首页 > 最新文献

mAbs最新文献

英文 中文
Exploring molecular determinants and pharmacokinetic properties of IgG1-scFv bispecific antibodies. 探索 IgG1-scFv 双特异性抗体的分子决定因素和药代动力学特性。
IF 5.3 2区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL Pub Date : 2024-01-01 Epub Date: 2024-03-06 DOI: 10.1080/19420862.2024.2318817
Kristina M J Aertker, Minu Ravindra Pilvankar, Tobias M Prass, Michaela Blech, Fabian Higel, Srinath Kasturirangan

Bispecific antibodies (BsAbs) capable of recognizing two distinct epitopes or antigens offer promising therapeutic options for various diseases by targeting multiple pathways. The favorable pharmacokinetic (PK) properties of monoclonal antibodies (mAbs) are crucial, as they directly influence patient safety and therapeutic efficacy. For numerous mAb therapeutics, optimization of neonatal Fc receptor (FcRn) interactions and elimination of unfavorable molecular properties have led to improved PK properties. However, many BsAbs exhibit unfavorable PK, which has precluded their development as drugs. In this report, we present studies on the molecular determinants underlying the distinct PK profiles of three IgG1-scFv BsAbs. Our study indicated that high levels of nonspecific interactions, elevated isoelectric point (pI), and increased number of positively charged patches contributed to the fast clearance of IgG1-scFv. FcRn chromatography results revealed specific scFv-FcRn interactions that are unique to the IgG1-scFv, which was further supported by molecular dynamics (MD) simulation. These interactions likely stabilize the BsAb FcRn interaction at physiological pH, which in turn could disrupt FcRn-mediated BsAb recycling. In addition to the empirical observations, we also evaluated the impact of in silico properties, including pI differential between the Fab and scFv and the ratio of dipole moment to hydrophobic moment (RM) and their correlation with the observed clearance. These findings highlight that the PK properties of BsAbs may be governed by novel determinants, owing to their increased structural complexity compared to immunoglobulin G (IgG) 1 antibodies.

能够识别两种不同表位或抗原的双特异性抗体(BsAbs)通过靶向多种途径为各种疾病提供了有前景的治疗方案。单克隆抗体(mAbs)良好的药代动力学(PK)特性至关重要,因为它们直接影响患者的安全性和疗效。对于许多 mAb 疗法来说,新生 Fc 受体(FcRn)相互作用的优化和不利分子特性的消除已使 PK 特性得到改善。然而,许多 BsAbs 表现出不利的 PK 特性,这阻碍了它们作为药物的开发。在本报告中,我们对三种 IgG1-scFv BsAbs 不同 PK 特性的分子决定因素进行了研究。我们的研究表明,高水平的非特异性相互作用、等电点(pI)升高以及带正电荷的斑块数量增加导致了 IgG1-scFv 的快速清除。FcRn层析结果显示了IgG1-scFv特有的特异性scFv-FcRn相互作用,分子动力学(MD)模拟进一步证实了这一点。这些相互作用可能会稳定 BsAb 与 FcRn 在生理 pH 值下的相互作用,进而破坏 FcRn 介导的 BsAb 循环。除了经验观察之外,我们还评估了硅学特性的影响,包括 Fab 和 scFv 之间的 pI 差异以及偶极矩与疏水矩(RM)之比,以及它们与观察到的清除率之间的相关性。这些发现突出表明,与免疫球蛋白 G(IgG)1 抗体相比,BsAbs 的结构更加复杂,因此它们的 PK 特性可能受新的决定因素制约。
{"title":"Exploring molecular determinants and pharmacokinetic properties of IgG1-scFv bispecific antibodies.","authors":"Kristina M J Aertker, Minu Ravindra Pilvankar, Tobias M Prass, Michaela Blech, Fabian Higel, Srinath Kasturirangan","doi":"10.1080/19420862.2024.2318817","DOIUrl":"10.1080/19420862.2024.2318817","url":null,"abstract":"<p><p>Bispecific antibodies (BsAbs) capable of recognizing two distinct epitopes or antigens offer promising therapeutic options for various diseases by targeting multiple pathways. The favorable pharmacokinetic (PK) properties of monoclonal antibodies (mAbs) are crucial, as they directly influence patient safety and therapeutic efficacy. For numerous mAb therapeutics, optimization of neonatal Fc receptor (FcRn) interactions and elimination of unfavorable molecular properties have led to improved PK properties. However, many BsAbs exhibit unfavorable PK, which has precluded their development as drugs. In this report, we present studies on the molecular determinants underlying the distinct PK profiles of three IgG1-scFv BsAbs. Our study indicated that high levels of nonspecific interactions, elevated isoelectric point (pI), and increased number of positively charged patches contributed to the fast clearance of IgG1-scFv. FcRn chromatography results revealed specific scFv-FcRn interactions that are unique to the IgG1-scFv, which was further supported by molecular dynamics (MD) simulation. These interactions likely stabilize the BsAb FcRn interaction at physiological pH, which in turn could disrupt FcRn-mediated BsAb recycling. In addition to the empirical observations, we also evaluated the impact of <i>in silico</i> properties, including pI differential between the Fab and scFv and the ratio of dipole moment to hydrophobic moment (RM) and their correlation with the observed clearance. These findings highlight that the PK properties of BsAbs may be governed by novel determinants, owing to their increased structural complexity compared to immunoglobulin G (IgG) 1 antibodies.</p>","PeriodicalId":18206,"journal":{"name":"mAbs","volume":"16 1","pages":"2318817"},"PeriodicalIF":5.3,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10936634/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140039792","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Practical solutions for overcoming artificial disulfide scrambling in the non-reduced peptide mapping characterization of monoclonal antibodies. 在单克隆抗体的非还原肽图谱表征中克服人工二硫扰的实用解决方案。
IF 5.6 2区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL Pub Date : 2024-01-01 Epub Date: 2024-10-26 DOI: 10.1080/19420862.2024.2420805
Andrew Kleinberg, Yuan Mao, Ning Li

Non-reduced peptide mapping provides essential data for characterizing therapeutic monoclonal antibodies by isolating disulfide connections between specific cysteines. However, conventional digestive strategies used throughout the biopharmaceutical industry have been shown to cause unintentional rearrangement of disulfide connections (disulfide scrambling), thus generating connectivity profiles that do not accurately represent the protein being analyzed. Common misconceptions (e.g. avoiding basic-pH digestion to prevent disulfide scrambling) have led to the development of alternative reagents and conditions that can alleviate this issue, but yield problematic digestion profiles. Herein, we systematically and comprehensively examine the primary considerations for accurate non-reduced peptide mapping, and provide effective, practical solutions to minimize undesired behavior while still yielding high-quality digests. Additionally, we present a method that exploits intentional disulfide scrambling as a reference tool to demonstrate the robustness of our proposed strategies. We also introduce maleimide as a cysteine-alkylating reagent and demonstrate its benefits over industry-leading analogs such as N-ethylmaleimide in terms of compatibility with regulatory reports.

通过分离特定半胱氨酸之间的二硫连接,非还原肽图谱为鉴定治疗性单克隆抗体提供了重要数据。然而,生物制药行业中使用的传统消化策略已被证明会无意中造成二硫连接的重新排列(二硫扰乱),从而生成不能准确代表所分析蛋白质的连接图谱。常见的误解(如避免碱性-pH消化以防止二硫扰断)导致了替代试剂和条件的开发,这些试剂和条件可以缓解这一问题,但却产生了有问题的消化图谱。在此,我们系统而全面地研究了准确的非还原肽图谱绘制的主要考虑因素,并提供了有效而实用的解决方案,以尽量减少不受欢迎的行为,同时仍能获得高质量的消化物。此外,我们还介绍了一种利用有意二硫扰乱作为参考工具的方法,以证明我们提出的策略的稳健性。我们还介绍了作为半胱氨酸烷基化试剂的马来酰亚胺,并展示了它在与 N-乙基马来酰亚胺等业界领先的类似物相兼容方面的优势。
{"title":"Practical solutions for overcoming artificial disulfide scrambling in the non-reduced peptide mapping characterization of monoclonal antibodies.","authors":"Andrew Kleinberg, Yuan Mao, Ning Li","doi":"10.1080/19420862.2024.2420805","DOIUrl":"10.1080/19420862.2024.2420805","url":null,"abstract":"<p><p>Non-reduced peptide mapping provides essential data for characterizing therapeutic monoclonal antibodies by isolating disulfide connections between specific cysteines. However, conventional digestive strategies used throughout the biopharmaceutical industry have been shown to cause unintentional rearrangement of disulfide connections (disulfide scrambling), thus generating connectivity profiles that do not accurately represent the protein being analyzed. Common misconceptions (e.g. avoiding basic-pH digestion to prevent disulfide scrambling) have led to the development of alternative reagents and conditions that can alleviate this issue, but yield problematic digestion profiles. Herein, we systematically and comprehensively examine the primary considerations for accurate non-reduced peptide mapping, and provide effective, practical solutions to minimize undesired behavior while still yielding high-quality digests. Additionally, we present a method that exploits intentional disulfide scrambling as a reference tool to demonstrate the robustness of our proposed strategies. We also introduce maleimide as a cysteine-alkylating reagent and demonstrate its benefits over industry-leading analogs such as N-ethylmaleimide in terms of compatibility with regulatory reports.</p>","PeriodicalId":18206,"journal":{"name":"mAbs","volume":"16 1","pages":"2420805"},"PeriodicalIF":5.6,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11520568/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142503243","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Variable domain mutational analysis to probe the molecular mechanisms of high viscosity of an IgG1 antibody. 通过变异结构域突变分析探究 IgG1 抗体高粘度的分子机制。
IF 5.6 2区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL Pub Date : 2024-01-01 Epub Date: 2024-01-25 DOI: 10.1080/19420862.2024.2304282
Jing Dai, Saeed Izadi, Jonathan Zarzar, Patrick Wu, Angela Oh, Paul J Carter

Subcutaneous injection is the preferred route of administration for many antibody therapeutics for reasons that include its speed and convenience. However, the small volume limit (typically 2 mL) for subcutaneous delivery often necessitates antibody formulations at high concentrations (commonly ≥100 mg/mL), which may lead to physicochemical problems. For example, antibodies with large hydrophobic or charged patches can be prone to self-interaction giving rise to high viscosity. Here, we combined X-ray crystallography with computational modeling to predict regions of an anti-glucagon receptor (GCGR) IgG1 antibody prone to self-interaction. An extensive mutational analysis was undertaken of the complementarity-determining region residues residing in hydrophobic surface patches predicted by spatial aggregation propensity, in conjunction with residue-level solvent accessibility, averaged over conformational ensembles from molecular dynamics simulations. Dynamic light scattering (DLS) was used as a medium throughput screen for self-interaction of ~ 200 anti-GCGR IgG1 variants. A negative correlation was found between the viscosity determined at high concentration (180 mg/mL) and the DLS interaction parameter measured at low concentration (2-10 mg/mL). Additionally, anti-GCGR variants were readily identified with reduced viscosity and antigen-binding affinity within a few fold of the parent antibody, with no identified impact on overall developability. The methods described here may be useful in the optimization of other antibodies to facilitate their therapeutic administration at high concentration.

皮下注射是许多抗体疗法的首选给药途径,原因包括快捷方便。然而,由于皮下注射的容量限制较小(通常≤2 mL),因此通常需要高浓度(通常≥100 mg/mL)的抗体配方,这可能会导致理化问题。例如,具有大面积疏水或带电斑块的抗体容易发生自相互作用,从而导致高粘度。在这里,我们将 X 射线晶体学与计算建模相结合,预测了抗胰高血糖素受体(GCGR)IgG1 抗体中容易发生自相互作用的区域。通过分子动力学模拟构象组合的平均值,结合空间聚集倾向预测的残基级溶剂可及性,对位于疏水表面斑块的互补性决定区残基进行了广泛的突变分析。利用动态光散射(DLS)对约 200 种抗-GCGR IgG1 变体的自相互作用进行了中等通量筛选。结果发现,在高浓度(180 毫克/毫升)下测定的粘度与在低浓度(2-10 毫克/毫升)下测定的 DLS 相互作用参数之间存在负相关。此外,抗 GCGR 变体很容易鉴定出来,其粘度和抗原结合亲和力比母体抗体降低了几倍,但未发现对整体开发性有影响。本文所述的方法可能有助于优化其他抗体,以促进其在高浓度下的治疗用药。
{"title":"Variable domain mutational analysis to probe the molecular mechanisms of high viscosity of an IgG<sub>1</sub> antibody.","authors":"Jing Dai, Saeed Izadi, Jonathan Zarzar, Patrick Wu, Angela Oh, Paul J Carter","doi":"10.1080/19420862.2024.2304282","DOIUrl":"10.1080/19420862.2024.2304282","url":null,"abstract":"<p><p>Subcutaneous injection is the preferred route of administration for many antibody therapeutics for reasons that include its speed and convenience. However, the small volume limit (typically <math><mo>≤</mo></math>2 mL) for subcutaneous delivery often necessitates antibody formulations at high concentrations (commonly ≥100 mg/mL), which may lead to physicochemical problems. For example, antibodies with large hydrophobic or charged patches can be prone to self-interaction giving rise to high viscosity. Here, we combined X-ray crystallography with computational modeling to predict regions of an anti-glucagon receptor (GCGR) IgG<sub>1</sub> antibody prone to self-interaction. An extensive mutational analysis was undertaken of the complementarity-determining region residues residing in hydrophobic surface patches predicted by spatial aggregation propensity, in conjunction with residue-level solvent accessibility, averaged over conformational ensembles from molecular dynamics simulations. Dynamic light scattering (DLS) was used as a medium throughput screen for self-interaction of ~ 200 anti-GCGR IgG<sub>1</sub> variants. A negative correlation was found between the viscosity determined at high concentration (180 mg/mL) and the DLS interaction parameter measured at low concentration (2-10 mg/mL). Additionally, anti-GCGR variants were readily identified with reduced viscosity and antigen-binding affinity within a few fold of the parent antibody, with no identified impact on overall developability. The methods described here may be useful in the optimization of other antibodies to facilitate their therapeutic administration at high concentration.</p>","PeriodicalId":18206,"journal":{"name":"mAbs","volume":"16 1","pages":"2304282"},"PeriodicalIF":5.6,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10813588/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139544648","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Insight into the avidity-affinity relationship of the bivalent, pH-dependent interaction between IgG and FcRn. 深入了解 IgG 与 FcRn 之间的二价、pH 依赖性相互作用的亲和力关系。
IF 5.3 2区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL Pub Date : 2024-01-01 Epub Date: 2024-06-07 DOI: 10.1080/19420862.2024.2361585
Johannes Reusch, Jan Terje Andersen, Ulrich Rant, Tilman Schlothauer

Monoclonal antibodies (mAbs) as therapeutics necessitate favorable pharmacokinetic properties, including extended serum half-life, achieved through pH-dependent binding to the neonatal Fc receptor (FcRn). While prior research has mainly investigated IgG-FcRn binding kinetics with a focus on single affinity values, it has been shown that each IgG molecule can engage two FcRn molecules throughout an endosomal pH gradient. As such, we present here a more comprehensive analysis of these interactions with an emphasis on both affinity and avidity by taking advantage of switchSENSE technology, a surface-based biosensor where recombinant FcRn was immobilized via short DNA nanolevers, mimicking the membranous orientation of the receptor. The results revealed insight into the avidity-to-affinity relationship, where assessing binding through a pH gradient ranging from pH 5.8 to 7.4 showed that the half-life extended IgG1-YTE has an affinity inflection point at pH 7.2, reflecting its engineering for improved FcRn binding compared with the wild-type counterpart. Furthermore, IgG1-YTE displayed a pH switch for the avidity enhancement factor at pH 6.2, reflecting strong receptor binding to both sides of the YTE-containing Fc, while avidity was abolished at pH 7.4. When compared with classical surface plasmon resonance (SPR) technology and complementary methods, the use of switchSENSE demonstrated superior capabilities in differentiating affinity from avidity within a single measurement. Thus, the methodology provides reliable kinetic rate parameters for both binding modes and their direct relationship as a function of pH. Also, it deciphers the potential effect of the variable Fab arms on FcRn binding, in which SPR has limitations. Our study offers guidance for how FcRn binding properties can be studied for IgG engineering strategies.

作为治疗药物的单克隆抗体(mAbs)必须具有良好的药代动力学特性,包括通过与新生儿 Fc 受体(FcRn)的 pH 依赖性结合来延长血清半衰期。以前的研究主要研究 IgG-FcRn 结合动力学,重点是单一亲和力值,而现在的研究表明,每个 IgG 分子在整个内体 pH 梯度中可以与两个 FcRn 分子结合。因此,我们在此利用 switchSENSE 技术(一种基于表面的生物传感器,通过短 DNA 纳米杠杆固定重组 FcRn,模拟受体的膜取向)对这些相互作用进行了更全面的分析,重点关注亲和力和热敏性。结果表明,通过评估从 pH 值 5.8 到 7.4 的 pH 值梯度的结合情况,半衰期延长的 IgG1-YTE 在 pH 值 7.2 时出现亲和力拐点,这反映出与野生型受体相比,IgG1-YTE 的工程设计改善了 FcRn 的结合。此外,IgG1-YTE 在 pH 值为 6.2 时显示出亲和力增强因子的 pH 值切换,这反映了受体与含 YTE 的 Fc 两侧的强结合,而在 pH 值为 7.4 时亲和力消失。与传统的表面等离子体共振(SPR)技术和补充方法相比,switchSENSE 的使用证明了在一次测量中区分亲和力和疏水性的卓越能力。因此,该方法为两种结合模式提供了可靠的动力学速率参数,以及它们与 pH 值的直接关系。此外,它还能解读可变 Fab 臂对 FcRn 结合的潜在影响,而 SPR 在这方面存在局限性。我们的研究为如何研究 IgG 工程策略的 FcRn 结合特性提供了指导。
{"title":"Insight into the avidity-affinity relationship of the bivalent, pH-dependent interaction between IgG and FcRn.","authors":"Johannes Reusch, Jan Terje Andersen, Ulrich Rant, Tilman Schlothauer","doi":"10.1080/19420862.2024.2361585","DOIUrl":"10.1080/19420862.2024.2361585","url":null,"abstract":"<p><p>Monoclonal antibodies (mAbs) as therapeutics necessitate favorable pharmacokinetic properties, including extended serum half-life, achieved through pH-dependent binding to the neonatal Fc receptor (FcRn). While prior research has mainly investigated IgG-FcRn binding kinetics with a focus on single affinity values, it has been shown that each IgG molecule can engage two FcRn molecules throughout an endosomal pH gradient. As such, we present here a more comprehensive analysis of these interactions with an emphasis on both affinity and avidity by taking advantage of switchSENSE technology, a surface-based biosensor where recombinant FcRn was immobilized via short DNA nanolevers, mimicking the membranous orientation of the receptor. The results revealed insight into the avidity-to-affinity relationship, where assessing binding through a pH gradient ranging from pH 5.8 to 7.4 showed that the half-life extended IgG1-YTE has an affinity inflection point at pH 7.2, reflecting its engineering for improved FcRn binding compared with the wild-type counterpart. Furthermore, IgG1-YTE displayed a pH switch for the avidity enhancement factor at pH 6.2, reflecting strong receptor binding to both sides of the YTE-containing Fc, while avidity was abolished at pH 7.4. When compared with classical surface plasmon resonance (SPR) technology and complementary methods, the use of switchSENSE demonstrated superior capabilities in differentiating affinity from avidity within a single measurement. Thus, the methodology provides reliable kinetic rate parameters for both binding modes and their direct relationship as a function of pH. Also, it deciphers the potential effect of the variable Fab arms on FcRn binding, in which SPR has limitations. Our study offers guidance for how FcRn binding properties can be studied for IgG engineering strategies.</p>","PeriodicalId":18206,"journal":{"name":"mAbs","volume":"16 1","pages":"2361585"},"PeriodicalIF":5.3,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11164218/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141288235","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IL-2-armored peptide-major histocompatibility class I bispecific antibodies redirect antiviral effector memory CD8+ T cells to induce potent anti-cancer cytotoxic activity with limited cytokine release. IL-2铠装肽-主要组织相容性I类双特异性抗体可重定向抗病毒效应记忆CD8+T细胞,从而在释放有限细胞因子的情况下诱导强大的抗癌细胞毒活性。
IF 5.6 2区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL Pub Date : 2024-01-01 Epub Date: 2024-08-28 DOI: 10.1080/19420862.2024.2395499
John S Schardt, Even Walseng, Kim Le, Chunning Yang, Pooja Shah, Ying Fu, Kausar Alam, Cathryn R Kelton, Yu Gu, Fengying Huang, Jia Lin, Wenhai Liu, Andrew Dippel, Hanzhi Zhang, Kathy Mulgrew, Stacy Pryts, Vijaykumar Chennupati, Hung-Chang Chen, Jessica Denham, Xiaoru Chen, Pallab Pradhan, Yuling Wu, Colin Hardman, Chihao Zhao, Michael Kierny, Yang Song, Simon J Dovedi, Saso Cemerski, Yariv Mazor

T cell engagers (TCEs) are becoming an integral class of biological therapeutic owing to their highly potent ability to eradicate cancer cells. Nevertheless, the widespread utility of classical CD3-targeted TCEs has been limited by narrow therapeutic index (TI) linked to systemic CD4+ T cell activation and aberrant cytokine release. One attractive approach to circumvent the systemic activation of pan CD3+ T cells and reduce the risk of cytokine release syndrome is to redirect specific subsets of T cells. A promising strategy is the use of peptide-major histocompatibility class I bispecific antibodies (pMHC-IgGs), which have emerged as an intriguing modality of TCE, based on their ability to selectively redirect highly reactive viral-specific effector memory cytotoxic CD8+ T cells to eliminate cancer cells. However, the relatively low frequency of these effector memory cells in human peripheral blood mononuclear cells (PBMCs) may hamper their redirection as effector cells for clinical applications. To mitigate this potential limitation, we report here the generation of a pMHC-IgG derivative known as guided-pMHC-staging (GPS) carrying a covalent fusion of a monovalent interleukin-2 (IL-2) mutein (H16A, F42A). Using an anti-epidermal growth factor receptor (EGFR) arm as a proof-of-concept, tumor-associated antigen paired with a single-chain HLA-A *02:01/CMVpp65 pMHC fusion moiety, we demonstrate in vitro that the IL-2-armored GPS modality robustly expands CMVpp65-specific CD8+ effector memory T cells and induces potent cytotoxic activity against target cancer cells. Similar to GPS, IL-2-armored GPS molecules induce modulated T cell activation and reduced cytokine release profile compared to an analogous CD3-targeted TCE. In vivo we show that IL-2-armored GPS, but not the corresponding GPS, effectively expands grafted CMVpp65 CD8+ T cells from unstimulated human PBMCs in an NSG mouse model. Lastly, we demonstrate that the IL-2-armored GPS modality exhibits a favorable developability profile and monoclonal antibody-like pharmacokinetic properties in human neonatal Fc receptor transgenic mice. Overall, IL-2-armored GPS represents an attractive approach for treating cancer with the potential for inducing vaccine-like antiviral T cell expansion, immune cell redirection as a TCE, and significantly widened TI due to reduced cytokine release.

T 细胞吞噬剂(TCEs)具有高效的消灭癌细胞的能力,因此正在成为一类不可或缺的生物疗法。然而,经典的 CD3 靶向 TCEs 的广泛应用受到了治疗指数(TI)狭窄的限制,这与全身 CD4+ T 细胞活化和异常细胞因子释放有关。要避免泛 CD3+ T 细胞的全身性激活并降低细胞因子释放综合征的风险,一种有吸引力的方法是重定向特定的 T 细胞亚群。肽-主要组织相容性 I 类双特异性抗体(pMHC-IgGs)是一种很有前景的策略,这种抗体能够选择性地重新定向高活性病毒特异性效应记忆细胞毒性 CD8+ T 细胞以消灭癌细胞,因此已成为一种令人感兴趣的 TCE 模式。然而,这些效应记忆细胞在人类外周血单核细胞(PBMCs)中出现的频率相对较低,这可能会阻碍它们被重新定向为效应细胞用于临床应用。为了缓解这一潜在的局限性,我们在此报告了一种被称为引导-pMHC-分期(GPS)的 pMHC-IgG 衍生物的产生,这种衍生物携带单价白细胞介素-2(IL-2)静音素(H16A,F42A)的共价融合。我们使用抗表皮生长因子受体(EGFR)臂作为概念验证,将肿瘤相关抗原与单链 HLA-A *02:01/CMVpp65 pMHC 融合分子配对,在体外证明了 IL-2armored GPS 模式能强有力地扩增 CMVpp65 特异性 CD8+ 效应记忆 T 细胞,并诱导针对靶癌细胞的强大细胞毒活性。与 GPS 相似,与类似的 CD3 靶向 TCE 相比,IL-2-armored GPS 分子可诱导调节的 T 细胞活化并减少细胞因子的释放。在体内,我们发现在 NSG 小鼠模型中,IL-2-armored GPS(而非相应的 GPS)能有效扩增来自未刺激人 PBMCs 的 CMVpp65 CD8+ T 细胞。最后,我们证明了在人类新生 Fc 受体转基因小鼠体内,IL-2-armored GPS 模式具有良好的可发展性和类似单克隆抗体的药代动力学特性。总之,IL-2-armored GPS 是治疗癌症的一种有吸引力的方法,它有可能诱导类似疫苗的抗病毒 T 细胞扩增、作为 TCE 的免疫细胞重定向以及因细胞因子释放减少而显著扩大的 TI。
{"title":"IL-2-armored peptide-major histocompatibility class I bispecific antibodies redirect antiviral effector memory CD8+ T cells to induce potent anti-cancer cytotoxic activity with limited cytokine release.","authors":"John S Schardt, Even Walseng, Kim Le, Chunning Yang, Pooja Shah, Ying Fu, Kausar Alam, Cathryn R Kelton, Yu Gu, Fengying Huang, Jia Lin, Wenhai Liu, Andrew Dippel, Hanzhi Zhang, Kathy Mulgrew, Stacy Pryts, Vijaykumar Chennupati, Hung-Chang Chen, Jessica Denham, Xiaoru Chen, Pallab Pradhan, Yuling Wu, Colin Hardman, Chihao Zhao, Michael Kierny, Yang Song, Simon J Dovedi, Saso Cemerski, Yariv Mazor","doi":"10.1080/19420862.2024.2395499","DOIUrl":"10.1080/19420862.2024.2395499","url":null,"abstract":"<p><p>T cell engagers (TCEs) are becoming an integral class of biological therapeutic owing to their highly potent ability to eradicate cancer cells. Nevertheless, the widespread utility of classical CD3-targeted TCEs has been limited by narrow therapeutic index (TI) linked to systemic CD4+ T cell activation and aberrant cytokine release. One attractive approach to circumvent the systemic activation of pan CD3+ T cells and reduce the risk of cytokine release syndrome is to redirect specific subsets of T cells. A promising strategy is the use of peptide-major histocompatibility class I bispecific antibodies (pMHC-IgGs), which have emerged as an intriguing modality of TCE, based on their ability to selectively redirect highly reactive viral-specific effector memory cytotoxic CD8+ T cells to eliminate cancer cells. However, the relatively low frequency of these effector memory cells in human peripheral blood mononuclear cells (PBMCs) may hamper their redirection as effector cells for clinical applications. To mitigate this potential limitation, we report here the generation of a pMHC-IgG derivative known as guided-pMHC-staging (GPS) carrying a covalent fusion of a monovalent interleukin-2 (IL-2) mutein (H16A, F42A). Using an anti-epidermal growth factor receptor (EGFR) arm as a proof-of-concept, tumor-associated antigen paired with a single-chain HLA-A *02:01/CMVpp65 pMHC fusion moiety, we demonstrate <i>in vitro</i> that the IL-2-armored GPS modality robustly expands CMVpp65-specific CD8+ effector memory T cells and induces potent cytotoxic activity against target cancer cells. Similar to GPS, IL-2-armored GPS molecules induce modulated T cell activation and reduced cytokine release profile compared to an analogous CD3-targeted TCE. <i>In vivo</i> we show that IL-2-armored GPS, but not the corresponding GPS, effectively expands grafted CMVpp65 CD8+ T cells from unstimulated human PBMCs in an NSG mouse model. Lastly, we demonstrate that the IL-2-armored GPS modality exhibits a favorable developability profile and monoclonal antibody-like pharmacokinetic properties in human neonatal Fc receptor transgenic mice. Overall, IL-2-armored GPS represents an attractive approach for treating cancer with the potential for inducing vaccine-like antiviral T cell expansion, immune cell redirection as a TCE, and significantly widened TI due to reduced cytokine release.</p>","PeriodicalId":18206,"journal":{"name":"mAbs","volume":"16 1","pages":"2395499"},"PeriodicalIF":5.6,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11364066/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142108940","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Targeting RGMb interactions: Discovery and preclinical characterization of potent anti-RGMb antibodies blocking multiple ligand bindings. 针对 RGMb 的相互作用:发现阻断多种配体结合的强效抗 RGMb 抗体并对其进行临床前鉴定。
IF 5.6 2区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL Pub Date : 2024-01-01 Epub Date: 2024-11-26 DOI: 10.1080/19420862.2024.2432403
Maria Meira, Aurore Frey, Neila Chekkat, Magda Rybczynska, Zaki Sellam, Joon Seok Park, Francesca Smylie Gazzaniga, Alexia Parmentier, Marianne Le Gall, Gordon James Freeman, Dennis Lee Kasper, Arlene Helen Sharpe, Eric Rambeaux, Abdijapar Shamshiev

Therapeutic efficacy with durable responses has been demonstrated with several antibody drugs that block key immune checkpoint receptors, including PD-1, PD-L1, and CTLA-4. Despite the success of these drugs, a substantial proportion of patients do not benefit. Targeting multiple inhibitory pathways simultaneously to augment anti-tumor immunity has proven to be a promising approach. The emergence of Repulsive Guidance Molecule b (RGMb), a ligand for PD-L2, as a novel co-inhibitory pathway in T cells, together with its regulation by the gut microbiome, encouraged the discovery and development of fully human anti-RGMb antibodies. Here, we describe phage display-derived monoclonal antibodies (mAbs) 2C11 and 5C10 that bind human RGMb with high affinities of 1.4 nM and 0.72 nM, respectively. Both mAbs 2C11 and 5C10 potently inhibited RGMb interaction with PD-L2. MAb 2C11 effectively inhibited RGMb interaction with bone morphogenetic proteins 2 and 4 (BMP2-4), while leaving RGMb interaction with Neogenin 1 (Neo1) unaffected. Conversely, mAb 5C10 disrupted RGMb interaction with Neo1 while maintaining RGMb binding to BMP2-4. These findings map the 2C11 epitope at the membrane-distal N-terminal region of RGMb, which coincides with both PD-L2- and BMP2-4-binding sites. The PD-L2 binding interface is likely positioned between RGMb's N-terminal BMP-binding and C-terminal Neo1-binding regions. The in vivo activity of mAb 2C11 in combination with anti-PD-1 or anti-PD-L1 was tested in MC38 and B16-OVA cancer models and demonstrated synergistic effects by significantly enhancing anti-tumor responses. These properties make mAb 2C11 a promising candidate for therapeutic use to overcome immune checkpoint inhibitor resistances, warranting further exploration in clinical settings.

阻断包括 PD-1、PD-L1 和 CTLA-4 在内的关键免疫检查点受体的几种抗体药物已被证明具有持久疗效。尽管这些药物取得了成功,但仍有相当一部分患者未能从中获益。事实证明,同时靶向多种抑制途径以增强抗肿瘤免疫力是一种很有前景的方法。PD-L2 的配体--排斥性引导分子 b(RGMb)是 T 细胞中的一种新型协同抑制途径,它的出现以及肠道微生物组对它的调控促进了全人源抗 RGMb 抗体的发现和开发。在这里,我们描述了噬菌体展示衍生的单克隆抗体(mAbs)2C11 和 5C10,它们分别以 1.4 nM 和 0.72 nM 的高亲和力与人类 RGMb 结合。MAb 2C11 和 5C10 都能有效抑制 RGMb 与 PD-L2 的相互作用。MAb 2C11 能有效抑制 RGMb 与骨形态发生蛋白 2 和 4(BMP2-4)的相互作用,而不影响 RGMb 与 Neogenin 1(Neo1)的相互作用。相反,mAb 5C10 会破坏 RGMb 与 Neo1 的相互作用,同时保持 RGMb 与 BMP2-4 的结合。这些发现将 2C11 表位映射到了 RGMb 的膜远端 N 端区域,该区域与 PD-L2 结合位点和 BMP2-4 结合位点重合。PD-L2 结合界面可能位于 RGMb 的 N 端 BMP 结合区和 C 端 Neo1 结合区之间。在 MC38 和 B16-OVA 癌症模型中测试了 mAb 2C11 与抗-PD-1 或抗-PD-L1 联用的体内活性,结果表明它们具有协同作用,能显著增强抗肿瘤反应。这些特性使 mAb 2C11 有希望成为克服免疫检查点抑制剂抗药性的候选治疗药物,值得在临床环境中进一步探索。
{"title":"Targeting RGMb interactions: Discovery and preclinical characterization of potent anti-RGMb antibodies blocking multiple ligand bindings.","authors":"Maria Meira, Aurore Frey, Neila Chekkat, Magda Rybczynska, Zaki Sellam, Joon Seok Park, Francesca Smylie Gazzaniga, Alexia Parmentier, Marianne Le Gall, Gordon James Freeman, Dennis Lee Kasper, Arlene Helen Sharpe, Eric Rambeaux, Abdijapar Shamshiev","doi":"10.1080/19420862.2024.2432403","DOIUrl":"10.1080/19420862.2024.2432403","url":null,"abstract":"<p><p>Therapeutic efficacy with durable responses has been demonstrated with several antibody drugs that block key immune checkpoint receptors, including PD-1, PD-L1, and CTLA-4. Despite the success of these drugs, a substantial proportion of patients do not benefit. Targeting multiple inhibitory pathways simultaneously to augment anti-tumor immunity has proven to be a promising approach. The emergence of Repulsive Guidance Molecule b (RGMb), a ligand for PD-L2, as a novel co-inhibitory pathway in T cells, together with its regulation by the gut microbiome, encouraged the discovery and development of fully human anti-RGMb antibodies. Here, we describe phage display-derived monoclonal antibodies (mAbs) 2C11 and 5C10 that bind human RGMb with high affinities of 1.4 nM and 0.72 nM, respectively. Both mAbs 2C11 and 5C10 potently inhibited RGMb interaction with PD-L2. MAb 2C11 effectively inhibited RGMb interaction with bone morphogenetic proteins 2 and 4 (BMP2-4), while leaving RGMb interaction with Neogenin 1 (Neo1) unaffected. Conversely, mAb 5C10 disrupted RGMb interaction with Neo1 while maintaining RGMb binding to BMP2-4. These findings map the 2C11 epitope at the membrane-distal N-terminal region of RGMb, which coincides with both PD-L2- and BMP2-4-binding sites. The PD-L2 binding interface is likely positioned between RGMb's N-terminal BMP-binding and C-terminal Neo1-binding regions. The in vivo activity of mAb 2C11 in combination with anti-PD-1 or anti-PD-L1 was tested in MC38 and B16-OVA cancer models and demonstrated synergistic effects by significantly enhancing anti-tumor responses. These properties make mAb 2C11 a promising candidate for therapeutic use to overcome immune checkpoint inhibitor resistances, warranting further exploration in clinical settings.</p>","PeriodicalId":18206,"journal":{"name":"mAbs","volume":"16 1","pages":"2432403"},"PeriodicalIF":5.6,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11601088/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142716509","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Discovery of a novel highly specific, fully human PSCA antibody and its application as an antibody-drug conjugate in prostate cancer. 发现一种新型高特异性全人源 PSCA 抗体,并将其作为抗体-药物共轭物应用于前列腺癌治疗。
IF 5.6 2区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL Pub Date : 2024-01-01 Epub Date: 2024-08-08 DOI: 10.1080/19420862.2024.2387240
Xiaojie Chu, Seungmin Shin, Du-San Baek, Liyong Zhang, Alex Conard, Megan Shi, Ye-Jin Kim, Cynthia Adams, Maggie Hines, Xianglei Liu, Chuan Chen, Zehua Sun, Dontcho V Jelev, John W Mellors, Dimiter S Dimitrov, Wei Li

Prostate stem cell antigen (PSCA) is expressed in all stages of prostate cancer, including in advanced androgen-independent tumors and bone metastasis. PSCA may associate with prostate carcinogenesis and lineage plasticity in prostate cancer. PSCA is also a promising theranostic marker for a variety of other solid tumors, including pancreatic adenocarcinoma and renal cell carcinoma. Here, we identified a novel fully human PSCA antibody using phage display methodology. The structure-based affinity maturation yielded a high-affinity binder, F12, which is highly specific and does not bind to 6,000 human membrane proteins based on a membrane proteome array assay. F12 targets PSCA amino acids 63-69 as tested by the peptide scanning microarray, and it cross-reacts with the murine PSCA. IgG1 F12 efficiently internalizes into PSCA-expressing tumor cells. The antimitotic reagent monomethyl auristatin E (MMAE)-conjugated IgG1 F12 (ADC, F12-MMAE) exhibits dose-dependent efficacy and specificity in a human prostate cancer PC-3-PSCA xenograft NSG mouse model. This is a first reported ADC based on a fully human PSCA antibody and MMAE that is characterized in a xenograft murine model, which warrants further optimizations and investigations in additional preclinical tumor models, including prostate and other solid tumors.

前列腺干细胞抗原(PSCA)在前列腺癌的各个阶段都有表达,包括晚期雄激素依赖性肿瘤和骨转移。前列腺干细胞抗原可能与前列腺癌的癌变和细胞系可塑性有关。PSCA 还是胰腺腺癌和肾细胞癌等其他多种实体瘤很有希望的治疗标记物。在这里,我们利用噬菌体展示方法鉴定了一种新型全人源 PSCA 抗体。根据膜蛋白质组阵列检测,该抗体具有高度特异性,不会与 6000 种人类膜蛋白结合。肽扫描微阵列检测表明,F12 的靶标是 PSCA 的 63-69 氨基酸,它与鼠 PSCA 有交叉反应。IgG1 F12 能有效内化表达 PSCA 的肿瘤细胞。在人类前列腺癌 PC-3-PSCA 异种移植 NSG 小鼠模型中,单甲基乌司他丁 E(MMAE)共轭 IgG1 F12(ADC,F12-MMAE)抗沉淀试剂表现出剂量依赖性疗效和特异性。这是首次报道基于全人 PSCA 抗体和 MMAE 的 ADC 在异种移植小鼠模型中的特性,值得在其他临床前肿瘤模型(包括前列腺和其他实体瘤)中进一步优化和研究。
{"title":"Discovery of a novel highly specific, fully human PSCA antibody and its application as an antibody-drug conjugate in prostate cancer.","authors":"Xiaojie Chu, Seungmin Shin, Du-San Baek, Liyong Zhang, Alex Conard, Megan Shi, Ye-Jin Kim, Cynthia Adams, Maggie Hines, Xianglei Liu, Chuan Chen, Zehua Sun, Dontcho V Jelev, John W Mellors, Dimiter S Dimitrov, Wei Li","doi":"10.1080/19420862.2024.2387240","DOIUrl":"10.1080/19420862.2024.2387240","url":null,"abstract":"<p><p>Prostate stem cell antigen (PSCA) is expressed in all stages of prostate cancer, including in advanced androgen-independent tumors and bone metastasis. PSCA may associate with prostate carcinogenesis and lineage plasticity in prostate cancer. PSCA is also a promising theranostic marker for a variety of other solid tumors, including pancreatic adenocarcinoma and renal cell carcinoma. Here, we identified a novel fully human PSCA antibody using phage display methodology. The structure-based affinity maturation yielded a high-affinity binder, F12, which is highly specific and does not bind to 6,000 human membrane proteins based on a membrane proteome array assay. F12 targets PSCA amino acids 63-69 as tested by the peptide scanning microarray, and it cross-reacts with the murine PSCA. IgG1 F12 efficiently internalizes into PSCA-expressing tumor cells. The antimitotic reagent monomethyl auristatin E (MMAE)-conjugated IgG1 F12 (ADC, F12-MMAE) exhibits dose-dependent efficacy and specificity in a human prostate cancer PC-3-PSCA xenograft NSG mouse model. This is a first reported ADC based on a fully human PSCA antibody and MMAE that is characterized in a xenograft murine model, which warrants further optimizations and investigations in additional preclinical tumor models, including prostate and other solid tumors.</p>","PeriodicalId":18206,"journal":{"name":"mAbs","volume":"16 1","pages":"2387240"},"PeriodicalIF":5.6,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11312989/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141902198","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Expanding the structural resolution of glycosylation microheterogeneity in therapeutic proteins by salt-free hydrophilic interaction liquid chromatography tandem mass spectrometry. 通过无盐亲水相互作用液相色谱串联质谱法扩大治疗蛋白质糖基化微异质性的结构解析。
IF 5.6 2区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL Pub Date : 2024-01-01 Epub Date: 2024-08-27 DOI: 10.1080/19420862.2024.2395503
Yutian Gan, Steffen Lippold, John Stobaugh, Christian Schöneich, Feng Yang

Glycosylation affects the safety and efficacy of therapeutic proteins and is often considered a critical quality attribute (CQA). Therefore, it is important to identify and quantify glycans during drug development. Glycosylation is a highly complex post-translational modification (PTM) due to its structural heterogeneity, i.e. glycosylation site occupancy, glycan compositions, modifications, and isomers. Current analytical tools compromise either structural resolution or site specificity. Hydrophilic interaction liquid chromatography-fluorescence-mass spectrometry (HILIC-FLR-MS) is the gold standard for structural analysis of released glycans, but lacks information on site specificity and occupation. However, HILIC-FLR-MS often uses salt in the solvent, which impairs analysis robustness and sensitivity. Site-specific glycosylation analysis via glycopeptides, upon proteolytic digestion, is commonly performed by reversed-phase liquid chromatography-tandem mass spectrometry (RPLC-MS/MS), but provides only compositional and limited structural glycan information. In this study, we introduce a salt-free, glycopeptide-based HILIC-tandem mass spectrometry (HILIC-MS/MS) method that provides glycan identification, glycan isomer separation and site-specific information simultaneously. Moreover, HILIC-MS/MS demonstrated comparable relative quantification results as released glycan HILIC-FLR-MS. Further, our new method improves the retention of hydrophilic peptides, allowing simultaneous analysis of important CQAs such as deamidation in antibodies. The developed method offers a valuable tool to streamline the site-specific glycosylation analysis of glycoproteins, which is particularly important for the expanding landscape of novel therapeutic formats in the biopharmaceutical industry.

糖基化会影响治疗蛋白质的安全性和有效性,通常被认为是关键质量属性(CQA)。因此,在药物开发过程中识别和量化聚糖非常重要。糖基化是一种高度复杂的翻译后修饰 (PTM),因为其结构具有异质性,即糖基化位点占有率、糖组成、修饰和异构体。目前的分析工具在结构分辨率或位点特异性方面都不尽如人意。亲水作用液相色谱-荧光质谱法(HILIC-FLR-MS)是对释放的聚糖进行结构分析的黄金标准,但缺乏关于位点特异性和占据情况的信息。然而,HILIC-FLR-MS 通常在溶剂中使用盐,这会影响分析的稳健性和灵敏度。通常采用反相液相色谱-串联质谱(RPLC-MS/MS)对蛋白酶消化后的糖肽进行位点特异性糖基化分析,但只能提供组成和有限的结构聚糖信息。在本研究中,我们介绍了一种无盐、基于糖肽的 HILIC-串联质谱(HILIC-MS/MS)方法,该方法可同时提供聚糖鉴定、聚糖异构体分离和特定位点信息。此外,HILIC-MS/MS 与释放糖 HILIC-FLR-MS 的相对定量结果相当。此外,我们的新方法还提高了亲水肽的保留率,可同时分析重要的 CQAs,如抗体中的脱酰胺。所开发的方法为简化糖蛋白的特异位点糖基化分析提供了宝贵的工具,这对于生物制药行业中不断扩大的新型治疗模式尤为重要。
{"title":"Expanding the structural resolution of glycosylation microheterogeneity in therapeutic proteins by salt-free hydrophilic interaction liquid chromatography tandem mass spectrometry.","authors":"Yutian Gan, Steffen Lippold, John Stobaugh, Christian Schöneich, Feng Yang","doi":"10.1080/19420862.2024.2395503","DOIUrl":"10.1080/19420862.2024.2395503","url":null,"abstract":"<p><p>Glycosylation affects the safety and efficacy of therapeutic proteins and is often considered a critical quality attribute (CQA). Therefore, it is important to identify and quantify glycans during drug development. Glycosylation is a highly complex post-translational modification (PTM) due to its structural heterogeneity, i.e. glycosylation site occupancy, glycan compositions, modifications, and isomers. Current analytical tools compromise either structural resolution or site specificity. Hydrophilic interaction liquid chromatography-fluorescence-mass spectrometry (HILIC-FLR-MS) is the gold standard for structural analysis of released glycans, but lacks information on site specificity and occupation. However, HILIC-FLR-MS often uses salt in the solvent, which impairs analysis robustness and sensitivity. Site-specific glycosylation analysis via glycopeptides, upon proteolytic digestion, is commonly performed by reversed-phase liquid chromatography-tandem mass spectrometry (RPLC-MS/MS), but provides only compositional and limited structural glycan information. In this study, we introduce a salt-free, glycopeptide-based HILIC-tandem mass spectrometry (HILIC-MS/MS) method that provides glycan identification, glycan isomer separation and site-specific information simultaneously. Moreover, HILIC-MS/MS demonstrated comparable relative quantification results as released glycan HILIC-FLR-MS. Further, our new method improves the retention of hydrophilic peptides, allowing simultaneous analysis of important CQAs such as deamidation in antibodies. The developed method offers a valuable tool to streamline the site-specific glycosylation analysis of glycoproteins, which is particularly important for the expanding landscape of novel therapeutic formats in the biopharmaceutical industry.</p>","PeriodicalId":18206,"journal":{"name":"mAbs","volume":"16 1","pages":"2395503"},"PeriodicalIF":5.6,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11364061/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142080727","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Single domain antibody-scFv conjugate targeting amyloid β and TfR penetrates the blood-brain barrier and interacts with amyloid β. 靶向淀粉样蛋白β和TfR的单域抗体-scFv共轭物可穿透血脑屏障并与淀粉样蛋白β相互作用。
IF 5.6 2区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL Pub Date : 2024-01-01 Epub Date: 2024-10-02 DOI: 10.1080/19420862.2024.2410968
Rebecca Faresjö, Elisabet O Sjöström, Tiffany Dallas, Magnus M Berglund, Jonas Eriksson, Dag Sehlin, Stina Syvänen

Neurodegenerative diseases such as Alzheimer's disease (AD) pose substantial challenges to patients and health-care systems, particularly in countries with aging populations. Immunotherapies, including the marketed antibodies lecanemab (Leqembi®) and donanemab (KisunlaTM), offer promise but face hurdles due to limited delivery across the blood-brain barrier (BBB). This limitation necessitates high doses, resulting in increased costs and a higher risk of side effects. This study explores transferrin receptor (TfR)-binding camelid single-domain antibodies (VHHs) for facilitated brain delivery. We developed and evaluated fusion proteins (FPs) combining VHHs with human IgG Fc domains or single-chain variable fragments (scFvs) of the anti-amyloid-beta (Aβ) antibody 3D6. In vitro assessments showed varying affinities of the FPs for TfR. In vivo evaluations indicated that specific VHH-Fc and VHH-scFv fusions reached significant brain concentrations, emphasizing the importance of optimal TfR binding affinities. The VHH-scFv fusions were further investigated in mouse models with Aβ pathology, showing higher retention compared to wild-type mice without Aβ pathology. Our findings suggest that these novel VHH-based FPs hold potential for therapeutic and diagnostic applications in AD, providing a strategy to overcome BBB limitations and enhance brain targeting of antibody-based treatments. Furthermore, our results suggest that a given bispecific TfR-binding fusion format has a window of "optimal" affinity where parenchymal delivery is adequate, while blood pharmacokinetics aligns with the desired application of the fusion protein.

阿尔茨海默病(AD)等神经退行性疾病给患者和医疗保健系统带来了巨大挑战,尤其是在人口老龄化国家。免疫疗法,包括已上市的抗体 lecanemab (Leqembi®) 和 donanemab (KisunlaTM),带来了希望,但由于通过血脑屏障 (BBB) 的传递能力有限而面临障碍。由于这种限制,必须使用高剂量,从而导致成本增加和副作用风险升高。本研究探索了转铁蛋白受体(TfR)结合的驼科单域抗体(VHHs),以促进脑部给药。我们开发并评估了将 VHHs 与人类 IgG Fc 域或抗淀粉样蛋白-β(Aβ)抗体 3D6 的单链可变片段(scFvs)相结合的融合蛋白(FPs)。体外评估显示,FPs 与 TfR 的亲和力各不相同。体内评估表明,特异性VHH-Fc和VHH-scFv融合物在大脑中的浓度很高,这强调了最佳TfR结合亲和力的重要性。在患有 Aβ 病变的小鼠模型中对 VHH-scFv 融合体进行了进一步研究,结果显示,与没有 Aβ 病变的野生型小鼠相比,VHH-scFv 融合体的保留率更高。我们的研究结果表明,这些基于VHH的新型FPs具有治疗和诊断AD的潜力,为克服BBB限制和增强基于抗体治疗的脑靶向性提供了一种策略。此外,我们的研究结果表明,特定的双特异性 TfR 结合融合格式有一个 "最佳 "亲和力窗口,在这个窗口中,实质组织的传递是充分的,同时血液药代动力学与融合蛋白的预期应用相一致。
{"title":"Single domain antibody-scFv conjugate targeting amyloid β and TfR penetrates the blood-brain barrier and interacts with amyloid β.","authors":"Rebecca Faresjö, Elisabet O Sjöström, Tiffany Dallas, Magnus M Berglund, Jonas Eriksson, Dag Sehlin, Stina Syvänen","doi":"10.1080/19420862.2024.2410968","DOIUrl":"10.1080/19420862.2024.2410968","url":null,"abstract":"<p><p>Neurodegenerative diseases such as Alzheimer's disease (AD) pose substantial challenges to patients and health-care systems, particularly in countries with aging populations. Immunotherapies, including the marketed antibodies lecanemab (Leqembi®) and donanemab (Kisunla<sup>TM</sup>), offer promise but face hurdles due to limited delivery across the blood-brain barrier (BBB). This limitation necessitates high doses, resulting in increased costs and a higher risk of side effects. This study explores transferrin receptor (TfR)-binding camelid single-domain antibodies (VHHs) for facilitated brain delivery. We developed and evaluated fusion proteins (FPs) combining VHHs with human IgG Fc domains or single-chain variable fragments (scFvs) of the anti-amyloid-beta (Aβ) antibody 3D6. <i>In vitro</i> assessments showed varying affinities of the FPs for TfR. <i>In vivo</i> evaluations indicated that specific VHH-Fc and VHH-scFv fusions reached significant brain concentrations, emphasizing the importance of optimal TfR binding affinities. The VHH-scFv fusions were further investigated in mouse models with Aβ pathology, showing higher retention compared to wild-type mice without Aβ pathology. Our findings suggest that these novel VHH-based FPs hold potential for therapeutic and diagnostic applications in AD, providing a strategy to overcome BBB limitations and enhance brain targeting of antibody-based treatments. Furthermore, our results suggest that a given bispecific TfR-binding fusion format has a window of \"optimal\" affinity where parenchymal delivery is adequate, while blood pharmacokinetics aligns with the desired application of the fusion protein.</p>","PeriodicalId":18206,"journal":{"name":"mAbs","volume":"16 1","pages":"2410968"},"PeriodicalIF":5.6,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11451328/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142365771","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Charge heterogeneity of therapeutic monoclonal antibodies by different cIEF systems: views on the current situation. 不同 cIEF 系统治疗性单克隆抗体的电荷异质性:对当前形势的看法。
IF 5.3 2区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL Pub Date : 2024-01-01 Epub Date: 2024-02-08 DOI: 10.1080/19420862.2024.2313737
Alessandro Ascione, Marcello Belfiore, Jaana Vesterinen, Mihaela Buda, Wolf Holtkamp, Francesca Luciani

Therapeutic mAbs show a specific "charge fingerprint" that may affect safety and efficacy, and, as such, it is often identified as a critical quality attribute (CQA). Capillary iso-electric focusing (cIEF), commonly used for the evaluation of such CQA, provides an analytical tool to investigate mAb purity and identity across the product lifecycle. Here, we discuss the results of an analysis of a panel of antibody products by conventional and whole-column imaging cIEF systems performed as part of European Pharmacopoeia activities related to development of "horizontal standards" for the quality control of monoclonal antibodies (mAbs). The study aimed at designing and verifying an independent and transversal cIEF procedure for the reliable analysis of mAbs charge variants. Despite the use of comparable experimental conditions, discrepancies in the charge profile and measured isoelectric points emerged between the two cIEF systems. These data suggest that the results are method-dependent rather than absolute, an aspect known to experts in the field and pharmaceutical industry, but not suitably documented in the literature. Critical implications from analytical and regulatory perspectives, are herein thoughtfully discussed, with a special focus on the context of market surveillance and identification of falsified medicines.

治疗用 mAb 显示出特定的 "电荷指纹",可能会影响安全性和疗效,因此常常被确定为关键质量属性 (CQA)。毛细管等电聚焦(cIEF)通常用于评估此类 CQA,它提供了一种分析工具,用于调查整个产品生命周期中 mAb 的纯度和特性。在此,我们讨论了在欧洲药典制定单克隆抗体(mAbs)质量控制 "横向标准 "的相关活动中,使用传统和全柱成像 cIEF 系统分析抗体产品的结果。这项研究旨在设计和验证一种独立的横向 cIEF 程序,以可靠地分析 mAbs 电荷变体。尽管使用了相似的实验条件,但两种 cIEF 系统在电荷曲线和测量的等电点上出现了差异。这些数据表明,结果与方法有关,而不是绝对的,这一点已为该领域和制药行业的专家所熟知,但文献中却没有适当的记载。本文从分析和监管的角度对关键影响进行了深思熟虑的讨论,并特别关注市场监督和假药识别方面的问题。
{"title":"Charge heterogeneity of therapeutic monoclonal antibodies by different cIEF systems: views on the current situation.","authors":"Alessandro Ascione, Marcello Belfiore, Jaana Vesterinen, Mihaela Buda, Wolf Holtkamp, Francesca Luciani","doi":"10.1080/19420862.2024.2313737","DOIUrl":"10.1080/19420862.2024.2313737","url":null,"abstract":"<p><p>Therapeutic mAbs show a specific \"charge fingerprint\" that may affect safety and efficacy, and, as such, it is often identified as a critical quality attribute (CQA). Capillary iso-electric focusing (cIEF), commonly used for the evaluation of such CQA, provides an analytical tool to investigate mAb purity and identity across the product lifecycle. Here, we discuss the results of an analysis of a panel of antibody products by conventional and whole-column imaging cIEF systems performed as part of European Pharmacopoeia activities related to development of \"horizontal standards\" for the quality control of monoclonal antibodies (mAbs). The study aimed at designing and verifying an independent and transversal cIEF procedure for the reliable analysis of mAbs charge variants. Despite the use of comparable experimental conditions, discrepancies in the charge profile and measured isoelectric points emerged between the two cIEF systems. These data suggest that the results are method-dependent rather than absolute, an aspect known to experts in the field and pharmaceutical industry, but not suitably documented in the literature. Critical implications from analytical and regulatory perspectives, are herein thoughtfully discussed, with a special focus on the context of market surveillance and identification of falsified medicines.</p>","PeriodicalId":18206,"journal":{"name":"mAbs","volume":"16 1","pages":"2313737"},"PeriodicalIF":5.3,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10860345/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139707134","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
mAbs
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1