首页 > 最新文献

mAbs最新文献

英文 中文
In silico methods for immunogenicity risk assessment and human homology screening for therapeutic antibodies. 治疗性抗体免疫原性风险评估和人类同源性筛选的硅学方法。
IF 5.3 2区 医学 Q1 Medicine Pub Date : 2024-01-01 Epub Date: 2024-03-27 DOI: 10.1080/19420862.2024.2333729
Aimee E Mattei, Andres H Gutierrez, Soorya Seshadri, Jacob Tivin, Matt Ardito, Amy S Rosenberg, William D Martin, Anne S De Groot

In silico immunogenicity risk assessment has been an important step in the development path for many biologic therapeutics, including monoclonal antibodies. Even if the source of a given biologic is 'fully human', T cell epitopes that are contained in the sequences of the biologic may activate the immune system, enabling the development of anti-drug antibodies that can reduce drug efficacy and may contribute to adverse events. Computational tools that identify T cell epitopes from primary amino acid sequences have been used to assess the immunogenic potential of therapeutic candidates for several decades. To facilitate larger scale analyses and accelerate preclinical immunogenicity risk assessment, our group developed an integrated web-based platform called ISPRI, (Immunogenicity Screening and Protein Re-engineering Interface) that provides hands-on access through a secure web-based interface for scientists working in large and mid-sized biotech companies in the US, Europe, and Japan. This toolkit has evolved and now contains an array of algorithms that can be used individually and/or consecutively for immunogenicity assessment and protein engineering. Most analyses start with the advanced epitope mapping tool (EpiMatrix), then proceed to identify epitope clusters using ClustiMer, and then use a tool called JanusMatrix to define whether any of the T cell epitope clusters may generate a regulatory T cell response which may diminish or eliminate anti-drug antibody formation. Candidates can be compared to similar products on a normalized immunogenicity scale. Should modifications to the biologic sequence be an option, a tool for moderating putative immunogenicity by editing T cell epitopes out of the sequence is available (OptiMatrix). Although this perspective discusses the in-silico immunogenicity risk assessment for monoclonal antibodies, bi-specifics, multi-specifics, and antibody-drug conjugates, the analysis of additional therapeutic modalities such as enzyme replacement proteins, blood factor proteins, CAR-T, gene therapy products, and peptide drugs is also made available on the ISPRI platform.

硅学免疫原性风险评估是包括单克隆抗体在内的许多生物疗法开发过程中的一个重要步骤。即使某种生物制剂的来源是 "全人源 "的,但生物制剂序列中包含的 T 细胞表位可能会激活免疫系统,从而产生抗药性抗体,降低药物疗效并导致不良反应。几十年来,从主氨基酸序列中识别 T 细胞表位的计算工具一直被用于评估候选疗法的免疫原性潜力。为了便于进行更大规模的分析并加快临床前免疫原性风险评估,我们的研究小组开发了一个名为 ISPRI(免疫原性筛选和蛋白质再工程界面)的综合网络平台,通过一个安全的网络界面为在美国、欧洲和日本的大中型生物技术公司工作的科学家提供实际操作访问。该工具包不断发展,目前包含一系列算法,可单独和/或连续用于免疫原性评估和蛋白质工程。大多数分析都从高级表位绘图工具(EpiMatrix)开始,然后使用 ClustiMer 识别表位群,再使用一种名为 JanusMatrix 的工具确定 T 细胞表位群是否会产生调节性 T 细胞反应,从而减少或消除抗药抗体的形成。候选药物可与同类产品进行归一化免疫原性比较。如果对生物序列进行修改是一种选择,可以使用一种工具(OptiMatrix),通过编辑序列中的 T 细胞表位来缓和假定的免疫原性。虽然本文讨论的是单克隆抗体、双特异性抗体、多特异性抗体和抗体-药物共轭物的体内免疫原性风险评估,但 ISPRI 平台还可对酶替代蛋白、血液因子蛋白、CAR-T、基因治疗产品和多肽药物等其他治疗方式进行分析。
{"title":"In silico methods for immunogenicity risk assessment and human homology screening for therapeutic antibodies.","authors":"Aimee E Mattei, Andres H Gutierrez, Soorya Seshadri, Jacob Tivin, Matt Ardito, Amy S Rosenberg, William D Martin, Anne S De Groot","doi":"10.1080/19420862.2024.2333729","DOIUrl":"10.1080/19420862.2024.2333729","url":null,"abstract":"<p><p>In silico immunogenicity risk assessment has been an important step in the development path for many biologic therapeutics, including monoclonal antibodies. Even if the source of a given biologic is 'fully human', T cell epitopes that are contained in the sequences of the biologic may activate the immune system, enabling the development of anti-drug antibodies that can reduce drug efficacy and may contribute to adverse events. Computational tools that identify T cell epitopes from primary amino acid sequences have been used to assess the immunogenic potential of therapeutic candidates for several decades. To facilitate larger scale analyses and accelerate preclinical immunogenicity risk assessment, our group developed an integrated web-based platform called ISPRI, (Immunogenicity Screening and Protein Re-engineering Interface) that provides hands-on access through a secure web-based interface for scientists working in large and mid-sized biotech companies in the US, Europe, and Japan. This toolkit has evolved and now contains an array of algorithms that can be used individually and/or consecutively for immunogenicity assessment and protein engineering. Most analyses start with the advanced epitope mapping tool (EpiMatrix), then proceed to identify epitope clusters using ClustiMer, and then use a tool called JanusMatrix to define whether any of the T cell epitope clusters may generate a regulatory T cell response which may diminish or eliminate anti-drug antibody formation. Candidates can be compared to similar products on a normalized immunogenicity scale. Should modifications to the biologic sequence be an option, a tool for moderating putative immunogenicity by editing T cell epitopes out of the sequence is available (OptiMatrix). Although this perspective discusses the in-silico immunogenicity risk assessment for monoclonal antibodies, bi-specifics, multi-specifics, and antibody-drug conjugates, the analysis of additional therapeutic modalities such as enzyme replacement proteins, blood factor proteins, CAR-T, gene therapy products, and peptide drugs is also made available on the ISPRI platform.</p>","PeriodicalId":18206,"journal":{"name":"mAbs","volume":null,"pages":null},"PeriodicalIF":5.3,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10978032/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140306147","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Structure- and machine learning-guided engineering demonstrate that a non-canonical disulfide in an anti-PD-1 rabbit antibody does not impede antibody developability. 以结构和机器学习为指导的工程设计证明,抗 PD-1 兔抗体中的非典型二硫化物不会妨碍抗体的可开发性。
IF 5.3 2区 医学 Q1 Medicine Pub Date : 2024-01-01 Epub Date: 2024-02-14 DOI: 10.1080/19420862.2024.2309685
Wei-Ching Liang, Hongkang Xi, Dawei Sun, Luigi D'Ascenzo, Jonathan Zarzar, Nicole Stephens, Ryan Cook, Yinyin Li, Zhengmao Ye, Marissa Matsumoto, Jian Payandeh, Matthieu Masureel, Yan Wu

Rabbits produce robust antibody responses and have unique features in their antibody repertoire that make them an attractive alternative to rodents for in vivo discovery. However, the frequent occurrence of a non-canonical disulfide bond between complementarity-determining region (CDR) H1 (C35a) and CDRH2 (C50) is often seen as a liability for therapeutic antibody development, despite limited reports of its effect on antibody binding, function, and stability. Here, we describe the discovery and humanization of a human-mouse cross-reactive anti-programmed cell death 1 (PD-1) monoclonal rabbit antibody, termed h1340.CC, which possesses this non-canonical disulfide bond. Initial removal of the non-canonical disulfide resulted in a loss of PD-1 affinity and cross-reactivity, which led us to explore protein engineering approaches to recover these. First, guided by the sequence of a related clone and the crystal structure of h1340.CC in complex with PD-1, we generated variant h1340.SA.LV with a potency and cross-reactivity similar to h1340.CC, but only partially recovered affinity. Side-by-side developability assessment of both h1340.CC and h1340.SA.LV indicate that they possess similar, favorable properties. Next, and prompted by recent developments in machine learning (ML)-guided protein engineering, we used an unbiased ML- and structure-guided approach to rapidly and efficiently generate a different variant with recovered affinity. Our case study thus indicates that, while the non-canonical inter-CDR disulfide bond found in rabbit antibodies does not necessarily constitute an obstacle to therapeutic antibody development, combining structure- and ML-guided approaches can provide a fast and efficient way to improve antibody properties and remove potential liabilities.

家兔能产生强大的抗体反应,而且其抗体库具有独特的特征,这使它们成为替代啮齿类动物进行体内发现的一种有吸引力的选择。然而,互补性决定区(CDR)H1(C35a)和CDRH2(C50)之间经常出现的非典范二硫键通常被视为治疗性抗体开发的障碍,尽管有关其对抗体结合、功能和稳定性影响的报道有限。在这里,我们描述了一种人鼠交叉反应性抗程序性细胞死亡 1(PD-1)单克隆兔抗体(称为 h1340.CC)的发现和人源化过程,这种抗体具有这种非典型二硫键。最初去除非典型二硫键会导致 PD-1 亲和力和交叉反应性的丧失,这促使我们探索蛋白质工程方法来恢复这些亲和力和交叉反应性。首先,在相关克隆序列和 h1340.CC 与 PD-1 复合物晶体结构的指导下,我们生成了变体 h1340.SA.LV,其效力和交叉反应性与 h1340.CC 相似,但仅部分恢复了亲和性。h1340.CC和h1340.SA.LV的并列可开发性评估表明,它们具有相似的有利特性。接下来,在机器学习(ML)引导的蛋白质工程学最新发展的推动下,我们采用了一种无偏的 ML 和结构引导方法,快速高效地生成了一种具有恢复亲和力的不同变体。因此,我们的案例研究表明,虽然兔抗体中发现的非经典 CDR 间二硫键并不一定构成治疗性抗体开发的障碍,但结合结构和 ML 引导方法可以提供一种快速高效的方法来改善抗体特性并消除潜在的缺陷。
{"title":"Structure- and machine learning-guided engineering demonstrate that a non-canonical disulfide in an anti-PD-1 rabbit antibody does not impede antibody developability.","authors":"Wei-Ching Liang, Hongkang Xi, Dawei Sun, Luigi D'Ascenzo, Jonathan Zarzar, Nicole Stephens, Ryan Cook, Yinyin Li, Zhengmao Ye, Marissa Matsumoto, Jian Payandeh, Matthieu Masureel, Yan Wu","doi":"10.1080/19420862.2024.2309685","DOIUrl":"10.1080/19420862.2024.2309685","url":null,"abstract":"<p><p>Rabbits produce robust antibody responses and have unique features in their antibody repertoire that make them an attractive alternative to rodents for in vivo discovery. However, the frequent occurrence of a non-canonical disulfide bond between complementarity-determining region (CDR) H1 (C35a) and CDRH2 (C50) is often seen as a liability for therapeutic antibody development, despite limited reports of its effect on antibody binding, function, and stability. Here, we describe the discovery and humanization of a human-mouse cross-reactive anti-programmed cell death 1 (PD-1) monoclonal rabbit antibody, termed h1340.CC, which possesses this non-canonical disulfide bond. Initial removal of the non-canonical disulfide resulted in a loss of PD-1 affinity and cross-reactivity, which led us to explore protein engineering approaches to recover these. First, guided by the sequence of a related clone and the crystal structure of h1340.CC in complex with PD-1, we generated variant h1340.SA.LV with a potency and cross-reactivity similar to h1340.CC, but only partially recovered affinity. Side-by-side developability assessment of both h1340.CC and h1340.SA.LV indicate that they possess similar, favorable properties. Next, and prompted by recent developments in machine learning (ML)-guided protein engineering, we used an unbiased ML- and structure-guided approach to rapidly and efficiently generate a different variant with recovered affinity. Our case study thus indicates that, while the non-canonical inter-CDR disulfide bond found in rabbit antibodies does not necessarily constitute an obstacle to therapeutic antibody development, combining structure- and ML-guided approaches can provide a fast and efficient way to improve antibody properties and remove potential liabilities.</p>","PeriodicalId":18206,"journal":{"name":"mAbs","volume":null,"pages":null},"PeriodicalIF":5.3,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10877986/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139735578","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Toward enhancement of antibody thermostability and affinity by computational design in the absence of antigen. 通过计算设计提高抗体在无抗原情况下的热稳定性和亲和力。
IF 5.6 2区 医学 Q1 Medicine Pub Date : 2024-01-01 Epub Date: 2024-06-20 DOI: 10.1080/19420862.2024.2362775
Mark Hutchinson, Jeffrey A Ruffolo, Nantaporn Haskins, Michael Iannotti, Giuliana Vozza, Tony Pham, Nurjahan Mehzabeen, Harini Shandilya, Keith Rickert, Rebecca Croasdale-Wood, Melissa Damschroder, Ying Fu, Andrew Dippel, Jeffrey J Gray, Gilad Kaplan

Over the past two decades, therapeutic antibodies have emerged as a rapidly expanding domain within the field of biologics. In silico tools that can streamline the process of antibody discovery and optimization are critical to support a pipeline that is growing more numerous and complex every year. High-quality structural information remains critical for the antibody optimization process, but antibody-antigen complex structures are often unavailable and in silico antibody docking methods are still unreliable. In this study, DeepAb, a deep learning model for predicting antibody Fv structure directly from sequence, was used in conjunction with single-point experimental deep mutational scanning (DMS) enrichment data to design 200 potentially optimized variants of an anti-hen egg lysozyme (HEL) antibody. We sought to determine whether DeepAb-designed variants containing combinations of beneficial mutations from the DMS exhibit enhanced thermostability and whether this optimization affected their developability profile. The 200 variants were produced through a robust high-throughput method and tested for thermal and colloidal stability (Tonset, Tm, Tagg), affinity (KD) relative to the parental antibody, and for developability parameters (nonspecific binding, aggregation propensity, self-association). Of the designed clones, 91% and 94% exhibited increased thermal and colloidal stability and affinity, respectively. Of these, 10% showed a significantly increased affinity for HEL (5- to 21-fold increase) and thermostability (>2.5C increase in Tm1), with most clones retaining the favorable developability profile of the parental antibody. Additional in silico tests suggest that these methods would enrich for binding affinity even without first collecting experimental DMS measurements. These data open the possibility of in silico antibody optimization without the need to predict the antibody-antigen interface, which is notoriously difficult in the absence of crystal structures.

在过去二十年中,治疗性抗体已成为生物制剂领域中一个迅速扩展的领域。能够简化抗体发现和优化过程的硅学工具对于支持数量和复杂性逐年增加的管线至关重要。高质量的结构信息对于抗体优化过程仍然至关重要,但抗体-抗原复合物结构往往不可用,而且硅学抗体对接方法仍然不可靠。在本研究中,DeepAb 是一种直接从序列预测抗体 Fv 结构的深度学习模型,它与单点实验深度突变扫描(DMS)富集数据结合使用,设计出了 200 个抗鸡蛋溶菌酶(HEL)抗体的潜在优化变体。我们试图确定DeepAb设计的变体是否含有DMS中的有益突变组合,是否表现出更强的热稳定性,以及这种优化是否会影响它们的可显影性。我们采用一种稳健的高通量方法制备了 200 个变体,并测试了它们的热稳定性和胶体稳定性(Tonset、Tm、Tagg)、相对于亲代抗体的亲和力(KD)以及可开发性参数(非特异性结合、聚集倾向、自结合)。在设计的克隆中,91% 和 94% 分别显示出更高的热稳定性、胶体稳定性和亲和力。其中,10% 的克隆对 HEL 的亲和力(增加 5 到 21 倍)和热稳定性(Tm1 增加 2.5 摄氏度以上)显著提高,大多数克隆保留了亲代抗体的良好显影特性。其他硅测试表明,即使不首先收集实验性 DMS 测量结果,这些方法也能富集结合亲和力。这些数据开辟了硅学抗体优化的可能性,而无需预测抗体-抗原界面,这在没有晶体结构的情况下是非常困难的。
{"title":"Toward enhancement of antibody thermostability and affinity by computational design in the absence of antigen.","authors":"Mark Hutchinson, Jeffrey A Ruffolo, Nantaporn Haskins, Michael Iannotti, Giuliana Vozza, Tony Pham, Nurjahan Mehzabeen, Harini Shandilya, Keith Rickert, Rebecca Croasdale-Wood, Melissa Damschroder, Ying Fu, Andrew Dippel, Jeffrey J Gray, Gilad Kaplan","doi":"10.1080/19420862.2024.2362775","DOIUrl":"10.1080/19420862.2024.2362775","url":null,"abstract":"<p><p>Over the past two decades, therapeutic antibodies have emerged as a rapidly expanding domain within the field of biologics. <i>In silico</i> tools that can streamline the process of antibody discovery and optimization are critical to support a pipeline that is growing more numerous and complex every year. High-quality structural information remains critical for the antibody optimization process, but antibody-antigen complex structures are often unavailable and <i>in silico</i> antibody docking methods are still unreliable. In this study, DeepAb, a deep learning model for predicting antibody Fv structure directly from sequence, was used in conjunction with single-point experimental deep mutational scanning (DMS) enrichment data to design 200 potentially optimized variants of an anti-hen egg lysozyme (HEL) antibody. We sought to determine whether DeepAb-designed variants containing combinations of beneficial mutations from the DMS exhibit enhanced thermostability and whether this optimization affected their developability profile. The 200 variants were produced through a robust high-throughput method and tested for thermal and colloidal stability (T<sub>onset</sub>, T<sub>m</sub>, T<sub>agg</sub>), affinity (K<sub>D</sub>) relative to the parental antibody, and for developability parameters (nonspecific binding, aggregation propensity, self-association). Of the designed clones, 91% and 94% exhibited increased thermal and colloidal stability and affinity, respectively. Of these, 10% showed a significantly increased affinity for HEL (5- to 21-fold increase) and thermostability (>2.5C increase in T<sub>m1</sub>), with most clones retaining the favorable developability profile of the parental antibody. Additional <i>in silico</i> tests suggest that these methods would enrich for binding affinity even without first collecting experimental DMS measurements. These data open the possibility of <i>in silico</i> antibody optimization without the need to predict the antibody-antigen interface, which is notoriously difficult in the absence of crystal structures.</p>","PeriodicalId":18206,"journal":{"name":"mAbs","volume":null,"pages":null},"PeriodicalIF":5.6,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11195458/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141427121","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Decoding the mannose receptor-mAb interaction: the importance of high-mannose N-glycans and glycan-pairing. 甘露糖受体与抗体相互作用的解码:高甘露糖 N-聚糖和聚糖配对的重要性。
IF 5.6 2区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL Pub Date : 2024-01-01 Epub Date: 2024-09-08 DOI: 10.1080/19420862.2024.2400414
Julia Baumeister, Maximilian Meudt, Sybille Ebert, Frank Rosenau, Boris Mizaikoff, Michaela Blech, Kristina M J Aertker, Fabian Higel

During the development process of therapeutic monoclonal antibodies (mAbs), it is crucial to control (critical) quality attributes such as N-glycosylation influencing pharmacokinetics (PK) and Fc effector functions. Previous reports have shown that mAbs containing high-mannose N-glycans are cleared faster from blood circulation, leading to reduced half-lives. The high-mannose N-glycan content of mAbs can be influenced during the cell culture process by factors such as cell lines, process conditions, and media. Furthermore, mAbs have either one high mannose N-glycan (asymmetrical high-mannose glyco-pair) or two high mannose N-glycans (symmetrical high-mannose glyco-pair). The hypothesis that the mannose receptor (MR, CD206) accelerates clearance by facilitating their internalization and subsequent lysosomal degradation is widespread. However, the interaction between MR and mAbs has not been explicitly demonstrated. This study aimed to investigate this interaction, providing the first systematic demonstration of MR binding to the Fc region of mAbs with high-mannose N-glycans. Two novel analytical methods, MR surface plasmon resonance and MR affinity chromatography, were developed and applied to investigate the MR-mAb interaction. The interaction is found to be dependent on high-mannose content, but is independent of the mAb format or sequence. However, different glyco-pairs exhibited varying binding affinities to the MR, with the symmetrical high-mannose glyco-pair showing the strongest binding properties. These findings strengthen the hypothesis for the MR-mediated mAb interaction and contribute to a deeper understanding of the MR-mAb interaction, which could affect the criticality of high-mannose containing mAbs development strategies of IgG-based molecules and improve their PK profiles.

在治疗性单克隆抗体(mAbs)的开发过程中,控制影响药代动力学(PK)和 Fc 效应器功能的 N-糖基化等(关键)质量属性至关重要。以前的报告显示,含有高甘露糖 N-聚糖的 mAbs 能更快地从血液循环中清除,从而缩短半衰期。在细胞培养过程中,mAbs 的高甘露糖 N-聚糖含量会受到细胞系、工艺条件和培养基等因素的影响。此外,mAbs 要么含有一个高甘露糖 N-聚糖(不对称高甘露糖糖对),要么含有两个高甘露糖 N-聚糖(对称高甘露糖糖对)。甘露糖受体(MR,CD206)通过促进其内化和随后的溶酶体降解来加速清除的假设很普遍。然而,MR 与 mAbs 之间的相互作用尚未得到明确证实。本研究旨在研究这种相互作用,首次系统地展示了 MR 与具有高甘露糖 N-聚糖的 mAbs 的 Fc 区的结合。研究人员开发并应用了两种新型分析方法--磁共振表面等离子体共振和磁共振亲和层析来研究磁共振与 mAb 的相互作用。研究发现,这种相互作用取决于高甘露糖含量,但与 mAb 格式或序列无关。然而,不同的糖对与 MR 的结合亲和力各不相同,对称的高甘露糖糖对显示出最强的结合特性。这些发现加强了 MR 介导的 mAb 相互作用的假设,有助于加深对 MR 与 mAb 相互作用的理解,这可能会影响以 IgG 为基础的分子的高甘露糖 mAb 开发策略的关键性,并改善其 PK 图谱。
{"title":"Decoding the mannose receptor-mAb interaction: the importance of high-mannose N-glycans and glycan-pairing.","authors":"Julia Baumeister, Maximilian Meudt, Sybille Ebert, Frank Rosenau, Boris Mizaikoff, Michaela Blech, Kristina M J Aertker, Fabian Higel","doi":"10.1080/19420862.2024.2400414","DOIUrl":"10.1080/19420862.2024.2400414","url":null,"abstract":"<p><p>During the development process of therapeutic monoclonal antibodies (mAbs), it is crucial to control (critical) quality attributes such as N-glycosylation influencing pharmacokinetics (PK) and Fc effector functions. Previous reports have shown that mAbs containing high-mannose N-glycans are cleared faster from blood circulation, leading to reduced half-lives. The high-mannose N-glycan content of mAbs can be influenced during the cell culture process by factors such as cell lines, process conditions, and media. Furthermore, mAbs have either one high mannose N-glycan (asymmetrical high-mannose glyco-pair) or two high mannose N-glycans (symmetrical high-mannose glyco-pair). The hypothesis that the mannose receptor (MR, CD206) accelerates clearance by facilitating their internalization and subsequent lysosomal degradation is widespread. However, the interaction between MR and mAbs has not been explicitly demonstrated. This study aimed to investigate this interaction, providing the first systematic demonstration of MR binding to the Fc region of mAbs with high-mannose N-glycans. Two novel analytical methods, MR surface plasmon resonance and MR affinity chromatography, were developed and applied to investigate the MR-mAb interaction. The interaction is found to be dependent on high-mannose content, but is independent of the mAb format or sequence. However, different glyco-pairs exhibited varying binding affinities to the MR, with the symmetrical high-mannose glyco-pair showing the strongest binding properties. These findings strengthen the hypothesis for the MR-mediated mAb interaction and contribute to a deeper understanding of the MR-mAb interaction, which could affect the criticality of high-mannose containing mAbs development strategies of IgG-based molecules and improve their PK profiles.</p>","PeriodicalId":18206,"journal":{"name":"mAbs","volume":null,"pages":null},"PeriodicalIF":5.6,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11385167/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142154495","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
RUBY® - a tetravalent (2+2) bispecific antibody format with excellent functionality and IgG-like stability, pharmacology and developability properties. RUBY® - 一种四价(2+2)双特异性抗体形式,具有出色的功能性和类似 IgG 的稳定性、药理学和可开发性。
IF 5.3 2区 医学 Q1 Medicine Pub Date : 2024-01-01 Epub Date: 2024-03-25 DOI: 10.1080/19420862.2024.2330113
Barnabas Nyesiga, Mattias Levin, Anna Säll, Anna Rosén, Kim Jansson, Sara Fritzell, Karin Hägerbrand, Dietmar Weilguny, Laura von Schantz

Despite the large number of existing bispecific antibody (bsAb) formats, the generation of novel bsAbs is still associated with development and bioprocessing challenges. Here, we present RUBY, a novel bispecific antibody format that allows rapid generation of bsAbs that fulfill key development criteria. The RUBYTM format has a 2 + 2 geometry, where two Fab fragments are linked via their light chains to the C-termini of an IgG, and carries mutations for optimal chain pairing. The unique design enables generation of bsAbs with mAb-like attributes. Our data demonstrate that RUBY bsAbs are compatible with small-scale production systems for screening purposes and can be produced at high yields (>3 g/L) from stable cell lines. The bsAbs produced are shown to, in general, contain low amounts of aggregates and display favorable solubility and stress endurance profiles. Further, compatibility with various IgG isotypes is shown and tailored Fc gamma receptor binding confirmed. Also, retained interaction with FcRn is demonstrated to translate into a pharmacokinetic profile in mice and non-human primates that is comparable to mAb controls. Functionality of conditional active RUBY bsAbs is confirmed in vitro. Anti-tumor effects in vivo have previously been demonstrated, and shown to be superior to a comparable mAb, and here it is further shown that RUBY bsAbs penetrate and localize to tumor tissue in vivo. In all, the RUBY format has attractive mAb-like attributes and offers the possibility to mitigate many of the development challenges linked to other bsAb formats, facilitating both high functionality and developability.

尽管现有的双特异性抗体(bsAb)格式很多,但新型双特异性抗体的生成仍然面临着开发和生物处理方面的挑战。在这里,我们介绍一种新型双特异性抗体格式 RUBY,它可以快速生成符合关键开发标准的双特异性抗体。RUBYTM 格式具有 2 + 2 几何结构,其中两个 Fab 片段通过其轻链连接到 IgG 的 C 端,并带有突变以实现最佳的链配对。这种独特的设计可生成具有类似 mAb 属性的 bsAbs。我们的数据表明,RUBY bsAbs 可与用于筛选目的的小规模生产系统兼容,并能从稳定的细胞系中以高产率(>3 克/升)生产出来。所生产的 bsAbs 一般含有少量的聚集体,并显示出良好的溶解性和应力耐受性。此外,还显示了与各种 IgG 异型的兼容性,并确认了量身定制的 Fc γ 受体结合。此外,在小鼠和非人灵长类动物体内,与 FcRn 的相互作用被证明可转化为与 mAb 对照组相当的药代动力学特征。条件活性 RUBY bsAbs 的功能在体外得到了证实。体内抗肿瘤效果先前已得到证实,并显示出优于同类 mAb,这里进一步证明了 RUBY bsAbs 能穿透并定位到体内肿瘤组织。总之,RUBY 形式具有类似于 mAb 的诱人特性,可以减轻与其他 bsAb 形式相关的许多开发挑战,同时具有高功能性和可开发性。
{"title":"RUBY® - a tetravalent (2+2) bispecific antibody format with excellent functionality and IgG-like stability, pharmacology and developability properties.","authors":"Barnabas Nyesiga, Mattias Levin, Anna Säll, Anna Rosén, Kim Jansson, Sara Fritzell, Karin Hägerbrand, Dietmar Weilguny, Laura von Schantz","doi":"10.1080/19420862.2024.2330113","DOIUrl":"10.1080/19420862.2024.2330113","url":null,"abstract":"<p><p>Despite the large number of existing bispecific antibody (bsAb) formats, the generation of novel bsAbs is still associated with development and bioprocessing challenges. Here, we present RUBY, a novel bispecific antibody format that allows rapid generation of bsAbs that fulfill key development criteria. The RUBY<sup>TM</sup> format has a 2 + 2 geometry, where two Fab fragments are linked via their light chains to the C-termini of an IgG, and carries mutations for optimal chain pairing. The unique design enables generation of bsAbs with mAb-like attributes. Our data demonstrate that RUBY bsAbs are compatible with small-scale production systems for screening purposes and can be produced at high yields (>3 g/L) from stable cell lines. The bsAbs produced are shown to, in general, contain low amounts of aggregates and display favorable solubility and stress endurance profiles. Further, compatibility with various IgG isotypes is shown and tailored Fc gamma receptor binding confirmed. Also, retained interaction with FcRn is demonstrated to translate into a pharmacokinetic profile in mice and non-human primates that is comparable to mAb controls. Functionality of conditional active RUBY bsAbs is confirmed in vitro. Anti-tumor effects in vivo have previously been demonstrated, and shown to be superior to a comparable mAb, and here it is further shown that RUBY bsAbs penetrate and localize to tumor tissue in vivo. In all, the RUBY format has attractive mAb-like attributes and offers the possibility to mitigate many of the development challenges linked to other bsAb formats, facilitating both high functionality and developability.</p>","PeriodicalId":18206,"journal":{"name":"mAbs","volume":null,"pages":null},"PeriodicalIF":5.3,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10965115/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140288478","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Discovery of potent allosteric antibodies inhibiting EGFR. 发现抑制表皮生长因子受体的强效异构抗体。
IF 5.6 2区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL Pub Date : 2024-01-01 Epub Date: 2024-09-20 DOI: 10.1080/19420862.2024.2406548
Léxane Fournier, Lukas Pekar, Birgitta Leuthner, Harald Kolmar, Lars Toleikis, Stefan Becker

In this work, we report the discovery of potent anti-epidermal growth factor receptor (EGFR) allosteric heavy-chain antibodies by combining camelid immunization and fluorescence-activated cell sorting (FACS). After immunization and yeast surface display library construction, allosteric clones were obtained by introducing the labeled EGF Fc fusion protein as an additional criterion for FACS. This sorting method enabled the identification of 11 heavy-chain antibodies that did not compete with the orthosteric ligand EGF for the binding to EGFR. These antibodies bind to a triple-negative breast cancer cell line expressing EGFR with affinities in the picomolar to nanomolar range. Those camelid-derived antibodies also exhibit interesting properties by modulating EGFR affinity for EGF. Moreover, they are also able to inhibit EGF-induced downstream signaling pathways. In particular, we identified one clone that is more potent than the approved blocking antibody cetuximab in inhibiting both PI3K/AKT and MAPK/ERK pathways. Our results suggest that allosteric antibodies may be potential new modalities for therapeutics.

在这项工作中,我们报告了通过结合驼科动物免疫和荧光激活细胞分选(FACS)发现的强效抗表皮生长因子受体(EGFR)异构重链抗体。在免疫和酵母表面展示文库构建之后,通过引入标记的表皮生长因子受体 Fc 融合蛋白作为 FACS 的附加标准,获得了异构克隆。这种分选方法鉴定出了 11 种重链抗体,它们与表皮生长因子受体的结合不会与正交配体表皮生长因子受体竞争。这些抗体与表达表皮生长因子受体的三阴性乳腺癌细胞系结合,亲和力在皮摩尔到纳摩尔范围内。这些源自骆驼的抗体还通过调节表皮生长因子受体对表皮生长因子受体的亲和力而表现出有趣的特性。此外,它们还能抑制表皮生长因子受体诱导的下游信号通路。特别是,我们发现一种克隆抗体在抑制PI3K/AKT和MAPK/ERK通路方面比已获批准的阻断抗体西妥昔单抗更有效。我们的研究结果表明,异构抗体可能是一种潜在的新治疗方式。
{"title":"Discovery of potent allosteric antibodies inhibiting EGFR.","authors":"Léxane Fournier, Lukas Pekar, Birgitta Leuthner, Harald Kolmar, Lars Toleikis, Stefan Becker","doi":"10.1080/19420862.2024.2406548","DOIUrl":"10.1080/19420862.2024.2406548","url":null,"abstract":"<p><p>In this work, we report the discovery of potent anti-epidermal growth factor receptor (EGFR) allosteric heavy-chain antibodies by combining camelid immunization and fluorescence-activated cell sorting (FACS). After immunization and yeast surface display library construction, allosteric clones were obtained by introducing the labeled EGF Fc fusion protein as an additional criterion for FACS. This sorting method enabled the identification of 11 heavy-chain antibodies that did not compete with the orthosteric ligand EGF for the binding to EGFR. These antibodies bind to a triple-negative breast cancer cell line expressing EGFR with affinities in the picomolar to nanomolar range. Those camelid-derived antibodies also exhibit interesting properties by modulating EGFR affinity for EGF. Moreover, they are also able to inhibit EGF-induced downstream signaling pathways. In particular, we identified one clone that is more potent than the approved blocking antibody cetuximab in inhibiting both PI3K/AKT and MAPK/ERK pathways. Our results suggest that allosteric antibodies may be potential new modalities for therapeutics.</p>","PeriodicalId":18206,"journal":{"name":"mAbs","volume":null,"pages":null},"PeriodicalIF":5.6,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142290470","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
In-situ biophysical characterization of high-concentration protein formulations using wNMR. 利用核磁共振对高浓度蛋白质制剂进行原位生物物理表征。
IF 5.3 2区 医学 Q1 Medicine Pub Date : 2024-01-01 Epub Date: 2024-02-01 DOI: 10.1080/19420862.2024.2304624
Jing Song, Marc Taraban, Y Bruce Yu, Lynn Lu, Pallavi Guha Biswas, Wei Xu, Hanmi Xi, Akhilesh Bhambhani, Guangli Hu, Yongchao Su

High-concentration protein formulation is of paramount importance in patient-centric drug product development, but it also presents challenges due to the potential for enhanced aggregation and increased viscosity. The analysis of critical quality attributes often necessitates the transfer of samples from their primary containers together with sample dilution. Therefore, there is a demand for noninvasive, in situ biophysical methods to assess protein drug products directly in primary sterile containers, such as prefilled syringes, without dilution. In this study, we introduce a novel application of water proton nuclear magnetic resonance (wNMR) to evaluate the aggregation propensity of a high-concentration drug product, Dupixent® (dupilumab), under stress conditions. wNMR results demonstrate a concentration-dependent, reversible association of dupilumab in the commercial formulation, as well as irreversible aggregation when exposed to accelerated thermal stress, but gradually reversible aggregation when exposed to freeze and thaw cycles. Importantly, these results show a strong correlation with data obtained from established biophysical analytical tools widely used in the pharmaceutical industry. The application of wNMR represents a promising approach for in situ noninvasive analysis of high-concentration protein formulations directly in their primary containers, providing valuable insights for drug development and quality assessment.

高浓度蛋白质制剂在以患者为中心的药物产品开发中至关重要,但由于其可能会增强聚集性和增加粘度,因此也带来了挑战。要对关键质量属性进行分析,往往需要将样品从主要容器中转移出来并进行样品稀释。因此,人们需要无创的原位生物物理方法,以直接评估预灌封注射器等主要无菌容器中的蛋白质药物产品,而无需稀释。在本研究中,我们介绍了水质子核磁共振(wNMR)的一种新应用,用于评估高浓度药物产品 Dupixent® (dupilumab)在应力条件下的聚集倾向。wNMR 结果表明,商业制剂中的 dupilumab 具有浓度依赖性和可逆性结合,在暴露于加速热应力时具有不可逆聚集,但在暴露于冻融循环时聚集逐渐可逆。重要的是,这些结果显示与制药行业广泛使用的成熟生物物理分析工具所获得的数据有很强的相关性。wNMR 的应用代表了一种很有前景的方法,可直接在主要容器中对高浓度蛋白质制剂进行原位无创分析,为药物开发和质量评估提供有价值的见解。
{"title":"<i>In-situ</i> biophysical characterization of high-concentration protein formulations using <i>w</i>NMR.","authors":"Jing Song, Marc Taraban, Y Bruce Yu, Lynn Lu, Pallavi Guha Biswas, Wei Xu, Hanmi Xi, Akhilesh Bhambhani, Guangli Hu, Yongchao Su","doi":"10.1080/19420862.2024.2304624","DOIUrl":"10.1080/19420862.2024.2304624","url":null,"abstract":"<p><p>High-concentration protein formulation is of paramount importance in patient-centric drug product development, but it also presents challenges due to the potential for enhanced aggregation and increased viscosity. The analysis of critical quality attributes often necessitates the transfer of samples from their primary containers together with sample dilution. Therefore, there is a demand for noninvasive, <i>in situ</i> biophysical methods to assess protein drug products directly in primary sterile containers, such as prefilled syringes, without dilution. In this study, we introduce a novel application of water proton nuclear magnetic resonance (<i>w</i>NMR) to evaluate the aggregation propensity of a high-concentration drug product, Dupixent® (dupilumab), under stress conditions. <i>w</i>NMR results demonstrate a concentration-dependent, reversible association of dupilumab in the commercial formulation, as well as irreversible aggregation when exposed to accelerated thermal stress, but gradually reversible aggregation when exposed to freeze and thaw cycles. Importantly, these results show a strong correlation with data obtained from established biophysical analytical tools widely used in the pharmaceutical industry. The application of <i>w</i>NMR represents a promising approach for <i>in situ</i> noninvasive analysis of high-concentration protein formulations directly in their primary containers, providing valuable insights for drug development and quality assessment.</p>","PeriodicalId":18206,"journal":{"name":"mAbs","volume":null,"pages":null},"PeriodicalIF":5.3,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10841025/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139651047","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Proceedings of the 14th European immunogenicity platform open symposium on immunogenicity of biopharmaceuticals. 第 14 届欧洲免疫原性平台生物制药免疫原性公开研讨会论文集》。
IF 5.3 2区 医学 Q1 Medicine Pub Date : 2024-01-01 Epub Date: 2024-03-05 DOI: 10.1080/19420862.2024.2324801
Sophie Tourdot, Daniel Baltrunkonis, Sofie Denies, Viswanath Devanarayan, Joanna Grudzinska-Goebel, Arno Kromminga, Gregor P Lotz, Laurent Malherbe, Lydia Michaut, Karin N Weldingh, Joao A Pedras-Vasconcelos, Laura I Salazar-Fontana, Sebastian Spindeldreher, Zuben Sauna, Veerle Snoeck, Daniela Verthelyi, Daniel Kramer

Biologics have revolutionized disease management in many therapeutic areas by addressing unmet medical needs and overcoming resistance to standard-of-care treatment in numerous patients. However, the development of unwanted immune responses directed against these drugs, humoral and/or cellular, can hinder their efficacy and have safety consequences with various degrees of severity. Health authorities ask that a thorough immunogenicity risk assessment be conducted during drug development to incorporate an appropriate monitoring and mitigation plan in clinical studies. With the rapid diversification and complexification of biologics, which today include modalities such as multi-domain antibodies, cell-based products, AAV delivery vectors, and nucleic acids, developers are faced with the challenge of establishing a risk assessment strategy sometimes in the absence of specific regulatory guidelines. The European Immunogenicity Platform (EIP) Open Symposium on Immunogenicity of Biopharmaceuticals and its one-day training course gives experts and newcomers across academia, industry, and regulatory agencies an opportunity to share experience and knowledge to overcome these challenges. Here, we report the discussions that took place at the EIP's 14th Symposium, held in April 2023. The topics covered included immunogenicity monitoring and clinical relevance, non-clinical immunogenicity risk assessment, regulatory aspects of immunogenicity assessment and reporting, and the challenges associated with new modalities, which were discussed in a dedicated session.

生物制剂解决了许多治疗领域未得到满足的医疗需求,克服了许多患者对标准疗法的耐药性,从而彻底改变了疾病的治疗。然而,针对这些药物的体液和/或细胞免疫反应可能会阻碍药物的疗效,并带来不同程度的安全后果。卫生部门要求在药物开发过程中进行全面的免疫原性风险评估,以便在临床研究中纳入适当的监测和缓解计划。目前,生物制剂包括多域抗体、细胞产品、AAV 运载载体和核酸等模式,随着生物制剂的快速多样化和复杂化,开发人员面临着制定风险评估策略的挑战,有时甚至缺乏具体的监管指南。欧洲免疫原性平台(EIP)生物制药免疫原性公开研讨会及其为期一天的培训课程为学术界、工业界和监管机构的专家和新手提供了一个分享经验和知识的机会,以克服这些挑战。我们在此报告 2023 年 4 月举行的第 14 届 EIP 研讨会的讨论情况。讨论的主题包括免疫原性监测和临床相关性、非临床免疫原性风险评估、免疫原性评估和报告的监管问题以及与新模式相关的挑战。
{"title":"Proceedings of the 14th European immunogenicity platform open symposium on immunogenicity of biopharmaceuticals.","authors":"Sophie Tourdot, Daniel Baltrunkonis, Sofie Denies, Viswanath Devanarayan, Joanna Grudzinska-Goebel, Arno Kromminga, Gregor P Lotz, Laurent Malherbe, Lydia Michaut, Karin N Weldingh, Joao A Pedras-Vasconcelos, Laura I Salazar-Fontana, Sebastian Spindeldreher, Zuben Sauna, Veerle Snoeck, Daniela Verthelyi, Daniel Kramer","doi":"10.1080/19420862.2024.2324801","DOIUrl":"10.1080/19420862.2024.2324801","url":null,"abstract":"<p><p>Biologics have revolutionized disease management in many therapeutic areas by addressing unmet medical needs and overcoming resistance to standard-of-care treatment in numerous patients. However, the development of unwanted immune responses directed against these drugs, humoral and/or cellular, can hinder their efficacy and have safety consequences with various degrees of severity. Health authorities ask that a thorough immunogenicity risk assessment be conducted during drug development to incorporate an appropriate monitoring and mitigation plan in clinical studies. With the rapid diversification and complexification of biologics, which today include modalities such as multi-domain antibodies, cell-based products, AAV delivery vectors, and nucleic acids, developers are faced with the challenge of establishing a risk assessment strategy sometimes in the absence of specific regulatory guidelines. The European Immunogenicity Platform (EIP) Open Symposium on Immunogenicity of Biopharmaceuticals and its one-day training course gives experts and newcomers across academia, industry, and regulatory agencies an opportunity to share experience and knowledge to overcome these challenges. Here, we report the discussions that took place at the EIP's 14<sup>th</sup> Symposium, held in April 2023. The topics covered included immunogenicity monitoring and clinical relevance, non-clinical immunogenicity risk assessment, regulatory aspects of immunogenicity assessment and reporting, and the challenges associated with new modalities, which were discussed in a dedicated session.</p>","PeriodicalId":18206,"journal":{"name":"mAbs","volume":null,"pages":null},"PeriodicalIF":5.3,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10936655/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140028390","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Interactions of the anti-FcRn monoclonal antibody, rozanolixizumab, with Fcγ receptors and functional impact on immune cells in vitro. 抗 FcRn 单克隆抗体罗扎尼单抗与 Fcγ 受体的相互作用以及对体外免疫细胞的功能影响。
IF 5.3 2区 医学 Q1 Medicine Pub Date : 2024-01-01 Epub Date: 2024-01-19 DOI: 10.1080/19420862.2023.2300155
Omar S Qureshi, Emma J Sutton, Rosemary F Bithell, Shauna M West, Rona M Cutler, Gillian McCluskey, Graham Craggs, Asher Maroof, Nicholas M Barnes, David P Humphreys, Stephen Rapecki, Bryan J Smith, Anthony Shock

Rozanolixizumab is a humanized anti-neonatal Fc receptor (FcRn) monoclonal antibody (mAb) of the immunoglobulin G4 (IgG4) sub-class, currently in clinical development for the treatment of IgG autoantibody-driven diseases. This format is frequently used for therapeutic mAbs due to its intrinsic lower affinity for Fc gamma receptors (FcγR) and lack of C1q engagement. However, with growing evidence suggesting that no Fc-containing agent is truly "silent" in this respect, we explored the engagement of FcγRs and potential functional consequences with rozanolixizumab. In the study presented here, rozanolixizumab was shown to bind to FcγRs in both protein-protein and cell-based assays, and the kinetic data were broadly as expected based on published data for an IgG4 mAb. Rozanolixizumab was also able to mediate antibody bipolar bridging (ABB), a phenomenon that led to a reduction of labeled FcγRI from the surface of human macrophages in an FcRn-dependent manner. However, the presence of exogenous human IgG, even at low concentrations, was able to prevent both binding and ABB events. Furthermore, data from in vitro experiments using relevant human cell types that express both FcRn and FcγRI indicated no evidence for functional sequelae in relation to cellular activation events (e.g., intracellular signaling, cytokine production) upon either FcRn or FcγR binding of rozanolixizumab. These data raise important questions about whether therapeutic antagonistic mAbs like rozanolixizumab would necessarily engage FcγRs at doses typically administered to patients in the clinic, and hence challenge the relevance and interpretation of in vitro assays performed in the absence of competing IgG.

Rozanolixizumab是一种人源化的抗新生儿Fc受体(FcRn)单克隆抗体(mAb),属于免疫球蛋白G4(IgG4)亚类,目前正处于临床开发阶段,用于治疗IgG自身抗体驱动的疾病。这种形式的 mAb 通常用于治疗,因为它对 FcγR 受体(FcγR)的亲和力较低,而且缺乏 C1q 参与。然而,越来越多的证据表明,没有一种含 Fc 的药物在这方面是真正 "沉默 "的,因此我们探索了罗扎尼珠单抗与 FcγR 的啮合以及潜在的功能性后果。在本文介绍的研究中,罗扎尼珠单抗在蛋白-蛋白和基于细胞的实验中都与 FcγRs 结合,而且根据已发表的 IgG4 mAb 数据,其动力学数据与预期的大致相同。罗扎尼珠单抗还能介导抗体双极桥接(ABB),这种现象以 FcRn 依赖性方式导致人巨噬细胞表面标记的 FcγRI 减少。然而,外源性人类 IgG 的存在,即使浓度很低,也能阻止结合和 ABB 事件的发生。此外,使用同时表达 FcRn 和 FcγRI 的相关人类细胞类型进行的体外实验数据显示,没有证据表明罗扎尼珠单抗与 FcRn 或 FcγR 结合后会产生与细胞活化事件(如细胞内信号传导、细胞因子产生)相关的功能性后遗症。这些数据提出了一些重要问题,即罗扎尼珠单抗等治疗性拮抗 mAbs 是否一定会以临床上通常给患者使用的剂量与 FcγR 结合,从而对在没有竞争 IgG 的情况下进行的体外检测的相关性和解释提出了挑战。
{"title":"Interactions of the anti-FcRn monoclonal antibody, rozanolixizumab, with Fcγ receptors and functional impact on immune cells <i>in vitro</i>.","authors":"Omar S Qureshi, Emma J Sutton, Rosemary F Bithell, Shauna M West, Rona M Cutler, Gillian McCluskey, Graham Craggs, Asher Maroof, Nicholas M Barnes, David P Humphreys, Stephen Rapecki, Bryan J Smith, Anthony Shock","doi":"10.1080/19420862.2023.2300155","DOIUrl":"10.1080/19420862.2023.2300155","url":null,"abstract":"<p><p>Rozanolixizumab is a humanized anti-neonatal Fc receptor (FcRn) monoclonal antibody (mAb) of the immunoglobulin G4 (IgG4) sub-class, currently in clinical development for the treatment of IgG autoantibody-driven diseases. This format is frequently used for therapeutic mAbs due to its intrinsic lower affinity for Fc gamma receptors (FcγR) and lack of C1q engagement. However, with growing evidence suggesting that no Fc-containing agent is truly \"silent\" in this respect, we explored the engagement of FcγRs and potential functional consequences with rozanolixizumab. In the study presented here, rozanolixizumab was shown to bind to FcγRs in both protein-protein and cell-based assays, and the kinetic data were broadly as expected based on published data for an IgG4 mAb. Rozanolixizumab was also able to mediate antibody bipolar bridging (ABB), a phenomenon that led to a reduction of labeled FcγRI from the surface of human macrophages in an FcRn-dependent manner. However, the presence of exogenous human IgG, even at low concentrations, was able to prevent both binding and ABB events. Furthermore, data from <i>in vitro</i> experiments using relevant human cell types that express both FcRn and FcγRI indicated no evidence for functional sequelae in relation to cellular activation events (e.g., intracellular signaling, cytokine production) upon either FcRn or FcγR binding of rozanolixizumab. These data raise important questions about whether therapeutic antagonistic mAbs like rozanolixizumab would necessarily engage FcγRs at doses typically administered to patients in the clinic, and hence challenge the relevance and interpretation of <i>in vitro</i> assays performed in the absence of competing IgG.</p>","PeriodicalId":18206,"journal":{"name":"mAbs","volume":null,"pages":null},"PeriodicalIF":5.3,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10802195/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139502657","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Predicting the clinical subcutaneous absorption rate constant of monoclonal antibodies using only the primary sequence: a machine learning approach. 仅使用主序列预测单克隆抗体的临床皮下吸收率常数:一种机器学习方法。
IF 5.3 2区 医学 Q1 Medicine Pub Date : 2024-01-01 Epub Date: 2024-05-14 DOI: 10.1080/19420862.2024.2352887
Ronghua Bei, Justin Thomas, Shiven Kapur, Mahlet Woldeyes, Adam Rauk, Jason Robarge, Jiangyan Feng, Kaoutar Abbou Oucherif

Subcutaneous injections are an increasingly prevalent route of administration for delivering biological therapies including monoclonal antibodies (mAbs). Compared with intravenous delivery, subcutaneous injections reduce administration costs, shorten the administration time, and are strongly preferred from a patient experience point of view. An understanding of the absorption process of a mAb from the injection site to the systemic circulation is critical to the process of subcutaneous mAb formulation development. In this study, we built a model to predict the absorption rate constant (ka), which denotes how fast a mAb is absorbed from the site of administration. Once trained, our model (enabled by the XGBoost algorithm in machine learning) can predict the ka of a mAb following a subcutaneous injection using in silico molecular properties alone (generated from the primary sequence). Our model does not need clinically observed plasma concentration-time data; this is a novel capability not previously achieved in predictive pharmacokinetic models. The model also showed improved performance when benchmarked against a recently reported mechanistic model that relied on clinical data to predict subcutaneous absorption of mAbs. We further interpreted the model to understand which molecular properties affect the absorption rate and showed that our findings are consistent with previous studies evaluating subcutaneous absorption through direct experimentation. Taken altogether, this study reports the development, validation, benchmarking, and interpretation of a model that can predict the clinical ka of a mAb using its primary sequence as the only input.

皮下注射是一种越来越普遍的生物疗法给药途径,包括单克隆抗体(mAbs)。与静脉给药相比,皮下注射可降低给药成本、缩短给药时间,而且从患者体验的角度来看,皮下注射更受青睐。了解 mAb 从注射部位到全身循环的吸收过程对于皮下注射 mAb 制剂的开发至关重要。在这项研究中,我们建立了一个模型来预测吸收率常数 (ka),它表示 mAb 从给药部位吸收的速度。训练完成后,我们的模型(通过机器学习中的 XGBoost 算法实现)就能仅利用硅分子特性(由主序列生成)预测 mAb 皮下注射后的 ka。我们的模型不需要临床观察到的血浆浓度-时间数据;这是预测性药代动力学模型以前从未实现过的新功能。与最近报道的依赖临床数据预测 mAbs 皮下吸收的机理模型相比,该模型的性能也有所提高。我们进一步解释了该模型,以了解哪些分子特性会影响吸收率,结果表明我们的发现与之前通过直接实验评估皮下吸收的研究结果一致。总之,本研究报告了一个模型的开发、验证、基准测试和解释,该模型可以使用 mAb 的主序列作为唯一输入来预测其临床 ka。
{"title":"Predicting the clinical subcutaneous absorption rate constant of monoclonal antibodies using only the primary sequence: a machine learning approach.","authors":"Ronghua Bei, Justin Thomas, Shiven Kapur, Mahlet Woldeyes, Adam Rauk, Jason Robarge, Jiangyan Feng, Kaoutar Abbou Oucherif","doi":"10.1080/19420862.2024.2352887","DOIUrl":"10.1080/19420862.2024.2352887","url":null,"abstract":"<p><p>Subcutaneous injections are an increasingly prevalent route of administration for delivering biological therapies including monoclonal antibodies (mAbs). Compared with intravenous delivery, subcutaneous injections reduce administration costs, shorten the administration time, and are strongly preferred from a patient experience point of view. An understanding of the absorption process of a mAb from the injection site to the systemic circulation is critical to the process of subcutaneous mAb formulation development. In this study, we built a model to predict the absorption rate constant (k<sub>a</sub>), which denotes how fast a mAb is absorbed from the site of administration. Once trained, our model (enabled by the XGBoost algorithm in machine learning) can predict the k<sub>a</sub> of a mAb following a subcutaneous injection using <i>in silico</i> molecular properties alone (generated from the primary sequence). Our model does not need clinically observed plasma concentration-time data; this is a novel capability not previously achieved in predictive pharmacokinetic models. The model also showed improved performance when benchmarked against a recently reported mechanistic model that relied on clinical data to predict subcutaneous absorption of mAbs. We further interpreted the model to understand which molecular properties affect the absorption rate and showed that our findings are consistent with previous studies evaluating subcutaneous absorption through direct experimentation. Taken altogether, this study reports the development, validation, benchmarking, and interpretation of a model that can predict the clinical k<sub>a</sub> of a mAb using its primary sequence as the only input.</p>","PeriodicalId":18206,"journal":{"name":"mAbs","volume":null,"pages":null},"PeriodicalIF":5.3,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11110684/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140922717","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
mAbs
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1