结合了 NKp30 上与其天然配体 B7-H6 相似的表位,而另一种 sdAb 则针对非竞争表位。为了靶向表皮生长因子受体阳性肿瘤,我们使用了治疗性抗体西妥昔单抗的人源化抗原结合域。我们的研究表明,在促进 NK 细胞介导的肿瘤细胞溶解方面,以表皮生长因子受体为靶点并与 NKp30 双价结合的 NKCE 优于单价 NKCE,而且 NKCE 的结构会极大地影响杀伤能力,具体取决于所使用的 NKp30 靶向 sdAb。二价 IgG 样 NKCE 与西妥昔单抗相比,虽然对 NK 细胞杀伤效力有明显影响,但引发抗体依赖性细胞吞噬或补体依赖性细胞毒性的能力并没有受到显著影响。然而,sdAbs 的融合会对 NK 细胞释放免疫调节细胞因子以及 NKCE 的药代动力学特征产生轻微影响,原因是分子结构中的空间取向不利。最终,我们的研究结果揭示了设计触发 NKp30 轴的强效 NKCE 的新见解。
{"title":"Impact of antibody architecture and paratope valency on effector functions of bispecific NKp30 x EGFR natural killer cell engagers.","authors":"Ammelie Svea Boje, Lukas Pekar, Katharina Koep, Britta Lipinski, Brian Rabinovich, Andreas Evers, Carina Lynn Gehlert, Steffen Krohn, Yanping Xiao, Simon Krah, Rinat Zaynagetdinov, Lars Toleikis, Sven Poetzsch, Matthias Peipp, Stefan Zielonka, Katja Klausz","doi":"10.1080/19420862.2024.2315640","DOIUrl":"10.1080/19420862.2024.2315640","url":null,"abstract":"<p><p>Natural killer (NK) cells emerged as a promising effector population that can be harnessed for anti-tumor therapy. In this work, we constructed NK cell engagers (NKCEs) based on NKp30-targeting single domain antibodies (sdAbs) that redirect the cytotoxic potential of NK cells toward epidermal growth factor receptor (EGFR)-expressing tumor cells. We investigated the impact of crucial parameters such as sdAb location, binding valencies, the targeted epitope on NKp30, and the overall antibody architecture on the redirection capacity. Our study exploited two NKp30-specific sdAbs, one of which binds a similar epitope on NKp30 as its natural ligand B7-H6, while the other sdAb addresses a non-competing epitope. For EGFR-positive tumor targeting, humanized antigen-binding domains of therapeutic antibody cetuximab were used. We demonstrate that NKCEs bivalently targeting EGFR and bivalently engaging NKp30 are superior to monovalent NKCEs in promoting NK cell-mediated tumor cell lysis and that the architecture of the NKCE can substantially influence killing capacities depending on the NKp30-targeting sdAb utilized. While having a pronounced impact on NK cell killing efficacy, the capabilities of triggering antibody-dependent cellular phagocytosis or complement-dependent cytotoxicity were not significantly affected comparing the bivalent IgG-like NKCEs with cetuximab. However, the fusion of sdAbs can have a slight impact on the NK cell release of immunomodulatory cytokines, as well as on the pharmacokinetic profile of the NKCE due to unfavorable spatial orientation within the molecule architecture. Ultimately, our findings reveal novel insights for the engineering of potent NKCEs triggering the NKp30 axis.</p>","PeriodicalId":18206,"journal":{"name":"mAbs","volume":null,"pages":null},"PeriodicalIF":5.3,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10877975/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139900204","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Biparatopic antibodies: therapeutic applications and prospects. 双位抗体:治疗应用与前景。
IF 5.3 2区 医学 Q1 Medicine Pub Date : 2024-01-01 Epub Date: 2024-03-04 DOI: 10.1080/19420862.2024.2310890
David L Niquille, Kyle M Fitzgerald, Nimish Gera

Biparatopic antibodies (bpAbs) bind distinct, non-overlapping epitopes on an antigen. This unique binding mode enables new mechanisms of action beyond monospecific and bispecific antibodies (bsAbs) that can make bpAbs effective therapeutics for various indications, including oncology and infectious diseases. Biparatopic binding can lead to superior affinity and specificity, promote antagonism, lock target conformation, and result in higher-order target clustering. Such antibody-target complexes can elicit strong agonism, increase immune effector function, or result in rapid target downregulation and lysosomal trafficking. These are not only attractive properties for therapeutic antibodies but are increasingly being explored for other modalities such as antibody-drug conjugates, T-cell engagers and chimeric antigen receptors. Recent advances in bpAb engineering have enabled the construction of ever more sophisticated formats that are starting to show promise in the clinic.

双特异性抗体(bpAbs)与抗原上不同的、不重叠的表位结合。这种独特的结合模式产生了超越单特异性抗体和双特异性抗体(bsAbs)的新作用机制,可使双特异性抗体成为包括肿瘤和传染病在内的各种适应症的有效疗法。双特异性结合可产生更强的亲和力和特异性,促进拮抗作用,锁定目标构象,并产生更高阶的目标聚类。这种抗体-靶点复合物可引起强烈的激动作用,增强免疫效应功能,或导致靶点快速下调和溶酶体转运。这些特性不仅对治疗性抗体很有吸引力,而且正越来越多地被用于其他方式,如抗体-药物共轭物、T 细胞诱导体和嵌合抗原受体。bpAb 工程技术的最新进展使得构建更复杂的形式成为可能,并开始在临床上显示出前景。
{"title":"Biparatopic antibodies: therapeutic applications and prospects.","authors":"David L Niquille, Kyle M Fitzgerald, Nimish Gera","doi":"10.1080/19420862.2024.2310890","DOIUrl":"10.1080/19420862.2024.2310890","url":null,"abstract":"<p><p>Biparatopic antibodies (bpAbs) bind distinct, non-overlapping epitopes on an antigen. This unique binding mode enables new mechanisms of action beyond monospecific and bispecific antibodies (bsAbs) that can make bpAbs effective therapeutics for various indications, including oncology and infectious diseases. Biparatopic binding can lead to superior affinity and specificity, promote antagonism, lock target conformation, and result in higher-order target clustering. Such antibody-target complexes can elicit strong agonism, increase immune effector function, or result in rapid target downregulation and lysosomal trafficking. These are not only attractive properties for therapeutic antibodies but are increasingly being explored for other modalities such as antibody-drug conjugates, T-cell engagers and chimeric antigen receptors. Recent advances in bpAb engineering have enabled the construction of ever more sophisticated formats that are starting to show promise in the clinic.</p>","PeriodicalId":18206,"journal":{"name":"mAbs","volume":null,"pages":null},"PeriodicalIF":5.3,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10936611/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140028389","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A pivotal decade for bispecific antibodies? 双特异性抗体的关键十年?
IF 5.3 2区 医学 Q1 Medicine Pub Date : 2024-01-01 Epub Date: 2024-03-11 DOI: 10.1080/19420862.2024.2321635
Marlena Surowka, Christian Klein

Bispecific antibodies (bsAbs) are a class of antibodies that can mediate novel mechanisms of action compared to monospecific monoclonal antibodies (mAbs). Since the discovery of mAbs and their adoption as therapeutic agents in the 1980s and 1990s, the development of bsAbs has held substantial appeal. Nevertheless, only three bsAbs (catumaxomab, blinatumomab, emicizumab) were approved through the end of 2020. However, since then, 11 bsAbs received regulatory agency approvals, of which nine (amivantamab, tebentafusp, mosunetuzumab, cadonilimab, teclistamab, glofitamab, epcoritamab, talquetamab, elranatamab) were approved for the treatment of cancer and two (faricimab, ozoralizumab) in non-oncology indications. Notably, of the 13 currently approved bsAbs, two, emicizumab and faricimab, have achieved blockbuster status, showing the promise of this novel class of therapeutics. In the 2020s, the approval of additional bsAbs can be expected in hematological malignancies, solid tumors and non-oncology indications, establishing bsAbs as essential part of the therapeutic armamentarium.

与单特异性单克隆抗体(mAbs)相比,双特异性抗体(bsAbs)是一类能介导新作用机制的抗体。自 20 世纪 80 年代和 90 年代发现 mAbs 并将其作为治疗药物以来,双特异性抗体的开发一直具有巨大的吸引力。然而,截至 2020 年底,只有三种 bsAbs(catumaxomab、blinatumomab 和 emicizumab)获得批准。然而,从那时起,有 11 种 bsAbs 获得了监管机构的批准,其中 9 种(amivantamab、tebentafusp、mosunetuzumab、cadonilimab、teclistamab、glofitamab、epcoritamab、talquetamab、elranatamab)被批准用于治疗癌症,2 种(faricimab、ozoralizumab)被批准用于非肿瘤适应症。值得注意的是,在目前获批的 13 种 bsAbs 中,有两种(emicizumab 和 faricimab)获得了大片地位,显示了这类新型疗法的前景。2020 年代,预计还会有更多的 bsAbs 获批用于血液恶性肿瘤、实体瘤和非肿瘤适应症,从而使 bsAbs 成为治疗手段的重要组成部分。
{"title":"A pivotal decade for bispecific antibodies?","authors":"Marlena Surowka, Christian Klein","doi":"10.1080/19420862.2024.2321635","DOIUrl":"10.1080/19420862.2024.2321635","url":null,"abstract":"<p><p>Bispecific antibodies (bsAbs) are a class of antibodies that can mediate novel mechanisms of action compared to monospecific monoclonal antibodies (mAbs). Since the discovery of mAbs and their adoption as therapeutic agents in the 1980s and 1990s, the development of bsAbs has held substantial appeal. Nevertheless, only three bsAbs (catumaxomab, blinatumomab, emicizumab) were approved through the end of 2020. However, since then, 11 bsAbs received regulatory agency approvals, of which nine (amivantamab, tebentafusp, mosunetuzumab, cadonilimab, teclistamab, glofitamab, epcoritamab, talquetamab, elranatamab) were approved for the treatment of cancer and two (faricimab, ozoralizumab) in non-oncology indications. Notably, of the 13 currently approved bsAbs, two, emicizumab and faricimab, have achieved blockbuster status, showing the promise of this novel class of therapeutics. In the 2020s, the approval of additional bsAbs can be expected in hematological malignancies, solid tumors and non-oncology indications, establishing bsAbs as essential part of the therapeutic armamentarium.</p>","PeriodicalId":18206,"journal":{"name":"mAbs","volume":null,"pages":null},"PeriodicalIF":5.3,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10936642/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140094362","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Reduction of monoclonal antibody viscosity using interpretable machine learning. 利用可解释的机器学习降低单克隆抗体粘度。
IF 5.3 2区 医学 Q1 Medicine Pub Date : 2024-01-01 Epub Date: 2024-03-12 DOI: 10.1080/19420862.2024.2303781
Emily K Makowski, Hsin-Ting Chen, Tiexin Wang, Lina Wu, Jie Huang, Marissa Mock, Patrick Underhill, Emma Pelegri-O'Day, Erick Maglalang, Dwight Winters, Peter M Tessier

Early identification of antibody candidates with drug-like properties is essential for simplifying the development of safe and effective antibody therapeutics. For subcutaneous administration, it is important to identify candidates with low self-association to enable their formulation at high concentration while maintaining low viscosity, opalescence, and aggregation. Here, we report an interpretable machine learning model for predicting antibody (IgG1) variants with low viscosity using only the sequences of their variable (Fv) regions. Our model was trained on antibody viscosity data (>100 mg/mL mAb concentration) obtained at a common formulation pH (pH 5.2), and it identifies three key Fv features of antibodies linked to viscosity, namely their isoelectric points, hydrophobic patch sizes, and numbers of negatively charged patches. Of the three features, most predicted antibodies at risk for high viscosity, including antibodies with diverse antibody germlines in our study (79 mAbs) as well as clinical-stage IgG1s (94 mAbs), are those with low Fv isoelectric points (Fv pIs < 6.3). Our model identifies viscous antibodies with relatively high accuracy not only in our training and test sets, but also for previously reported data. Importantly, we show that the interpretable nature of the model enables the design of mutations that significantly reduce antibody viscosity, which we confirmed experimentally. We expect that this approach can be readily integrated into the drug development process to reduce the need for experimental viscosity screening and improve the identification of antibody candidates with drug-like properties.

要简化安全有效的抗体疗法的开发过程,及早发现具有类药物特性的抗体候选物至关重要。对于皮下给药,重要的是识别低自结合的候选抗体,以便在保持低粘度、不透明和低聚集的同时实现高浓度制剂。在此,我们报告了一种可解释的机器学习模型,该模型仅使用抗体可变区(Fv)的序列来预测低粘度的抗体(IgG1)变体。我们的模型是在常见制剂 pH 值(pH 5.2)下获得的抗体粘度数据(>100 mg/mL mAb 浓度)上进行训练的,它识别出了与粘度相关的抗体的三个关键 Fv 特征,即等电点、疏水斑块大小和带负电荷斑块的数量。在这三个特征中,大多数预测有高粘度风险的抗体,包括在我们的研究中具有不同抗体种系的抗体(79 mAbs)以及临床阶段的 IgG1s(94 mAbs),都是那些 Fv 等电点较低(Fv pIs
{"title":"Reduction of monoclonal antibody viscosity using interpretable machine learning.","authors":"Emily K Makowski, Hsin-Ting Chen, Tiexin Wang, Lina Wu, Jie Huang, Marissa Mock, Patrick Underhill, Emma Pelegri-O'Day, Erick Maglalang, Dwight Winters, Peter M Tessier","doi":"10.1080/19420862.2024.2303781","DOIUrl":"10.1080/19420862.2024.2303781","url":null,"abstract":"<p><p>Early identification of antibody candidates with drug-like properties is essential for simplifying the development of safe and effective antibody therapeutics. For subcutaneous administration, it is important to identify candidates with low self-association to enable their formulation at high concentration while maintaining low viscosity, opalescence, and aggregation. Here, we report an interpretable machine learning model for predicting antibody (IgG1) variants with low viscosity using only the sequences of their variable (Fv) regions. Our model was trained on antibody viscosity data (>100 mg/mL mAb concentration) obtained at a common formulation pH (pH 5.2), and it identifies three key Fv features of antibodies linked to viscosity, namely their isoelectric points, hydrophobic patch sizes, and numbers of negatively charged patches. Of the three features, most predicted antibodies at risk for high viscosity, including antibodies with diverse antibody germlines in our study (79 mAbs) as well as clinical-stage IgG1s (94 mAbs), are those with low Fv isoelectric points (Fv pIs < 6.3). Our model identifies viscous antibodies with relatively high accuracy not only in our training and test sets, but also for previously reported data. Importantly, we show that the interpretable nature of the model enables the design of mutations that significantly reduce antibody viscosity, which we confirmed experimentally. We expect that this approach can be readily integrated into the drug development process to reduce the need for experimental viscosity screening and improve the identification of antibody candidates with drug-like properties.</p>","PeriodicalId":18206,"journal":{"name":"mAbs","volume":null,"pages":null},"PeriodicalIF":5.3,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10939158/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140110601","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Comprehensive characterization of higher order structure changes in methionine oxidized monoclonal antibodies via NMR chemometric analysis and biophysical approaches. 通过核磁共振化学计量分析和生物物理方法全面鉴定蛋氨酸氧化单克隆抗体的高阶结构变化。
IF 5.3 2区 医学 Q1 Medicine Pub Date : 2024-01-01 Epub Date: 2023-12-20 DOI: 10.1080/19420862.2023.2292688
Mingyue Li, Victor A Beaumont, Shahajahan Akbar, Hannah Duncan, Arch Creasy, Wenge Wang, Kelly Sackett, Lisa Marzilli, Jason C Rouse, Hai-Young Kim

The higher order structure (HOS) of monoclonal antibodies (mAbs) is an important quality attribute with strong contribution to clinically relevant biological functions and drug safety. Due to the multi-faceted nature of HOS, the synergy of multiple complementary analytical approaches can substantially improve the understanding, accuracy, and resolution of HOS characterization. In this study, we applied one- and two-dimensional (1D and 2D) nuclear magnetic resonance (NMR) spectroscopy coupled with chemometric analysis, as well as circular dichroism (CD), differential scanning calorimetry (DSC), and fluorescence spectroscopy as orthogonal methods, to characterize the impact of methionine (Met) oxidation on the HOS of an IgG1 mAb. We used a forced degradation method involving concentration-dependent oxidation by peracetic acid, in which Met oxidation is site-specifically quantified by liquid chromatography-mass spectrometry. Conventional biophysical techniques report nuanced results, in which CD detects no change to the secondary structure and little change in the tertiary structure. Yet, DSC measurements show the destabilization of Fab and Fc domains due to Met oxidation. More importantly, our study demonstrates that 1D and 2D NMR and chemometric analysis can provide semi-quantitative analysis of chemical modifications and resolve localized conformational changes with high sensitivity. Furthermore, we leveraged a novel 15N-Met labeling technique of the antibody to directly observe structural perturbations at the oxidation sites. The NMR methods described here to probe HOS changes are highly reliable and practical in biopharmaceutical characterization.

单克隆抗体(mAbs)的高阶结构(HOS)是一项重要的质量属性,对临床相关的生物功能和药物安全性有很大的影响。由于高阶结构的多面性,多种互补分析方法的协同作用可大大提高对高阶结构表征的理解、准确性和分辨率。在本研究中,我们应用一维和二维(1D 和 2D)核磁共振(NMR)光谱与化学计量学分析相结合的方法,以及圆二色性(CD)、差示扫描量热法(DSC)和荧光光谱等正交方法,来表征蛋氨酸(Met)氧化对 IgG1 mAb HOS 的影响。我们采用了过乙酸浓度依赖性氧化的强制降解方法,其中 Met 氧化可通过液相色谱-质谱法进行定点定量。传统的生物物理技术报告了微妙的结果,其中 CD 检测到二级结构没有变化,三级结构变化很小。然而,DSC 测量显示,由于 Met 氧化,Fab 和 Fc 结构域的稳定性受到破坏。更重要的是,我们的研究表明,一维和二维核磁共振及化学计量分析可提供化学修饰的半定量分析,并以高灵敏度解析局部构象变化。此外,我们还利用抗体的新型 15N-Met 标记技术直接观察了氧化位点的结构扰动。本文所述的核磁共振方法可探测 HOS 的变化,在生物制药表征中非常可靠和实用。
{"title":"Comprehensive characterization of higher order structure changes in methionine oxidized monoclonal antibodies via NMR chemometric analysis and biophysical approaches.","authors":"Mingyue Li, Victor A Beaumont, Shahajahan Akbar, Hannah Duncan, Arch Creasy, Wenge Wang, Kelly Sackett, Lisa Marzilli, Jason C Rouse, Hai-Young Kim","doi":"10.1080/19420862.2023.2292688","DOIUrl":"10.1080/19420862.2023.2292688","url":null,"abstract":"<p><p>The higher order structure (HOS) of monoclonal antibodies (mAbs) is an important quality attribute with strong contribution to clinically relevant biological functions and drug safety. Due to the multi-faceted nature of HOS, the synergy of multiple complementary analytical approaches can substantially improve the understanding, accuracy, and resolution of HOS characterization. In this study, we applied one- and two-dimensional (1D and 2D) nuclear magnetic resonance (NMR) spectroscopy coupled with chemometric analysis, as well as circular dichroism (CD), differential scanning calorimetry (DSC), and fluorescence spectroscopy as orthogonal methods, to characterize the impact of methionine (Met) oxidation on the HOS of an IgG1 mAb. We used a forced degradation method involving concentration-dependent oxidation by peracetic acid, in which Met oxidation is site-specifically quantified by liquid chromatography-mass spectrometry. Conventional biophysical techniques report nuanced results, in which CD detects no change to the secondary structure and little change in the tertiary structure. Yet, DSC measurements show the destabilization of Fab and Fc domains due to Met oxidation. More importantly, our study demonstrates that 1D and 2D NMR and chemometric analysis can provide semi-quantitative analysis of chemical modifications and resolve localized conformational changes with high sensitivity. Furthermore, we leveraged a novel <sup>15</sup>N-Met labeling technique of the antibody to directly observe structural perturbations at the oxidation sites. The NMR methods described here to probe HOS changes are highly reliable and practical in biopharmaceutical characterization.</p>","PeriodicalId":18206,"journal":{"name":"mAbs","volume":null,"pages":null},"PeriodicalIF":5.3,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10761137/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138801576","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Antibodies to watch in 2024. 2024 年值得关注的抗体
IF 5.3 2区 医学 Q1 Medicine Pub Date : 2024-01-01 Epub Date: 2024-01-05 DOI: 10.1080/19420862.2023.2297450
Silvia Crescioli, Hélène Kaplon, Alicia Chenoweth, Lin Wang, Jyothsna Visweswaraiah, Janice M Reichert

The 'Antibodies to Watch' article series provides an annual summary of commercially sponsored monoclonal antibody therapeutics currently in late-stage clinical development, regulatory review, and those recently granted a first approval in any country. In this installment, we discuss key details for 16 antibody therapeutics granted a first approval in 2023, as of November 17 (lecanemab (Leqembi), rozanolixizumab (RYSTIGGO), pozelimab (VEOPOZ), mirikizumab (Omvoh), talquetamab (Talvey), elranatamab (Elrexfio), epcoritamab (EPKINLY), glofitamab (COLUMVI), retifanlimab (Zynyz), concizumab (Alhemo), lebrikizumab (EBGLYSS), tafolecimab (SINTBILO), narlumosbart (Jinlitai), zuberitamab (Enrexib), adebrelimab (Arelili), and divozilimab (Ivlizi)). We briefly review 26 product candidates for which marketing applications are under consideration in at least one country or region, and 23 investigational antibody therapeutics that are forecast to enter regulatory review by the end of 2024 based on company disclosures. These nearly 50 product candidates include numerous innovative bispecific antibodies, such as odronextamab, ivonescimab, linvoseltamab, zenocutuzumab, and erfonrilimab, and antibody-drug conjugates, such as trastuzumab botidotin, patritumab deruxtecan, datopotamab deruxtecan, and MRG002, as well as a mixture of two immunocytokines (bifikafusp alfa and onfekafusp alfa). We also discuss clinical phase transition and overall approval success rates for antibody therapeutics, which are crucial to the biopharmaceutical industry because these rates inform decisions about resource allocation. Our analyses indicate that these molecules have approval success rates in the range of 14-32%, with higher rates associated with antibodies developed for non-cancer indications. Overall, our data suggest that antibody therapeutic development efforts by the biopharmaceutical industry are robust and increasingly successful.

值得关注的抗体 "系列文章对目前处于临床开发后期、监管审查和最近在任何国家获得首次批准的商业赞助单克隆抗体疗法进行了年度总结。在本期文章中,我们将讨论截至 11 月 17 日在 2023 年获得首次批准的 16 种抗体疗法(lecanemab (Leqembi)、rozanolixizumab (RYSTIGGO)、pozelimab (VEOPOZ)、mirikizumab (Omvoh)、talquetamab (Talvey))的主要细节、elranatamab(Elrexfio)、epcoritamab(EPKINLY)、glofitamab(COLUMVI)、retifanlimab(Zynyz)、concizumab(Alhemo)、lebrikizumab(EBGLYSS)、tafolecimab (SINTBILO)、narlumosbart (金立泰)、zuberitamab (Enrexib)、adebrelimab (Arelili) 和 divozilimab (Ivlizi))。我们简要回顾了至少有一个国家或地区正在考虑上市申请的 26 种候选产品,以及根据公司披露的信息预计将于 2024 年底进入监管审查的 23 种在研抗体疗法。这近 50 种候选产品包括许多创新的双特异性抗体,如 odronextamab、ivonescimab、linvoseltamab、zenocutuzumab 和 erfonrilimab,以及抗体-药物共轭物,如 trastuzumab botidotin、patritumab deruxtecan、datopotamab deruxtecan 和 MRG002,以及两种免疫细胞因子的混合物(bifikafusp alfa 和 onfekafusp alfa)。我们还讨论了抗体疗法的临床阶段转换和总体批准成功率,这对生物制药行业至关重要,因为这些成功率为资源分配决策提供了依据。我们的分析表明,这些分子的获批成功率在 14% 到 32% 之间,非癌症适应症抗体的获批成功率更高。总之,我们的数据表明,生物制药行业的抗体治疗研发工作正在蓬勃发展,而且越来越成功。
{"title":"Antibodies to watch in 2024.","authors":"Silvia Crescioli, Hélène Kaplon, Alicia Chenoweth, Lin Wang, Jyothsna Visweswaraiah, Janice M Reichert","doi":"10.1080/19420862.2023.2297450","DOIUrl":"10.1080/19420862.2023.2297450","url":null,"abstract":"<p><p>The 'Antibodies to Watch' article series provides an annual summary of commercially sponsored monoclonal antibody therapeutics currently in late-stage clinical development, regulatory review, and those recently granted a first approval in any country. In this installment, we discuss key details for 16 antibody therapeutics granted a first approval in 2023, as of November 17 (lecanemab (Leqembi), rozanolixizumab (RYSTIGGO), pozelimab (VEOPOZ), mirikizumab (Omvoh), talquetamab (Talvey), elranatamab (Elrexfio), epcoritamab (EPKINLY), glofitamab (COLUMVI), retifanlimab (Zynyz), concizumab (Alhemo), lebrikizumab (EBGLYSS), tafolecimab (SINTBILO), narlumosbart (Jinlitai), zuberitamab (Enrexib), adebrelimab (Arelili), and divozilimab (Ivlizi)). We briefly review 26 product candidates for which marketing applications are under consideration in at least one country or region, and 23 investigational antibody therapeutics that are forecast to enter regulatory review by the end of 2024 based on company disclosures. These nearly 50 product candidates include numerous innovative bispecific antibodies, such as odronextamab, ivonescimab, linvoseltamab, zenocutuzumab, and erfonrilimab, and antibody-drug conjugates, such as trastuzumab botidotin, patritumab deruxtecan, datopotamab deruxtecan, and MRG002, as well as a mixture of two immunocytokines (bifikafusp alfa and onfekafusp alfa). We also discuss clinical phase transition and overall approval success rates for antibody therapeutics, which are crucial to the biopharmaceutical industry because these rates inform decisions about resource allocation. Our analyses indicate that these molecules have approval success rates in the range of 14-32%, with higher rates associated with antibodies developed for non-cancer indications. Overall, our data suggest that antibody therapeutic development efforts by the biopharmaceutical industry are robust and increasingly successful.</p>","PeriodicalId":18206,"journal":{"name":"mAbs","volume":null,"pages":null},"PeriodicalIF":5.3,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10773713/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139098161","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
mAbs
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1