首页 > 最新文献

mAbs最新文献

英文 中文
Antibodies to watch in 2024. 2024 年值得关注的抗体
IF 5.6 2区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL Pub Date : 2024-01-01 Epub Date: 2024-01-05 DOI: 10.1080/19420862.2023.2297450
Silvia Crescioli, Hélène Kaplon, Alicia Chenoweth, Lin Wang, Jyothsna Visweswaraiah, Janice M Reichert

The 'Antibodies to Watch' article series provides an annual summary of commercially sponsored monoclonal antibody therapeutics currently in late-stage clinical development, regulatory review, and those recently granted a first approval in any country. In this installment, we discuss key details for 16 antibody therapeutics granted a first approval in 2023, as of November 17 (lecanemab (Leqembi), rozanolixizumab (RYSTIGGO), pozelimab (VEOPOZ), mirikizumab (Omvoh), talquetamab (Talvey), elranatamab (Elrexfio), epcoritamab (EPKINLY), glofitamab (COLUMVI), retifanlimab (Zynyz), concizumab (Alhemo), lebrikizumab (EBGLYSS), tafolecimab (SINTBILO), narlumosbart (Jinlitai), zuberitamab (Enrexib), adebrelimab (Arelili), and divozilimab (Ivlizi)). We briefly review 26 product candidates for which marketing applications are under consideration in at least one country or region, and 23 investigational antibody therapeutics that are forecast to enter regulatory review by the end of 2024 based on company disclosures. These nearly 50 product candidates include numerous innovative bispecific antibodies, such as odronextamab, ivonescimab, linvoseltamab, zenocutuzumab, and erfonrilimab, and antibody-drug conjugates, such as trastuzumab botidotin, patritumab deruxtecan, datopotamab deruxtecan, and MRG002, as well as a mixture of two immunocytokines (bifikafusp alfa and onfekafusp alfa). We also discuss clinical phase transition and overall approval success rates for antibody therapeutics, which are crucial to the biopharmaceutical industry because these rates inform decisions about resource allocation. Our analyses indicate that these molecules have approval success rates in the range of 14-32%, with higher rates associated with antibodies developed for non-cancer indications. Overall, our data suggest that antibody therapeutic development efforts by the biopharmaceutical industry are robust and increasingly successful.

值得关注的抗体 "系列文章对目前处于临床开发后期、监管审查和最近在任何国家获得首次批准的商业赞助单克隆抗体疗法进行了年度总结。在本期文章中,我们将讨论截至 11 月 17 日在 2023 年获得首次批准的 16 种抗体疗法(lecanemab (Leqembi)、rozanolixizumab (RYSTIGGO)、pozelimab (VEOPOZ)、mirikizumab (Omvoh)、talquetamab (Talvey))的主要细节、elranatamab(Elrexfio)、epcoritamab(EPKINLY)、glofitamab(COLUMVI)、retifanlimab(Zynyz)、concizumab(Alhemo)、lebrikizumab(EBGLYSS)、tafolecimab (SINTBILO)、narlumosbart (金立泰)、zuberitamab (Enrexib)、adebrelimab (Arelili) 和 divozilimab (Ivlizi))。我们简要回顾了至少有一个国家或地区正在考虑上市申请的 26 种候选产品,以及根据公司披露的信息预计将于 2024 年底进入监管审查的 23 种在研抗体疗法。这近 50 种候选产品包括许多创新的双特异性抗体,如 odronextamab、ivonescimab、linvoseltamab、zenocutuzumab 和 erfonrilimab,以及抗体-药物共轭物,如 trastuzumab botidotin、patritumab deruxtecan、datopotamab deruxtecan 和 MRG002,以及两种免疫细胞因子的混合物(bifikafusp alfa 和 onfekafusp alfa)。我们还讨论了抗体疗法的临床阶段转换和总体批准成功率,这对生物制药行业至关重要,因为这些成功率为资源分配决策提供了依据。我们的分析表明,这些分子的获批成功率在 14% 到 32% 之间,非癌症适应症抗体的获批成功率更高。总之,我们的数据表明,生物制药行业的抗体治疗研发工作正在蓬勃发展,而且越来越成功。
{"title":"Antibodies to watch in 2024.","authors":"Silvia Crescioli, Hélène Kaplon, Alicia Chenoweth, Lin Wang, Jyothsna Visweswaraiah, Janice M Reichert","doi":"10.1080/19420862.2023.2297450","DOIUrl":"10.1080/19420862.2023.2297450","url":null,"abstract":"<p><p>The 'Antibodies to Watch' article series provides an annual summary of commercially sponsored monoclonal antibody therapeutics currently in late-stage clinical development, regulatory review, and those recently granted a first approval in any country. In this installment, we discuss key details for 16 antibody therapeutics granted a first approval in 2023, as of November 17 (lecanemab (Leqembi), rozanolixizumab (RYSTIGGO), pozelimab (VEOPOZ), mirikizumab (Omvoh), talquetamab (Talvey), elranatamab (Elrexfio), epcoritamab (EPKINLY), glofitamab (COLUMVI), retifanlimab (Zynyz), concizumab (Alhemo), lebrikizumab (EBGLYSS), tafolecimab (SINTBILO), narlumosbart (Jinlitai), zuberitamab (Enrexib), adebrelimab (Arelili), and divozilimab (Ivlizi)). We briefly review 26 product candidates for which marketing applications are under consideration in at least one country or region, and 23 investigational antibody therapeutics that are forecast to enter regulatory review by the end of 2024 based on company disclosures. These nearly 50 product candidates include numerous innovative bispecific antibodies, such as odronextamab, ivonescimab, linvoseltamab, zenocutuzumab, and erfonrilimab, and antibody-drug conjugates, such as trastuzumab botidotin, patritumab deruxtecan, datopotamab deruxtecan, and MRG002, as well as a mixture of two immunocytokines (bifikafusp alfa and onfekafusp alfa). We also discuss clinical phase transition and overall approval success rates for antibody therapeutics, which are crucial to the biopharmaceutical industry because these rates inform decisions about resource allocation. Our analyses indicate that these molecules have approval success rates in the range of 14-32%, with higher rates associated with antibodies developed for non-cancer indications. Overall, our data suggest that antibody therapeutic development efforts by the biopharmaceutical industry are robust and increasingly successful.</p>","PeriodicalId":18206,"journal":{"name":"mAbs","volume":null,"pages":null},"PeriodicalIF":5.6,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10773713/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139098161","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A comparative study of the developability of full-length antibodies, fragments, and bispecific formats reveals higher stability risks for engineered constructs. 对全长抗体、片段抗体和双特异性抗体的可开发性进行比较研究后发现,工程构建物的稳定性风险更高。
IF 5.6 2区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL Pub Date : 2024-01-01 Epub Date: 2024-10-04 DOI: 10.1080/19420862.2024.2403156
Itzel Condado-Morales, Fabian Dingfelder, Isabel Waibel, Oliver M Turnbull, Bhargav Patel, Zheng Cao, Jais Rose Bjelke, Susanne Nedergaard Grell, Anja Bennet, Alissa M Hummer, Matthew I J Raybould, Charlotte M Deane, Thomas Egebjerg, Nikolai Lorenzen, Paolo Arosio

Engineered antibody formats, such as antibody fragments and bispecifics, have the potential to offer improved therapeutic efficacy compared to traditional full-length monoclonal antibodies (mAbs). However, the translation of these non-natural molecules into successful therapeutics can be hampered by developability challenges. Here, we systematically analyzed 64 different antibody constructs targeting Tumor Necrosis Factor (TNF) which cover 8 distinct molecular format families, encompassing full-length antibodies, various types of single chain variable fragments, and bispecifics. We measured 15 biophysical properties related to activity, manufacturing, and stability, scoring variants with a flag-based risk approach and a recent in silico developability profiler. Our comparative assessment revealed that overall developability is higher for the natural full-length antibody format. Bispecific antibodies, antibodies with scFv fragments at the C-terminus of the light chain, and single-chain Fv antibody fragments (scFvs) have intermediate developability properties, while more complicated formats, such as scFv- scFv, bispecific mAbs with one Fab exchanged with a scFv, and diabody formats are collectively more challenging. In particular, our study highlights the propensity for fragmentation and aggregation, both in bulk and at interfaces, for many current engineered formats.

与传统的全长单克隆抗体(mAbs)相比,抗体片段和双特异性抗体等工程抗体形式有可能提高疗效。然而,将这些非天然分子转化为成功的疗法可能会受到可开发性挑战的阻碍。在这里,我们系统分析了 64 种不同的靶向肿瘤坏死因子(TNF)的抗体构建物,它们涵盖了 8 个不同的分子形式家族,包括全长抗体、各种类型的单链可变片段和双特异性抗体。我们测量了与活性、制造和稳定性相关的 15 项生物物理特性,并采用基于标志的风险方法和最新的硅学可开发性剖析器对变体进行了评分。我们的比较评估显示,天然全长抗体形式的总体可开发性更高。双特异性抗体、轻链 C 端带有 scFv 片段的抗体和单链 Fv 抗体片段(scFvs)的可开发性处于中等水平,而更复杂的形式,如 scFv- scFv、一个 Fab 与一个 scFv 交换的双特异性 mAbs 和二抗体形式则总体上更具挑战性。特别是,我们的研究强调了目前许多工程格式在体积和界面上的破碎和聚集倾向。
{"title":"A comparative study of the developability of full-length antibodies, fragments, and bispecific formats reveals higher stability risks for engineered constructs.","authors":"Itzel Condado-Morales, Fabian Dingfelder, Isabel Waibel, Oliver M Turnbull, Bhargav Patel, Zheng Cao, Jais Rose Bjelke, Susanne Nedergaard Grell, Anja Bennet, Alissa M Hummer, Matthew I J Raybould, Charlotte M Deane, Thomas Egebjerg, Nikolai Lorenzen, Paolo Arosio","doi":"10.1080/19420862.2024.2403156","DOIUrl":"10.1080/19420862.2024.2403156","url":null,"abstract":"<p><p>Engineered antibody formats, such as antibody fragments and bispecifics, have the potential to offer improved therapeutic efficacy compared to traditional full-length monoclonal antibodies (mAbs). However, the translation of these non-natural molecules into successful therapeutics can be hampered by developability challenges. Here, we systematically analyzed 64 different antibody constructs targeting Tumor Necrosis Factor (TNF) which cover 8 distinct molecular format families, encompassing full-length antibodies, various types of single chain variable fragments, and bispecifics. We measured 15 biophysical properties related to activity, manufacturing, and stability, scoring variants with a flag-based risk approach and a recent <i>in silico</i> developability profiler. Our comparative assessment revealed that overall developability is higher for the natural full-length antibody format. Bispecific antibodies, antibodies with scFv fragments at the C-terminus of the light chain, and single-chain Fv antibody fragments (scFvs) have intermediate developability properties, while more complicated formats, such as scFv- scFv, bispecific mAbs with one Fab exchanged with a scFv, and diabody formats are collectively more challenging. In particular, our study highlights the propensity for fragmentation and aggregation, both in bulk and at interfaces, for many current engineered formats.</p>","PeriodicalId":18206,"journal":{"name":"mAbs","volume":null,"pages":null},"PeriodicalIF":5.6,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11457596/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142372151","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Biparatopic antibodies: therapeutic applications and prospects. 双位抗体:治疗应用与前景。
IF 5.6 2区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL Pub Date : 2024-01-01 Epub Date: 2024-03-04 DOI: 10.1080/19420862.2024.2310890
David L Niquille, Kyle M Fitzgerald, Nimish Gera

Biparatopic antibodies (bpAbs) bind distinct, non-overlapping epitopes on an antigen. This unique binding mode enables new mechanisms of action beyond monospecific and bispecific antibodies (bsAbs) that can make bpAbs effective therapeutics for various indications, including oncology and infectious diseases. Biparatopic binding can lead to superior affinity and specificity, promote antagonism, lock target conformation, and result in higher-order target clustering. Such antibody-target complexes can elicit strong agonism, increase immune effector function, or result in rapid target downregulation and lysosomal trafficking. These are not only attractive properties for therapeutic antibodies but are increasingly being explored for other modalities such as antibody-drug conjugates, T-cell engagers and chimeric antigen receptors. Recent advances in bpAb engineering have enabled the construction of ever more sophisticated formats that are starting to show promise in the clinic.

双特异性抗体(bpAbs)与抗原上不同的、不重叠的表位结合。这种独特的结合模式产生了超越单特异性抗体和双特异性抗体(bsAbs)的新作用机制,可使双特异性抗体成为包括肿瘤和传染病在内的各种适应症的有效疗法。双特异性结合可产生更强的亲和力和特异性,促进拮抗作用,锁定目标构象,并产生更高阶的目标聚类。这种抗体-靶点复合物可引起强烈的激动作用,增强免疫效应功能,或导致靶点快速下调和溶酶体转运。这些特性不仅对治疗性抗体很有吸引力,而且正越来越多地被用于其他方式,如抗体-药物共轭物、T 细胞诱导体和嵌合抗原受体。bpAb 工程技术的最新进展使得构建更复杂的形式成为可能,并开始在临床上显示出前景。
{"title":"Biparatopic antibodies: therapeutic applications and prospects.","authors":"David L Niquille, Kyle M Fitzgerald, Nimish Gera","doi":"10.1080/19420862.2024.2310890","DOIUrl":"10.1080/19420862.2024.2310890","url":null,"abstract":"<p><p>Biparatopic antibodies (bpAbs) bind distinct, non-overlapping epitopes on an antigen. This unique binding mode enables new mechanisms of action beyond monospecific and bispecific antibodies (bsAbs) that can make bpAbs effective therapeutics for various indications, including oncology and infectious diseases. Biparatopic binding can lead to superior affinity and specificity, promote antagonism, lock target conformation, and result in higher-order target clustering. Such antibody-target complexes can elicit strong agonism, increase immune effector function, or result in rapid target downregulation and lysosomal trafficking. These are not only attractive properties for therapeutic antibodies but are increasingly being explored for other modalities such as antibody-drug conjugates, T-cell engagers and chimeric antigen receptors. Recent advances in bpAb engineering have enabled the construction of ever more sophisticated formats that are starting to show promise in the clinic.</p>","PeriodicalId":18206,"journal":{"name":"mAbs","volume":null,"pages":null},"PeriodicalIF":5.6,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10936611/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140028389","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A pivotal decade for bispecific antibodies? 双特异性抗体的关键十年?
IF 5.6 2区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL Pub Date : 2024-01-01 Epub Date: 2024-03-11 DOI: 10.1080/19420862.2024.2321635
Marlena Surowka, Christian Klein

Bispecific antibodies (bsAbs) are a class of antibodies that can mediate novel mechanisms of action compared to monospecific monoclonal antibodies (mAbs). Since the discovery of mAbs and their adoption as therapeutic agents in the 1980s and 1990s, the development of bsAbs has held substantial appeal. Nevertheless, only three bsAbs (catumaxomab, blinatumomab, emicizumab) were approved through the end of 2020. However, since then, 11 bsAbs received regulatory agency approvals, of which nine (amivantamab, tebentafusp, mosunetuzumab, cadonilimab, teclistamab, glofitamab, epcoritamab, talquetamab, elranatamab) were approved for the treatment of cancer and two (faricimab, ozoralizumab) in non-oncology indications. Notably, of the 13 currently approved bsAbs, two, emicizumab and faricimab, have achieved blockbuster status, showing the promise of this novel class of therapeutics. In the 2020s, the approval of additional bsAbs can be expected in hematological malignancies, solid tumors and non-oncology indications, establishing bsAbs as essential part of the therapeutic armamentarium.

与单特异性单克隆抗体(mAbs)相比,双特异性抗体(bsAbs)是一类能介导新作用机制的抗体。自 20 世纪 80 年代和 90 年代发现 mAbs 并将其作为治疗药物以来,双特异性抗体的开发一直具有巨大的吸引力。然而,截至 2020 年底,只有三种 bsAbs(catumaxomab、blinatumomab 和 emicizumab)获得批准。然而,从那时起,有 11 种 bsAbs 获得了监管机构的批准,其中 9 种(amivantamab、tebentafusp、mosunetuzumab、cadonilimab、teclistamab、glofitamab、epcoritamab、talquetamab、elranatamab)被批准用于治疗癌症,2 种(faricimab、ozoralizumab)被批准用于非肿瘤适应症。值得注意的是,在目前获批的 13 种 bsAbs 中,有两种(emicizumab 和 faricimab)获得了大片地位,显示了这类新型疗法的前景。2020 年代,预计还会有更多的 bsAbs 获批用于血液恶性肿瘤、实体瘤和非肿瘤适应症,从而使 bsAbs 成为治疗手段的重要组成部分。
{"title":"A pivotal decade for bispecific antibodies?","authors":"Marlena Surowka, Christian Klein","doi":"10.1080/19420862.2024.2321635","DOIUrl":"10.1080/19420862.2024.2321635","url":null,"abstract":"<p><p>Bispecific antibodies (bsAbs) are a class of antibodies that can mediate novel mechanisms of action compared to monospecific monoclonal antibodies (mAbs). Since the discovery of mAbs and their adoption as therapeutic agents in the 1980s and 1990s, the development of bsAbs has held substantial appeal. Nevertheless, only three bsAbs (catumaxomab, blinatumomab, emicizumab) were approved through the end of 2020. However, since then, 11 bsAbs received regulatory agency approvals, of which nine (amivantamab, tebentafusp, mosunetuzumab, cadonilimab, teclistamab, glofitamab, epcoritamab, talquetamab, elranatamab) were approved for the treatment of cancer and two (faricimab, ozoralizumab) in non-oncology indications. Notably, of the 13 currently approved bsAbs, two, emicizumab and faricimab, have achieved blockbuster status, showing the promise of this novel class of therapeutics. In the 2020s, the approval of additional bsAbs can be expected in hematological malignancies, solid tumors and non-oncology indications, establishing bsAbs as essential part of the therapeutic armamentarium.</p>","PeriodicalId":18206,"journal":{"name":"mAbs","volume":null,"pages":null},"PeriodicalIF":5.6,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10936642/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140094362","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A tailored lectin microarray for rapid glycan profiling of therapeutic monoclonal antibodies. 用于快速分析治疗性单克隆抗体糖谱的定制凝集素芯片。
IF 5.6 2区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL Pub Date : 2024-01-01 Epub Date: 2024-01-22 DOI: 10.1080/19420862.2024.2304268
Shen Luo, Baolin Zhang

Glycosylation plays a crucial role in determining the quality and efficacy of therapeutic antibodies. This necessitates a thorough analysis and monitoring process to ensure consistent product quality during manufacturing. In this study, we introduce a custom-designed lectin microarray featuring nine distinct lectins: rPhoSL, rOTH3, RCA120, rMan2, MAL_I, rPSL1a, PHAE, rMOA, and PHAL. These lectins have been specifically tailored to selectively bind to common N-glycan epitopes found in therapeutic IgG antibodies. By utilizing intact glycoprotein samples, our nine-lectin microarray provides a high-throughput platform for rapid glycan profiling, enabling comparative analysis of glycosylation patterns. Our results demonstrate the practical utility of this microarray in assessing glycosylation across various manufacturing batches or between biosimilar and innovator products. This capacity empowers informed decision-making in the development and production of therapeutic antibodies.

糖基化在决定治疗性抗体的质量和疗效方面起着至关重要的作用。这就需要进行全面的分析和监测,以确保生产过程中产品质量的一致性。在这项研究中,我们介绍了一种定制设计的凝集素微阵列,其中包含九种不同的凝集素:rPhoSL、rOTH3、RCA120、rMan2、MAL_I、rPSL1a、PHAE、rMOA 和 PHAL。这些凝集素经过专门定制,可选择性地与治疗性 IgG 抗体中常见的 N-糖表位结合。通过利用完整的糖蛋白样本,我们的九种凝集素芯片为快速糖谱分析提供了一个高通量平台,使糖基化模式的比较分析成为可能。我们的研究结果证明了这种芯片在评估不同生产批次或生物仿制药与创新药之间的糖基化方面的实用性。这种能力有助于在治疗性抗体的开发和生产过程中做出明智的决策。
{"title":"A tailored lectin microarray for rapid glycan profiling of therapeutic monoclonal antibodies.","authors":"Shen Luo, Baolin Zhang","doi":"10.1080/19420862.2024.2304268","DOIUrl":"10.1080/19420862.2024.2304268","url":null,"abstract":"<p><p>Glycosylation plays a crucial role in determining the quality and efficacy of therapeutic antibodies. This necessitates a thorough analysis and monitoring process to ensure consistent product quality during manufacturing. In this study, we introduce a custom-designed lectin microarray featuring nine distinct lectins: rPhoSL, rOTH3, RCA120, rMan2, MAL_I, rPSL1a, PHAE, rMOA, and PHAL. These lectins have been specifically tailored to selectively bind to common N-glycan epitopes found in therapeutic IgG antibodies. By utilizing intact glycoprotein samples, our nine-lectin microarray provides a high-throughput platform for rapid glycan profiling, enabling comparative analysis of glycosylation patterns. Our results demonstrate the practical utility of this microarray in assessing glycosylation across various manufacturing batches or between biosimilar and innovator products. This capacity empowers informed decision-making in the development and production of therapeutic antibodies.</p>","PeriodicalId":18206,"journal":{"name":"mAbs","volume":null,"pages":null},"PeriodicalIF":5.6,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10807468/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139521322","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Reduction of monoclonal antibody viscosity using interpretable machine learning. 利用可解释的机器学习降低单克隆抗体粘度。
IF 5.6 2区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL Pub Date : 2024-01-01 Epub Date: 2024-03-12 DOI: 10.1080/19420862.2024.2303781
Emily K Makowski, Hsin-Ting Chen, Tiexin Wang, Lina Wu, Jie Huang, Marissa Mock, Patrick Underhill, Emma Pelegri-O'Day, Erick Maglalang, Dwight Winters, Peter M Tessier

Early identification of antibody candidates with drug-like properties is essential for simplifying the development of safe and effective antibody therapeutics. For subcutaneous administration, it is important to identify candidates with low self-association to enable their formulation at high concentration while maintaining low viscosity, opalescence, and aggregation. Here, we report an interpretable machine learning model for predicting antibody (IgG1) variants with low viscosity using only the sequences of their variable (Fv) regions. Our model was trained on antibody viscosity data (>100 mg/mL mAb concentration) obtained at a common formulation pH (pH 5.2), and it identifies three key Fv features of antibodies linked to viscosity, namely their isoelectric points, hydrophobic patch sizes, and numbers of negatively charged patches. Of the three features, most predicted antibodies at risk for high viscosity, including antibodies with diverse antibody germlines in our study (79 mAbs) as well as clinical-stage IgG1s (94 mAbs), are those with low Fv isoelectric points (Fv pIs < 6.3). Our model identifies viscous antibodies with relatively high accuracy not only in our training and test sets, but also for previously reported data. Importantly, we show that the interpretable nature of the model enables the design of mutations that significantly reduce antibody viscosity, which we confirmed experimentally. We expect that this approach can be readily integrated into the drug development process to reduce the need for experimental viscosity screening and improve the identification of antibody candidates with drug-like properties.

要简化安全有效的抗体疗法的开发过程,及早发现具有类药物特性的抗体候选物至关重要。对于皮下给药,重要的是识别低自结合的候选抗体,以便在保持低粘度、不透明和低聚集的同时实现高浓度制剂。在此,我们报告了一种可解释的机器学习模型,该模型仅使用抗体可变区(Fv)的序列来预测低粘度的抗体(IgG1)变体。我们的模型是在常见制剂 pH 值(pH 5.2)下获得的抗体粘度数据(>100 mg/mL mAb 浓度)上进行训练的,它识别出了与粘度相关的抗体的三个关键 Fv 特征,即等电点、疏水斑块大小和带负电荷斑块的数量。在这三个特征中,大多数预测有高粘度风险的抗体,包括在我们的研究中具有不同抗体种系的抗体(79 mAbs)以及临床阶段的 IgG1s(94 mAbs),都是那些 Fv 等电点较低(Fv pIs
{"title":"Reduction of monoclonal antibody viscosity using interpretable machine learning.","authors":"Emily K Makowski, Hsin-Ting Chen, Tiexin Wang, Lina Wu, Jie Huang, Marissa Mock, Patrick Underhill, Emma Pelegri-O'Day, Erick Maglalang, Dwight Winters, Peter M Tessier","doi":"10.1080/19420862.2024.2303781","DOIUrl":"10.1080/19420862.2024.2303781","url":null,"abstract":"<p><p>Early identification of antibody candidates with drug-like properties is essential for simplifying the development of safe and effective antibody therapeutics. For subcutaneous administration, it is important to identify candidates with low self-association to enable their formulation at high concentration while maintaining low viscosity, opalescence, and aggregation. Here, we report an interpretable machine learning model for predicting antibody (IgG1) variants with low viscosity using only the sequences of their variable (Fv) regions. Our model was trained on antibody viscosity data (>100 mg/mL mAb concentration) obtained at a common formulation pH (pH 5.2), and it identifies three key Fv features of antibodies linked to viscosity, namely their isoelectric points, hydrophobic patch sizes, and numbers of negatively charged patches. Of the three features, most predicted antibodies at risk for high viscosity, including antibodies with diverse antibody germlines in our study (79 mAbs) as well as clinical-stage IgG1s (94 mAbs), are those with low Fv isoelectric points (Fv pIs < 6.3). Our model identifies viscous antibodies with relatively high accuracy not only in our training and test sets, but also for previously reported data. Importantly, we show that the interpretable nature of the model enables the design of mutations that significantly reduce antibody viscosity, which we confirmed experimentally. We expect that this approach can be readily integrated into the drug development process to reduce the need for experimental viscosity screening and improve the identification of antibody candidates with drug-like properties.</p>","PeriodicalId":18206,"journal":{"name":"mAbs","volume":null,"pages":null},"PeriodicalIF":5.6,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10939158/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140110601","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Early determination of potential critical quality attributes of therapeutic antibodies in developability studies through surface plasmon resonance-based relative binding activity assessment. 通过基于表面等离子共振的相对结合活性评估,在可开发性研究中及早确定治疗性抗体的潜在关键质量属性。
IF 5.6 2区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL Pub Date : 2024-01-01 Epub Date: 2024-07-02 DOI: 10.1080/19420862.2024.2374607
Shuai Wang, Yanqiu Wang, Zhenzhen Li, Ye Hong, Zhaohui Wang, Jiteng Fan, Qiong Wang, Yuanjie Ge, Xiaofeng Zhao, Guangcun Cheng, Changyan Chen, Yadan Wu, Yayuan Fu

Precise measurement of the binding activity changes of therapeutic antibodies is important to determine the potential critical quality attributes (CQAs) in developability assessment at the early stage of antibody development. Here, we report a surface plasmon resonance (SPR)-based relative binding activity method, which incorporates both binding affinity and binding response and allows us to determine relative binding activity of antibodies with high accuracy and precision. We applied the SPR-based relative binding activity method in multiple forced degradation studies of antibody developability assessment. The current developability assessment strategy provided comprehensive, precise characterization of antibody binding activity in the stability studies, enabling us to perform correlation analysis and establish the structure-function relationship between relative binding activity and quality attributes. The impact of a given quality attribute on binding activity could be confidently determined without isolating antibody variants. We identified several potential CQAs, including Asp isomerization, Asn deamidation, and fragmentation. Some potential CQAs affected binding affinity of antibody and resulted in a reduction of binding activity. Certain potential CQAs impaired antibody binding to antigen and led to a loss of binding activity. A few potential CQAs could influence both binding affinity and binding response and cause a substantial decrease in antibody binding activity. Specifically, we identified low abundance Asn33 deamidation in the light chain complementarity-determining region as a potential CQA, in which all the stressed antibody samples showed Asn33 deamidation abundances ranging from 4.2% to 27.5% and a mild binding affinity change from 1.76 nM to 2.16 nM.

精确测量治疗性抗体的结合活性变化对于确定抗体开发早期可开发性评估中潜在的关键质量属性(CQA)非常重要。在这里,我们报告了一种基于表面等离子体共振(SPR)的相对结合活性方法,该方法结合了结合亲和力和结合反应,能高精度地测定抗体的相对结合活性。我们将基于 SPR 的相对结合活性方法应用于抗体可开发性评估的多项强制降解研究中。目前的可发展性评估策略在稳定性研究中提供了全面、精确的抗体结合活性表征,使我们能够进行相关性分析,建立相对结合活性与质量属性之间的结构-功能关系。在不分离抗体变体的情况下,就能确定特定质量属性对结合活性的影响。我们确定了几种潜在的 CQA,包括 Asp 异构化、Asn 脱酰胺化和破碎化。一些潜在的 CQA 影响了抗体的结合亲和力,导致结合活性降低。某些潜在的 CQAs 会影响抗体与抗原的结合,导致结合活性下降。少数潜在的 CQAs 可同时影响结合亲和力和结合反应,并导致抗体结合活性大幅降低。具体来说,我们发现轻链互补性决定区的低丰度 Asn33 去氨基化是一种潜在的 CQA,所有受试抗体样品的 Asn33 去氨基化丰度从 4.2% 到 27.5%不等,结合亲和力从 1.76 nM 轻度变化到 2.16 nM。
{"title":"Early determination of potential critical quality attributes of therapeutic antibodies in developability studies through surface plasmon resonance-based relative binding activity assessment.","authors":"Shuai Wang, Yanqiu Wang, Zhenzhen Li, Ye Hong, Zhaohui Wang, Jiteng Fan, Qiong Wang, Yuanjie Ge, Xiaofeng Zhao, Guangcun Cheng, Changyan Chen, Yadan Wu, Yayuan Fu","doi":"10.1080/19420862.2024.2374607","DOIUrl":"10.1080/19420862.2024.2374607","url":null,"abstract":"<p><p>Precise measurement of the binding activity changes of therapeutic antibodies is important to determine the potential critical quality attributes (CQAs) in developability assessment at the early stage of antibody development. Here, we report a surface plasmon resonance (SPR)-based relative binding activity method, which incorporates both binding affinity and binding response and allows us to determine relative binding activity of antibodies with high accuracy and precision. We applied the SPR-based relative binding activity method in multiple forced degradation studies of antibody developability assessment. The current developability assessment strategy provided comprehensive, precise characterization of antibody binding activity in the stability studies, enabling us to perform correlation analysis and establish the structure-function relationship between relative binding activity and quality attributes. The impact of a given quality attribute on binding activity could be confidently determined without isolating antibody variants. We identified several potential CQAs, including Asp isomerization, Asn deamidation, and fragmentation. Some potential CQAs affected binding affinity of antibody and resulted in a reduction of binding activity. Certain potential CQAs impaired antibody binding to antigen and led to a loss of binding activity. A few potential CQAs could influence both binding affinity and binding response and cause a substantial decrease in antibody binding activity. Specifically, we identified low abundance Asn33 deamidation in the light chain complementarity-determining region as a potential CQA, in which all the stressed antibody samples showed Asn33 deamidation abundances ranging from 4.2% to 27.5% and a mild binding affinity change from 1.76 nM to 2.16 nM.</p>","PeriodicalId":18206,"journal":{"name":"mAbs","volume":null,"pages":null},"PeriodicalIF":5.6,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11225922/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141492486","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The history and potential future of monoclonal antibody therapeutics development and manufacturing in four eras. 四个时代的单克隆抗体疗法开发和生产的历史与潜在未来。
IF 5.6 2区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL Pub Date : 2024-01-01 Epub Date: 2024-07-01 DOI: 10.1080/19420862.2024.2373330
Brian Kelley

Therapeutic monoclonal antibody (mAb) development and the processes for manufacturing drug substance have evolved since the first approval of the mAb in 1986. As the past is often the prologue to the future, the history of these technologies has been classified here into three eras, leading to speculation about what the next era may hold with regard to development and manufacturing strategies, as well as the potential impacts to patients. The substantial increase in production culture titers and bioreactor production volumes and the availability of large-scale contract manufacturing facilities could translate into improved global access for these therapies and an expansion of indications for therapeutic antibodies.

自 1986 年首次批准生产单克隆抗体(mAb)以来,治疗性单克隆抗体(mAb)的开发和药物物质的生产工艺不断发展。过去往往是未来的序幕,因此我们将这些技术的发展历程分为三个时代,从而推测下一个时代在开发和生产策略方面可能会发生的变化,以及对患者可能产生的影响。生产培养滴度和生物反应器产量的大幅提高,以及大规模合同生产设施的可用性,可能会改善这些疗法在全球范围内的可及性,并扩大治疗性抗体的适应症。
{"title":"The history and potential future of monoclonal antibody therapeutics development and manufacturing in four eras.","authors":"Brian Kelley","doi":"10.1080/19420862.2024.2373330","DOIUrl":"10.1080/19420862.2024.2373330","url":null,"abstract":"<p><p>Therapeutic monoclonal antibody (mAb) development and the processes for manufacturing drug substance have evolved since the first approval of the mAb in 1986. As the past is often the prologue to the future, the history of these technologies has been classified here into three eras, leading to speculation about what the next era may hold with regard to development and manufacturing strategies, as well as the potential impacts to patients. The substantial increase in production culture titers and bioreactor production volumes and the availability of large-scale contract manufacturing facilities could translate into improved global access for these therapies and an expansion of indications for therapeutic antibodies.</p>","PeriodicalId":18206,"journal":{"name":"mAbs","volume":null,"pages":null},"PeriodicalIF":5.6,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11218797/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141469253","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Antibody-epitope conjugates deliver immunogenic T-cell epitopes more efficiently when close to cell surfaces. 抗体-表位共轭物在靠近细胞表面时能更有效地传递免疫原性 T 细胞表位。
IF 5.3 2区 医学 Q1 Medicine Pub Date : 2024-01-01 Epub Date: 2024-03-18 DOI: 10.1080/19420862.2024.2329321
W van der Wulp, W Luu, M E Ressing, J Schuurman, S I van Kasteren, L Guelen, R C Hoeben, B Bleijlevens, M H M Heemskerk

Antibody-mediated delivery of immunogenic viral CD8+ T-cell epitopes to redirect virus-specific T cells toward cancer cells is a promising new therapeutic avenue to increase the immunogenicity of tumors. Multiple strategies for viral epitope delivery have been shown to be effective. So far, most of these have relied on a free C-terminus of the immunogenic epitope for extracellular delivery. Here, we demonstrate that antibody-epitope conjugates (AECs) with genetically fused epitopes to the N-terminus of the antibody can also sensitize tumors for attack by virus-specific CD8+ T cells. AECs carrying epitopes genetically fused at the N-terminus of the light chains of cetuximab and trastuzumab demonstrate an even more efficient delivery of the T-cell epitopes compared to AECs with the epitope fused to the C-terminus of the heavy chain. We demonstrate that this increased efficiency is not caused by the shift in location of the cleavage site from the N- to the C-terminus, but by its increased proximity to the cell surface. We hypothesize that this facilitates more efficient epitope delivery. These findings not only provide additional insights into the mechanism of action of AECs but also broaden the possibilities for genetically fused AECs as an avenue for the redirection of multiple virus-specific T cells toward tumors.

抗体介导的免疫原性病毒 CD8+ T 细胞表位递送可将病毒特异性 T 细胞重新导向癌细胞,是一种很有希望的提高肿瘤免疫原性的新疗法。多种病毒表位递送策略已被证明是有效的。迄今为止,这些策略大多依赖于免疫原表位的游离 C 端进行细胞外递送。在这里,我们证明了将表位基因融合到抗体 N 端的抗体-表位共轭物(AECs)也能使肿瘤受到病毒特异性 CD8+ T 细胞的攻击。与将表位融合在重链 C 端的 AEC 相比,将表位基因融合在西妥昔单抗和曲妥珠单抗轻链 N 端的 AEC 能更有效地传递 T 细胞表位。我们证明,效率的提高并不是因为裂解位点从 N 端转移到了 C 端,而是因为裂解位点更接近细胞表面。我们假设这有利于更有效地传递表位。这些发现不仅让我们对 AECs 的作用机制有了更多的了解,而且拓宽了基因融合 AECs 作为将多种病毒特异性 T 细胞重新导向肿瘤的途径的可能性。
{"title":"Antibody-epitope conjugates deliver immunogenic T-cell epitopes more efficiently when close to cell surfaces.","authors":"W van der Wulp, W Luu, M E Ressing, J Schuurman, S I van Kasteren, L Guelen, R C Hoeben, B Bleijlevens, M H M Heemskerk","doi":"10.1080/19420862.2024.2329321","DOIUrl":"10.1080/19420862.2024.2329321","url":null,"abstract":"<p><p>Antibody-mediated delivery of immunogenic viral CD8<sup>+</sup> T-cell epitopes to redirect virus-specific T cells toward cancer cells is a promising new therapeutic avenue to increase the immunogenicity of tumors. Multiple strategies for viral epitope delivery have been shown to be effective. So far, most of these have relied on a free C-terminus of the immunogenic epitope for extracellular delivery. Here, we demonstrate that antibody-epitope conjugates (AECs) with genetically fused epitopes to the N-terminus of the antibody can also sensitize tumors for attack by virus-specific CD8<sup>+</sup> T cells. AECs carrying epitopes genetically fused at the N-terminus of the light chains of cetuximab and trastuzumab demonstrate an even more efficient delivery of the T-cell epitopes compared to AECs with the epitope fused to the C-terminus of the heavy chain. We demonstrate that this increased efficiency is not caused by the shift in location of the cleavage site from the <i>N</i>- to the C-terminus, but by its increased proximity to the cell surface. We hypothesize that this facilitates more efficient epitope delivery. These findings not only provide additional insights into the mechanism of action of AECs but also broaden the possibilities for genetically fused AECs as an avenue for the redirection of multiple virus-specific T cells toward tumors.</p>","PeriodicalId":18206,"journal":{"name":"mAbs","volume":null,"pages":null},"PeriodicalIF":5.3,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10950288/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140143825","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Improving the integrity and reproducibility of research that uses antibodies: a technical, data sharing, behavioral and policy challenge. 提高使用抗体的研究的完整性和可重复性:技术、数据共享、行为和政策方面的挑战。
IF 5.3 2区 医学 Q1 Medicine Pub Date : 2024-01-01 Epub Date: 2024-03-06 DOI: 10.1080/19420862.2024.2323706
M Biddle, P Stylianou, M Rekas, A Wright, J Sousa, D Ruddy, M I Stefana, K Kmiecik, A Bandrowski, R A Kahn, C Laflamme, E M Krockow, H S Virk

Antibodies are one of the most important reagents used in biomedical and fundamental research, used to identify, and quantify proteins, contribute to knowledge of disease mechanisms, and validate drug targets. Yet many antibodies used in research do not recognize their intended target, or recognize additional molecules, compromising the integrity of research findings and leading to waste of resources, lack of reproducibility, failure of research projects, and delays in drug development. Researchers frequently use antibodies without confirming that they perform as intended in their application of interest. Here we argue that the determinants of end-user antibody choice and use are critical, and under-addressed, behavioral drivers of this problem. This interacts with the batch-to-batch variability of these biological reagents, and the paucity of available characterization data for most antibodies, making it more difficult for researchers to choose high quality reagents and perform necessary validation experiments. The open-science company YCharOS works with major antibody manufacturers and knockout cell line producers to characterize antibodies, identifying high-performing renewable antibodies for many targets in neuroscience. This shows the progress that can be made by stakeholders working together. However, their work so far applies to only a tiny fraction of available antibodies. Where characterization data exists, end-users need help to find and use it appropriately. While progress has been made in the context of technical solutions and antibody characterization, we argue that initiatives to make best practice behaviors by researchers more feasible, easy, and rewarding are needed. Global cooperation and coordination between multiple partners and stakeholders will be crucial to address the technical, policy, behavioral, and open data sharing challenges. We offer potential solutions by describing our Only Good Antibodies initiative, a community of researchers and partner organizations working toward the necessary change. We conclude with an open invitation for stakeholders, including researchers, to join our cause.

抗体是生物医学和基础研究中使用的最重要试剂之一,用于鉴定和量化蛋白质,有助于了解疾病机制和验证药物靶点。然而,研究中使用的许多抗体并不能识别其预期目标,或者不能识别其他分子,从而损害了研究结果的完整性,导致资源浪费、缺乏可重复性、研究项目失败以及药物开发延迟。研究人员经常使用抗体,却不确认它们在相关应用中是否发挥了预期作用。在此,我们认为,最终用户选择和使用抗体的决定因素是导致这一问题的关键行为因素,但这一因素尚未得到充分解决。这与这些生物试剂的批次与批次之间的可变性以及大多数抗体可用表征数据的匮乏相互作用,使得研究人员更难选择高质量的试剂并进行必要的验证实验。开放科学公司YCharOS与主要抗体生产商和基因敲除细胞系生产商合作,对抗体进行表征,为神经科学中的许多靶点确定了高性能的可再生抗体。这显示了利益相关者携手合作所能取得的进展。然而,迄今为止,他们的工作只适用于极少一部分可用抗体。在存在表征数据的情况下,最终用户需要帮助才能找到并适当使用这些数据。虽然在技术解决方案和抗体表征方面已经取得了进展,但我们认为还需要采取一些措施,使研究人员的最佳实践行为更加可行、简便和有益。多个合作伙伴和利益相关者之间的全球合作与协调对于解决技术、政策、行为和开放数据共享方面的挑战至关重要。通过介绍我们的 "只有好抗体 "倡议,我们提供了潜在的解决方案,这是一个由研究人员和合作组织组成的社区,致力于实现必要的变革。最后,我们公开邀请包括研究人员在内的利益相关者加入我们的事业。
{"title":"Improving the integrity and reproducibility of research that uses antibodies: a technical, data sharing, behavioral and policy challenge.","authors":"M Biddle, P Stylianou, M Rekas, A Wright, J Sousa, D Ruddy, M I Stefana, K Kmiecik, A Bandrowski, R A Kahn, C Laflamme, E M Krockow, H S Virk","doi":"10.1080/19420862.2024.2323706","DOIUrl":"10.1080/19420862.2024.2323706","url":null,"abstract":"<p><p>Antibodies are one of the most important reagents used in biomedical and fundamental research, used to identify, and quantify proteins, contribute to knowledge of disease mechanisms, and validate drug targets. Yet many antibodies used in research do not recognize their intended target, or recognize additional molecules, compromising the integrity of research findings and leading to waste of resources, lack of reproducibility, failure of research projects, and delays in drug development. Researchers frequently use antibodies without confirming that they perform as intended in their application of interest. Here we argue that the determinants of end-user antibody choice and use are critical, and under-addressed, behavioral drivers of this problem. This interacts with the batch-to-batch variability of these biological reagents, and the paucity of available characterization data for most antibodies, making it more difficult for researchers to choose high quality reagents and perform necessary validation experiments. The open-science company YCharOS works with major antibody manufacturers and knockout cell line producers to characterize antibodies, identifying high-performing renewable antibodies for many targets in neuroscience. This shows the progress that can be made by stakeholders working together. However, their work so far applies to only a tiny fraction of available antibodies. Where characterization data exists, end-users need help to find and use it appropriately. While progress has been made in the context of technical solutions and antibody characterization, we argue that initiatives to make best practice behaviors by researchers more feasible, easy, and rewarding are needed. Global cooperation and coordination between multiple partners and stakeholders will be crucial to address the technical, policy, behavioral, and open data sharing challenges. We offer potential solutions by describing our Only Good Antibodies initiative, a community of researchers and partner organizations working toward the necessary change. We conclude with an open invitation for stakeholders, including researchers, to join our cause.</p>","PeriodicalId":18206,"journal":{"name":"mAbs","volume":null,"pages":null},"PeriodicalIF":5.3,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10936606/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140039793","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
mAbs
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1