Pub Date : 2024-01-01Epub Date: 2024-07-01DOI: 10.1080/19420862.2024.2373330
Brian Kelley
Therapeutic monoclonal antibody (mAb) development and the processes for manufacturing drug substance have evolved since the first approval of the mAb in 1986. As the past is often the prologue to the future, the history of these technologies has been classified here into three eras, leading to speculation about what the next era may hold with regard to development and manufacturing strategies, as well as the potential impacts to patients. The substantial increase in production culture titers and bioreactor production volumes and the availability of large-scale contract manufacturing facilities could translate into improved global access for these therapies and an expansion of indications for therapeutic antibodies.
{"title":"The history and potential future of monoclonal antibody therapeutics development and manufacturing in four eras.","authors":"Brian Kelley","doi":"10.1080/19420862.2024.2373330","DOIUrl":"10.1080/19420862.2024.2373330","url":null,"abstract":"<p><p>Therapeutic monoclonal antibody (mAb) development and the processes for manufacturing drug substance have evolved since the first approval of the mAb in 1986. As the past is often the prologue to the future, the history of these technologies has been classified here into three eras, leading to speculation about what the next era may hold with regard to development and manufacturing strategies, as well as the potential impacts to patients. The substantial increase in production culture titers and bioreactor production volumes and the availability of large-scale contract manufacturing facilities could translate into improved global access for these therapies and an expansion of indications for therapeutic antibodies.</p>","PeriodicalId":18206,"journal":{"name":"mAbs","volume":"16 1","pages":"2373330"},"PeriodicalIF":5.6,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11218797/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141469253","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Precise measurement of the binding activity changes of therapeutic antibodies is important to determine the potential critical quality attributes (CQAs) in developability assessment at the early stage of antibody development. Here, we report a surface plasmon resonance (SPR)-based relative binding activity method, which incorporates both binding affinity and binding response and allows us to determine relative binding activity of antibodies with high accuracy and precision. We applied the SPR-based relative binding activity method in multiple forced degradation studies of antibody developability assessment. The current developability assessment strategy provided comprehensive, precise characterization of antibody binding activity in the stability studies, enabling us to perform correlation analysis and establish the structure-function relationship between relative binding activity and quality attributes. The impact of a given quality attribute on binding activity could be confidently determined without isolating antibody variants. We identified several potential CQAs, including Asp isomerization, Asn deamidation, and fragmentation. Some potential CQAs affected binding affinity of antibody and resulted in a reduction of binding activity. Certain potential CQAs impaired antibody binding to antigen and led to a loss of binding activity. A few potential CQAs could influence both binding affinity and binding response and cause a substantial decrease in antibody binding activity. Specifically, we identified low abundance Asn33 deamidation in the light chain complementarity-determining region as a potential CQA, in which all the stressed antibody samples showed Asn33 deamidation abundances ranging from 4.2% to 27.5% and a mild binding affinity change from 1.76 nM to 2.16 nM.
{"title":"Early determination of potential critical quality attributes of therapeutic antibodies in developability studies through surface plasmon resonance-based relative binding activity assessment.","authors":"Shuai Wang, Yanqiu Wang, Zhenzhen Li, Ye Hong, Zhaohui Wang, Jiteng Fan, Qiong Wang, Yuanjie Ge, Xiaofeng Zhao, Guangcun Cheng, Changyan Chen, Yadan Wu, Yayuan Fu","doi":"10.1080/19420862.2024.2374607","DOIUrl":"10.1080/19420862.2024.2374607","url":null,"abstract":"<p><p>Precise measurement of the binding activity changes of therapeutic antibodies is important to determine the potential critical quality attributes (CQAs) in developability assessment at the early stage of antibody development. Here, we report a surface plasmon resonance (SPR)-based relative binding activity method, which incorporates both binding affinity and binding response and allows us to determine relative binding activity of antibodies with high accuracy and precision. We applied the SPR-based relative binding activity method in multiple forced degradation studies of antibody developability assessment. The current developability assessment strategy provided comprehensive, precise characterization of antibody binding activity in the stability studies, enabling us to perform correlation analysis and establish the structure-function relationship between relative binding activity and quality attributes. The impact of a given quality attribute on binding activity could be confidently determined without isolating antibody variants. We identified several potential CQAs, including Asp isomerization, Asn deamidation, and fragmentation. Some potential CQAs affected binding affinity of antibody and resulted in a reduction of binding activity. Certain potential CQAs impaired antibody binding to antigen and led to a loss of binding activity. A few potential CQAs could influence both binding affinity and binding response and cause a substantial decrease in antibody binding activity. Specifically, we identified low abundance Asn33 deamidation in the light chain complementarity-determining region as a potential CQA, in which all the stressed antibody samples showed Asn33 deamidation abundances ranging from 4.2% to 27.5% and a mild binding affinity change from 1.76 nM to 2.16 nM.</p>","PeriodicalId":18206,"journal":{"name":"mAbs","volume":"16 1","pages":"2374607"},"PeriodicalIF":5.6,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11225922/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141492486","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01Epub Date: 2024-03-06DOI: 10.1080/19420862.2024.2323706
M Biddle, P Stylianou, M Rekas, A Wright, J Sousa, D Ruddy, M I Stefana, K Kmiecik, A Bandrowski, R A Kahn, C Laflamme, E M Krockow, H S Virk
Antibodies are one of the most important reagents used in biomedical and fundamental research, used to identify, and quantify proteins, contribute to knowledge of disease mechanisms, and validate drug targets. Yet many antibodies used in research do not recognize their intended target, or recognize additional molecules, compromising the integrity of research findings and leading to waste of resources, lack of reproducibility, failure of research projects, and delays in drug development. Researchers frequently use antibodies without confirming that they perform as intended in their application of interest. Here we argue that the determinants of end-user antibody choice and use are critical, and under-addressed, behavioral drivers of this problem. This interacts with the batch-to-batch variability of these biological reagents, and the paucity of available characterization data for most antibodies, making it more difficult for researchers to choose high quality reagents and perform necessary validation experiments. The open-science company YCharOS works with major antibody manufacturers and knockout cell line producers to characterize antibodies, identifying high-performing renewable antibodies for many targets in neuroscience. This shows the progress that can be made by stakeholders working together. However, their work so far applies to only a tiny fraction of available antibodies. Where characterization data exists, end-users need help to find and use it appropriately. While progress has been made in the context of technical solutions and antibody characterization, we argue that initiatives to make best practice behaviors by researchers more feasible, easy, and rewarding are needed. Global cooperation and coordination between multiple partners and stakeholders will be crucial to address the technical, policy, behavioral, and open data sharing challenges. We offer potential solutions by describing our Only Good Antibodies initiative, a community of researchers and partner organizations working toward the necessary change. We conclude with an open invitation for stakeholders, including researchers, to join our cause.
{"title":"Improving the integrity and reproducibility of research that uses antibodies: a technical, data sharing, behavioral and policy challenge.","authors":"M Biddle, P Stylianou, M Rekas, A Wright, J Sousa, D Ruddy, M I Stefana, K Kmiecik, A Bandrowski, R A Kahn, C Laflamme, E M Krockow, H S Virk","doi":"10.1080/19420862.2024.2323706","DOIUrl":"10.1080/19420862.2024.2323706","url":null,"abstract":"<p><p>Antibodies are one of the most important reagents used in biomedical and fundamental research, used to identify, and quantify proteins, contribute to knowledge of disease mechanisms, and validate drug targets. Yet many antibodies used in research do not recognize their intended target, or recognize additional molecules, compromising the integrity of research findings and leading to waste of resources, lack of reproducibility, failure of research projects, and delays in drug development. Researchers frequently use antibodies without confirming that they perform as intended in their application of interest. Here we argue that the determinants of end-user antibody choice and use are critical, and under-addressed, behavioral drivers of this problem. This interacts with the batch-to-batch variability of these biological reagents, and the paucity of available characterization data for most antibodies, making it more difficult for researchers to choose high quality reagents and perform necessary validation experiments. The open-science company YCharOS works with major antibody manufacturers and knockout cell line producers to characterize antibodies, identifying high-performing renewable antibodies for many targets in neuroscience. This shows the progress that can be made by stakeholders working together. However, their work so far applies to only a tiny fraction of available antibodies. Where characterization data exists, end-users need help to find and use it appropriately. While progress has been made in the context of technical solutions and antibody characterization, we argue that initiatives to make best practice behaviors by researchers more feasible, easy, and rewarding are needed. Global cooperation and coordination between multiple partners and stakeholders will be crucial to address the technical, policy, behavioral, and open data sharing challenges. We offer potential solutions by describing our Only Good Antibodies initiative, a community of researchers and partner organizations working toward the necessary change. We conclude with an open invitation for stakeholders, including researchers, to join our cause.</p>","PeriodicalId":18206,"journal":{"name":"mAbs","volume":"16 1","pages":"2323706"},"PeriodicalIF":5.6,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10936606/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140039793","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01Epub Date: 2024-07-31DOI: 10.1080/19420862.2024.2384104
Tushar Jain, Bianka Prinz, Alexander Marker, Alexander Michel, Katrin Reichel, Valerie Czepczor, Sylvie Klieber, Wei Sun, Sagar Kathuria, Sevim Oezguer Bruederle, Christian Lange, Lena Wahl, Charles Starr, Alessandro Masiero, Lindsay Avery
In vitro assessments for the prediction of pharmacokinetic (PK) behavior of biotherapeutics can help identify corresponding liabilities significantly earlier in the discovery timeline. This can minimize the need for extensive early in vivo PK characterization, thereby reducing animal usage and optimizing resources. In this study, we recommend bolstering classical developability workflows with in vitro measures correlated with PK. In agreement with current literature, in vitro measures assessing nonspecific interactions, self-interaction, and FcRn interaction are demonstrated to have the highest correlations to clearance in hFcRn Tg32 mice. Crucially, the dataset used in this study has broad sequence diversity and a range of physicochemical properties, adding robustness to our recommendations. Finally, we demonstrate a computational approach that combines multiple in vitro measurements with a multivariate regression model to improve the correlation to PK compared to any individual assessment. Our work demonstrates that a judicious choice of high throughput in vitro measurements and computational predictions enables the prioritization of candidate molecules with desired PK properties.
{"title":"Assessment and incorporation of in vitro correlates to pharmacokinetic outcomes in antibody developability workflows.","authors":"Tushar Jain, Bianka Prinz, Alexander Marker, Alexander Michel, Katrin Reichel, Valerie Czepczor, Sylvie Klieber, Wei Sun, Sagar Kathuria, Sevim Oezguer Bruederle, Christian Lange, Lena Wahl, Charles Starr, Alessandro Masiero, Lindsay Avery","doi":"10.1080/19420862.2024.2384104","DOIUrl":"10.1080/19420862.2024.2384104","url":null,"abstract":"<p><p>In vitro assessments for the prediction of pharmacokinetic (PK) behavior of biotherapeutics can help identify corresponding liabilities significantly earlier in the discovery timeline. This can minimize the need for extensive early in vivo PK characterization, thereby reducing animal usage and optimizing resources. In this study, we recommend bolstering classical developability workflows with in vitro measures correlated with PK. In agreement with current literature, in vitro measures assessing nonspecific interactions, self-interaction, and FcRn interaction are demonstrated to have the highest correlations to clearance in hFcRn Tg32 mice. Crucially, the dataset used in this study has broad sequence diversity and a range of physicochemical properties, adding robustness to our recommendations. Finally, we demonstrate a computational approach that combines multiple in vitro measurements with a multivariate regression model to improve the correlation to PK compared to any individual assessment. Our work demonstrates that a judicious choice of high throughput in vitro measurements and computational predictions enables the prioritization of candidate molecules with desired PK properties.</p>","PeriodicalId":18206,"journal":{"name":"mAbs","volume":"16 1","pages":"2384104"},"PeriodicalIF":5.6,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11296533/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141855914","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01Epub Date: 2024-01-12DOI: 10.1080/19420862.2024.2302386
Andreas Evers, Simon Krah, Deniz Demir, Ramona Gaa, Desislava Elter, Christian Schroeter, Stefan Zielonka, Nicolas Rasche, Julia Dotterweich, Christine Knuehl, Achim Doerner
Optimal combinations of paratopes assembled into a biparatopic antibody have the capacity to mediate high-grade target cross-linking on cell membranes, leading to degradation of the target, as well as antibody and payload delivery in the case of an antibody-drug conjugate (ADC). In the work presented here, molecular docking suggested a suitable paratope combination targeting c-MET, but hydrophobic patches in essential binding regions of one moiety necessitated engineering. In addition to rational design of HCDR2 and HCDR3 mutations, site-specific spiking libraries were generated and screened in yeast and mammalian surface display approaches. Comparative analyses revealed similar positions amendable for hydrophobicity reduction, with a broad combinatorial diversity obtained from library outputs. Optimized variants showed high stability, strongly reduced hydrophobicity, retained affinities supporting the desired functionality and enhanced producibility. The resulting biparatopic anti-c-MET ADCs were comparably active on c-MET expressing tumor cell lines as REGN5093 exatecan DAR6 ADC. Structural molecular modeling of paratope combinations for preferential inter-target binding combined with protein engineering for manufacturability yielded deep insights into the capabilities of rational and library approaches. The methodologies of in silico hydrophobicity identification and sequence optimization could serve as a blueprint for rapid development of optimal biparatopic ADCs targeting further tumor-associated antigens in the future.
{"title":"Engineering hydrophobicity and manufacturability for optimized biparatopic antibody-drug conjugates targeting c-MET.","authors":"Andreas Evers, Simon Krah, Deniz Demir, Ramona Gaa, Desislava Elter, Christian Schroeter, Stefan Zielonka, Nicolas Rasche, Julia Dotterweich, Christine Knuehl, Achim Doerner","doi":"10.1080/19420862.2024.2302386","DOIUrl":"10.1080/19420862.2024.2302386","url":null,"abstract":"<p><p>Optimal combinations of paratopes assembled into a biparatopic antibody have the capacity to mediate high-grade target cross-linking on cell membranes, leading to degradation of the target, as well as antibody and payload delivery in the case of an antibody-drug conjugate (ADC). In the work presented here, molecular docking suggested a suitable paratope combination targeting c-MET, but hydrophobic patches in essential binding regions of one moiety necessitated engineering. In addition to rational design of HCDR2 and HCDR3 mutations, site-specific spiking libraries were generated and screened in yeast and mammalian surface display approaches. Comparative analyses revealed similar positions amendable for hydrophobicity reduction, with a broad combinatorial diversity obtained from library outputs. Optimized variants showed high stability, strongly reduced hydrophobicity, retained affinities supporting the desired functionality and enhanced producibility. The resulting biparatopic anti-c-MET ADCs were comparably active on c-MET expressing tumor cell lines as REGN5093 exatecan DAR6 ADC. Structural molecular modeling of paratope combinations for preferential inter-target binding combined with protein engineering for manufacturability yielded deep insights into the capabilities of rational and library approaches. The methodologies of <i>in silico</i> hydrophobicity identification and sequence optimization could serve as a blueprint for rapid development of optimal biparatopic ADCs targeting further tumor-associated antigens in the future.</p>","PeriodicalId":18206,"journal":{"name":"mAbs","volume":"16 1","pages":"2302386"},"PeriodicalIF":5.6,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10793681/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139425064","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01Epub Date: 2024-03-27DOI: 10.1080/19420862.2024.2334783
Jing Xu, John E Coughlin, Malgorzata Szyjka, Serene Jabary, Sonal Saluja, Zoran Sosic, Yunqiu Chen, Chong-Feng Xu
Aggregates are recognized as one of the most critical product-related impurities in monoclonal antibody (mAb)-based therapeutics due to their negative impact on the stability and safety of the drugs. So far, investigational efforts have primarily focused on understanding the causes and effects of mAb self-aggregation, including both internal and external factors. In this study, we focused on understanding mAb stability in the presence of its monovalent fragment, formed through hinge cleavage and loss of one Fab unit (referred to as "Fab/c"), a commonly observed impurity during manufacturing and stability. The Fab/c fragments were generated using a limited IgdE digestion that specifically cleaves above the IgG1 mAb hinge region, followed by hydrophobic interaction chromatographic (HIC) enrichment. Two IgG1 mAbs containing different levels of Fab/c fragments were incubated under thermally accelerated conditions. A method based on size exclusion chromatography coupled with native mass spectrometry (SEC-UV-native MS) was developed and used to characterize the stability samples and identified the formation of heterogeneous dimers, including intact dimer, mAb-Fab/c dimer, Fab/c-Fab/c dimer, and mAb-Fab dimer. Quantitative analyses on the aggregation kinetics suggested that the impact of Fab/c fragment on the aggregation rate of individual dimer differs between a glycosylated mAb (mAb1) and a non-glycosylated mAb (mAb2). An additional study of deglycosylated mAb1 under 25°C accelerated stability conditions suggests no significant impact of the N-glycan on mAb1 total aggregation rate. This study also highlighted the power of SEC-UV-native MS method in the characterization of mAb samples with regard to separating, identifying, and quantifying mAb aggregates and fragments.
聚集物被认为是单克隆抗体(mAb)治疗药物中最关键的产品相关杂质之一,因为它们会对药物的稳定性和安全性产生负面影响。迄今为止,研究工作主要集中于了解 mAb 自身聚集的原因和影响,包括内部和外部因素。在本研究中,我们重点了解通过铰链裂解和损失一个 Fab 单元(简称为 "Fab/c")形成的单价片段在 mAb 存在的情况下的稳定性。Fab/c 片段是通过有限的 IgdE 消化产生的,这种消化能特异性地裂解 IgG1 mAb 铰链区上方,然后进行疏水相互作用色谱 (HIC) 富集。在热加速条件下孵育两种含有不同程度 Fab/c 片段的 IgG1 mAb。开发并使用了一种基于尺寸排阻色谱结合原位质谱(SEC-UV-native MS)的方法来表征稳定性样品,并确定了异质二聚体的形成,包括完整二聚体、mAb-Fab/c 二聚体、Fab/c-Fab/c 二聚体和 mAb-Fab 二聚体。对聚集动力学的定量分析表明,糖基化 mAb(mAb1)和非糖基化 mAb(mAb2)之间,Fab/c 片段对单个二聚体聚集率的影响是不同的。在 25°C 加速稳定条件下对脱糖 mAb1 进行的另一项研究表明,N-聚糖对 mAb1 的总聚集率没有显著影响。这项研究还凸显了 SEC-UV-native MS 方法在表征 mAb 样品中分离、鉴定和量化 mAb 聚集体和片段方面的能力。
{"title":"Evaluation of the impact of antibody fragments on aggregation of intact molecules via size exclusion chromatography coupled with native mass spectrometry.","authors":"Jing Xu, John E Coughlin, Malgorzata Szyjka, Serene Jabary, Sonal Saluja, Zoran Sosic, Yunqiu Chen, Chong-Feng Xu","doi":"10.1080/19420862.2024.2334783","DOIUrl":"10.1080/19420862.2024.2334783","url":null,"abstract":"<p><p>Aggregates are recognized as one of the most critical product-related impurities in monoclonal antibody (mAb)-based therapeutics due to their negative impact on the stability and safety of the drugs. So far, investigational efforts have primarily focused on understanding the causes and effects of mAb self-aggregation, including both internal and external factors. In this study, we focused on understanding mAb stability in the presence of its monovalent fragment, formed through hinge cleavage and loss of one Fab unit (referred to as \"Fab/c\"), a commonly observed impurity during manufacturing and stability. The Fab/c fragments were generated using a limited IgdE digestion that specifically cleaves above the IgG1 mAb hinge region, followed by hydrophobic interaction chromatographic (HIC) enrichment. Two IgG1 mAbs containing different levels of Fab/c fragments were incubated under thermally accelerated conditions. A method based on size exclusion chromatography coupled with native mass spectrometry (SEC-UV-native MS) was developed and used to characterize the stability samples and identified the formation of heterogeneous dimers, including intact dimer, mAb-Fab/c dimer, Fab/c-Fab/c dimer, and mAb-Fab dimer. Quantitative analyses on the aggregation kinetics suggested that the impact of Fab/c fragment on the aggregation rate of individual dimer differs between a glycosylated mAb (mAb1) and a non-glycosylated mAb (mAb2). An additional study of deglycosylated mAb1 under 25°C accelerated stability conditions suggests no significant impact of the N-glycan on mAb1 total aggregation rate. This study also highlighted the power of SEC-UV-native MS method in the characterization of mAb samples with regard to separating, identifying, and quantifying mAb aggregates and fragments.</p>","PeriodicalId":18206,"journal":{"name":"mAbs","volume":"16 1","pages":"2334783"},"PeriodicalIF":5.3,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10978026/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140306146","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01Epub Date: 2024-10-13DOI: 10.1080/19420862.2024.2415060
Paul Tamburini, Dennis Vestergaard Pedersen, Denise Devore, Josh Cone, Rekha Patel, Todd Hunter, Fang Sun, Gregers Rom Andersen, Jeffrey Hunter
The bispecific antibody tarperprumig (ALXN1820) was developed as a treatment option for diseases involving dysregulated complement alternative pathway (AP) activity that could be administered in small volumes, either subcutaneously or intravenously. Tarperprumig incorporates a C-terminal variable domain of a heavy chain only antibody (VHH) that binds properdin (FP) connected via a flexible linker to an N-terminal VHH that binds human serum albumin (HSA). The purified bispecific VHH antibody exhibits an experimental molecular weight average of 27.4 kDa and can be formulated at > 100 mg/mL. Tarperprumig binds tightly to FP and HSA with sub-nanomolar affinity at pH 7.4 and can associate simultaneously with FP and HSA to form a ternary complex. Tarperprumig potently and dose-dependently inhibits to completion in vitro AP-dependent complement C5b-9 formation, AP-dependent hemolysis, and the AP deposition of C3, FP and C9. X-ray crystallography revealed that the isolated FP-binding VHH recognizes the thrombospondin repeat 5 domain of FP, thereby preventing FP from binding to the AP convertase owing to severe steric hindrance. Tarperprumig cross-reacts with cynomolgus monkey FP and serum albumin. In summary, tarperprumig exhibits properties tailored for subcutaneous administration and is currently in clinical development for the treatment of complement AP-related disorders.
{"title":"Characterization of the bispecific VHH antibody tarperprumig (ALXN1820) specific for properdin and designed for low-volume administration.","authors":"Paul Tamburini, Dennis Vestergaard Pedersen, Denise Devore, Josh Cone, Rekha Patel, Todd Hunter, Fang Sun, Gregers Rom Andersen, Jeffrey Hunter","doi":"10.1080/19420862.2024.2415060","DOIUrl":"https://doi.org/10.1080/19420862.2024.2415060","url":null,"abstract":"<p><p>The bispecific antibody tarperprumig (ALXN1820) was developed as a treatment option for diseases involving dysregulated complement alternative pathway (AP) activity that could be administered in small volumes, either subcutaneously or intravenously. Tarperprumig incorporates a C-terminal variable domain of a heavy chain only antibody (VHH) that binds properdin (FP) connected via a flexible linker to an N-terminal VHH that binds human serum albumin (HSA). The purified bispecific VHH antibody exhibits an experimental molecular weight average of 27.4 kDa and can be formulated at > 100 mg/mL. Tarperprumig binds tightly to FP and HSA with sub-nanomolar affinity at pH 7.4 and can associate simultaneously with FP and HSA to form a ternary complex. Tarperprumig potently and dose-dependently inhibits to completion <i>in vitro</i> AP-dependent complement C5b-9 formation, AP-dependent hemolysis, and the AP deposition of C3, FP and C9. X-ray crystallography revealed that the isolated FP-binding VHH recognizes the thrombospondin repeat 5 domain of FP, thereby preventing FP from binding to the AP convertase owing to severe steric hindrance. Tarperprumig cross-reacts with cynomolgus monkey FP and serum albumin. In summary, tarperprumig exhibits properties tailored for subcutaneous administration and is currently in clinical development for the treatment of complement AP-related disorders.</p>","PeriodicalId":18206,"journal":{"name":"mAbs","volume":"16 1","pages":"2415060"},"PeriodicalIF":5.6,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11485714/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142469141","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01Epub Date: 2024-08-24DOI: 10.1080/19420862.2024.2393785
Diana M Norden, Carmen T Navia, Jonathan T Sullivan, Benjamin J Doranz
Specificity profiling is a requirement for monoclonal antibodies (mAbs) and antibody-directed biotherapeutics such as CAR-T cells prior to initiating human trials. However, traditional approaches to assess the specificity of mAbs, primarily tissue cross-reactivity studies, have been unreliable, leading to off-target binding going undetected. Here, we review the emergence of cell-based protein arrays as an alternative and improved assessment of mAb specificity. Cell-based protein arrays assess binding across the full human membrane proteome, ~6,000 membrane proteins each individually expressed in their native structural configuration within live or unfixed cells. Our own profiling indicates a surprisingly high off-target rate across the industry, with 33% of lead candidates displaying off-target binding. Moreover, about 20% of therapeutic mAbs in clinical development and currently on the market display off-target binding. Case studies and off-target rates at different phases of biotherapeutic drug approval suggest that off-target binding is likely a major cause of adverse events and drug attrition.
{"title":"The emergence of cell-based protein arrays to test for polyspecific off-target binding of antibody therapeutics.","authors":"Diana M Norden, Carmen T Navia, Jonathan T Sullivan, Benjamin J Doranz","doi":"10.1080/19420862.2024.2393785","DOIUrl":"10.1080/19420862.2024.2393785","url":null,"abstract":"<p><p>Specificity profiling is a requirement for monoclonal antibodies (mAbs) and antibody-directed biotherapeutics such as CAR-T cells prior to initiating human trials. However, traditional approaches to assess the specificity of mAbs, primarily tissue cross-reactivity studies, have been unreliable, leading to off-target binding going undetected. Here, we review the emergence of cell-based protein arrays as an alternative and improved assessment of mAb specificity. Cell-based protein arrays assess binding across the full human membrane proteome, ~6,000 membrane proteins each individually expressed in their native structural configuration within live or unfixed cells. Our own profiling indicates a surprisingly high off-target rate across the industry, with 33% of lead candidates displaying off-target binding. Moreover, about 20% of therapeutic mAbs in clinical development and currently on the market display off-target binding. Case studies and off-target rates at different phases of biotherapeutic drug approval suggest that off-target binding is likely a major cause of adverse events and drug attrition.</p>","PeriodicalId":18206,"journal":{"name":"mAbs","volume":"16 1","pages":"2393785"},"PeriodicalIF":5.6,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11346545/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142046861","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01Epub Date: 2024-08-27DOI: 10.1080/19420862.2024.2394230
Fortunato Ferrara, Adeline Fanni, Andre A R Teixeira, Esteban Molina, Camila Leal-Lopes, Ashley DeAguero, Sara D'Angelo, M Frank Erasmus, Laura Spector, Luis Antonio Rodriguez Carnero, Jianquan Li, Thomas J Pohl, Nikolai Suslov, Klervi Desrumeaux, Conor McMahon, Sagar Kathuria, Andrew R M Bradbury
We previously described an in vitro single-chain fragment (scFv) library platform originally designed to generate antibodies with excellent developability properties. The platform design was based on the use of clinical antibodies as scaffolds into which replicated natural complementarity-determining regions purged of sequence liabilities were inserted, and the use of phage and yeast display to carry out antibody selection. In addition to being developable, antibodies generated using our platform were extremely diverse, with most campaigns yielding sub-nanomolar binders. Here, we describe a platform advancement that incorporates Fab phage display followed by single-chain antibody-binding fragment Fab (scFab) yeast display. The scFab single-gene format provides balanced expression of light and heavy chains, with enhanced conversion to IgG, thereby combining the advantages of scFvs and Fabs. A meticulously engineered, quality-controlled Fab phage library was created using design principles similar to those used to create the scFv library. A diverse panel of binding scFabs, with high conversion efficiency to IgG, was isolated against two targets. This study highlights the compatibility of phage and yeast display with a Fab semi-synthetic library design, offering an efficient approach to generate drug-like antibodies directly, facilitating their conversion to potential therapeutic candidates.
我们以前曾描述过一种体外单链片段(scFv)文库平台,该平台最初是为了产生具有优良开发特性的抗体而设计的。该平台设计的基础是使用临床抗体作为支架,在支架上插入复制的天然互补决定区,并清除序列负债,然后使用噬菌体和酵母展示来进行抗体筛选。除了可开发外,利用我们的平台生成的抗体也极为多样化,大多数活动都能产生亚纳莫尔结合剂。在这里,我们描述了一种平台的进步,它结合了 Fab 噬菌体展示和单链抗体结合片段 Fab(scFab)酵母展示。scFab 单基因格式提供了轻链和重链的平衡表达,增强了向 IgG 的转化,从而结合了 scFv 和 Fab 的优势。我们采用与创建 scFv 文库类似的设计原则,创建了一个精心设计、质量受控的 Fab 噬菌体文库。针对两个靶点分离出了多种具有高IgG转化效率的结合scFabs。这项研究强调了噬菌体和酵母展示与 Fab 半合成文库设计的兼容性,为直接生成药物样抗体提供了一种有效的方法,有助于将其转化为潜在的候选治疗药物。
{"title":"A next-generation Fab library platform directly yielding drug-like antibodies with high affinity, diversity, and developability.","authors":"Fortunato Ferrara, Adeline Fanni, Andre A R Teixeira, Esteban Molina, Camila Leal-Lopes, Ashley DeAguero, Sara D'Angelo, M Frank Erasmus, Laura Spector, Luis Antonio Rodriguez Carnero, Jianquan Li, Thomas J Pohl, Nikolai Suslov, Klervi Desrumeaux, Conor McMahon, Sagar Kathuria, Andrew R M Bradbury","doi":"10.1080/19420862.2024.2394230","DOIUrl":"10.1080/19420862.2024.2394230","url":null,"abstract":"<p><p>We previously described an <i>in vitro</i> single-chain fragment (scFv) library platform originally designed to generate antibodies with excellent developability properties. The platform design was based on the use of clinical antibodies as scaffolds into which replicated natural complementarity-determining regions purged of sequence liabilities were inserted, and the use of phage and yeast display to carry out antibody selection. In addition to being developable, antibodies generated using our platform were extremely diverse, with most campaigns yielding sub-nanomolar binders. Here, we describe a platform advancement that incorporates Fab phage display followed by single-chain antibody-binding fragment Fab (scFab) yeast display. The scFab single-gene format provides balanced expression of light and heavy chains, with enhanced conversion to IgG, thereby combining the advantages of scFvs and Fabs. A meticulously engineered, quality-controlled Fab phage library was created using design principles similar to those used to create the scFv library. A diverse panel of binding scFabs, with high conversion efficiency to IgG, was isolated against two targets. This study highlights the compatibility of phage and yeast display with a Fab semi-synthetic library design, offering an efficient approach to generate drug-like antibodies directly, facilitating their conversion to potential therapeutic candidates.</p>","PeriodicalId":18206,"journal":{"name":"mAbs","volume":"16 1","pages":"2394230"},"PeriodicalIF":5.6,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11352698/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142080726","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Therapeutic angiogenesis by intentional formation of blood vessels is essential for treating various ischemic diseases, including limb ischemia. Because Wnt/β-catenin and angiopoietin-1/Tie2 signaling play important roles in endothelial survival and vascular stability, coactivation of these signaling pathways can potentially achieve therapeutic angiogenesis. In this study, we developed a bifunctional antibody fusion, consisting of a Tie2-agonistic antibody and the Furin domains of R-spondin 3 (RSPO3), to simultaneously activate Tie2 and Wnt/β-catenin signaling. We identified a Tie2-agonistic antibody T11 that cross-reacted with the extracellular domain of human and mouse Tie2, and evaluated its ability to increase endothelial cell survival and tube formation. We generated a bifunctional T11-RF12 by fusing T11 with the Furin-1 and -2 domains of RSPO3. T11-RF12 could bind not only to Tie2, but also to LGR5 and ZNRF3, which are counterparts of the Furin-1 and -2 domains. T11-RF12 significantly increased Wnt/β-catenin signaling, as well as the formation of capillary-like endothelial tubes, regardless of the presence of Wnt ligands. Coactivation of Tie2 and Wnt/β-catenin signaling by T11-RF12 increased the blood flow, and thereby reduced foot necrosis in a mouse hindlimb ischemia model. In particular, T11-RF12 induced therapeutic angiogenesis by promoting vessel stabilization through pericyte coverage and retaining endothelial expression of Frizzled 10 and active β-catenin. These results indicate that the agonistic synergism of Tie2 and Wnt/β-catenin signaling achieved using T11-RF12 is a novel therapeutic option with potential for treating limb ischemia and other ischemic diseases.
{"title":"Coactivation of Tie2 and Wnt signaling using an antibody-R-spondin fusion potentiates therapeutic angiogenesis and vessel stabilization in hindlimb ischemia.","authors":"Byungtae Hwang, Min-Young Jeon, Ju-Hong Jang, Young-Lai Cho, Dong Gwang Lee, Jeong-Ki Min, Jangwook Lee, Jong-Gil Park, Ji-Hun Noh, Wonjun Yang, Nam-Kyung Lee","doi":"10.1080/19420862.2024.2435478","DOIUrl":"10.1080/19420862.2024.2435478","url":null,"abstract":"<p><p>Therapeutic angiogenesis by intentional formation of blood vessels is essential for treating various ischemic diseases, including limb ischemia. Because Wnt/β-catenin and angiopoietin-1/Tie2 signaling play important roles in endothelial survival and vascular stability, coactivation of these signaling pathways can potentially achieve therapeutic angiogenesis. In this study, we developed a bifunctional antibody fusion, consisting of a Tie2-agonistic antibody and the Furin domains of R-spondin 3 (RSPO3), to simultaneously activate Tie2 and Wnt/β-catenin signaling. We identified a Tie2-agonistic antibody T11 that cross-reacted with the extracellular domain of human and mouse Tie2, and evaluated its ability to increase endothelial cell survival and tube formation. We generated a bifunctional T11-RF12 by fusing T11 with the Furin-1 and -2 domains of RSPO3. T11-RF12 could bind not only to Tie2, but also to LGR5 and ZNRF3, which are counterparts of the Furin-1 and -2 domains. T11-RF12 significantly increased Wnt/β-catenin signaling, as well as the formation of capillary-like endothelial tubes, regardless of the presence of Wnt ligands. Coactivation of Tie2 and Wnt/β-catenin signaling by T11-RF12 increased the blood flow, and thereby reduced foot necrosis in a mouse hindlimb ischemia model. In particular, T11-RF12 induced therapeutic angiogenesis by promoting vessel stabilization through pericyte coverage and retaining endothelial expression of Frizzled 10 and active β-catenin. These results indicate that the agonistic synergism of Tie2 and Wnt/β-catenin signaling achieved using T11-RF12 is a novel therapeutic option with potential for treating limb ischemia and other ischemic diseases.</p>","PeriodicalId":18206,"journal":{"name":"mAbs","volume":"16 1","pages":"2435478"},"PeriodicalIF":5.6,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11610559/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142739864","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}