Pub Date : 2024-01-01Epub Date: 2024-11-15DOI: 10.1080/19420862.2024.2429414
Gangadhar Dhulipala, Alanna Broszeit, Kun Lu, Nisha Palackal, Erica Pyles
Charge heterogeneity is one of the commonly monitored quality attributes in biotherapeutics. It can impact the stability, efficacy, and safety of products, but it can also affect the pharmacokinetics, binding affinity, and overall biological activity of the molecules. Given the substantial size and complexity of antibodies, subtle variations or specific modifications that result in charge heterogeneity might be concealed when mAbs are analyzed under native conditions. Two-dimensional gel electrophoresis has traditionally been used to characterize antibody heavy chain (HC) and light chain (LC) charge variants. The procedures, however, are laborious, and the method is only qualitative. ChromiCE was developed as an alternative approach to provide quantitative analysis, but the method is also labor intensive, requiring separation of the HC and LC by chromatography before imaged capillary isoelectric focusing (iCIEF) analysis. We thus developed a novel, automated high-throughput iCIEF-Western method to directly quantify the HC and LC charge variants with high sensitivity under denatured and reduced conditions. The HC and LC charge variants are selectively characterized using detection antibodies specific to the HC or LC. In addition, the reduced, denatured iCIEF-Western method allows for the analysis of up to 96 samples overnight, offering good precision and high throughput with minimal analyst hands-on time. Further, the developed method can be applied in different aspects of drug development, such as comparability, release or stability testing given its ability to provide identity, as well as qualitative and quantitative comparative analysis.
电荷异质性是生物治疗药物中常被监测的质量属性之一。它不仅会影响产品的稳定性、有效性和安全性,还会影响分子的药代动力学、结合亲和力和整体生物活性。鉴于抗体的巨大尺寸和复杂性,在原生条件下分析 mAbs 时,可能会掩盖导致电荷异质性的微妙变化或特定修饰。二维凝胶电泳历来被用来表征抗体重链(HC)和轻链(LC)的电荷变异。然而,这种方法不仅费时费力,而且只能定性。ChromiCE 是作为提供定量分析的另一种方法而开发的,但这种方法也很费力,需要在成像毛细管等电聚焦(iCIEF)分析之前用色谱法分离 HC 和 LC。因此,我们开发了一种新颖的自动化高通量 iCIEF-Western 方法,可在变性和还原条件下高灵敏度地直接量化 HC 和 LC 电荷变体。使用针对 HC 或 LC 的特异性检测抗体可选择性地鉴定 HC 和 LC 电荷变体。此外,还原变性 iCIEF-Western 方法可在一夜之间分析多达 96 个样品,精度高、通量大,分析师的动手时间极短。此外,所开发的方法还可应用于药物开发的不同方面,如可比性、释放或稳定性测试,因为它能提供鉴定以及定性和定量比较分析。
{"title":"Development of a novel, high-throughput imaged capillary isoelectric focusing-Western method to characterize charge heterogeneity of monoclonal antibody heavy and light chains.","authors":"Gangadhar Dhulipala, Alanna Broszeit, Kun Lu, Nisha Palackal, Erica Pyles","doi":"10.1080/19420862.2024.2429414","DOIUrl":"10.1080/19420862.2024.2429414","url":null,"abstract":"<p><p>Charge heterogeneity is one of the commonly monitored quality attributes in biotherapeutics. It can impact the stability, efficacy, and safety of products, but it can also affect the pharmacokinetics, binding affinity, and overall biological activity of the molecules. Given the substantial size and complexity of antibodies, subtle variations or specific modifications that result in charge heterogeneity might be concealed when mAbs are analyzed under native conditions. Two-dimensional gel electrophoresis has traditionally been used to characterize antibody heavy chain (HC) and light chain (LC) charge variants. The procedures, however, are laborious, and the method is only qualitative. ChromiCE was developed as an alternative approach to provide quantitative analysis, but the method is also labor intensive, requiring separation of the HC and LC by chromatography before imaged capillary isoelectric focusing (iCIEF) analysis. We thus developed a novel, automated high-throughput iCIEF-Western method to directly quantify the HC and LC charge variants with high sensitivity under denatured and reduced conditions. The HC and LC charge variants are selectively characterized using detection antibodies specific to the HC or LC. In addition, the reduced, denatured iCIEF-Western method allows for the analysis of up to 96 samples overnight, offering good precision and high throughput with minimal analyst hands-on time. Further, the developed method can be applied in different aspects of drug development, such as comparability, release or stability testing given its ability to provide identity, as well as qualitative and quantitative comparative analysis.</p>","PeriodicalId":18206,"journal":{"name":"mAbs","volume":"16 1","pages":"2429414"},"PeriodicalIF":5.6,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11572156/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142639260","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01Epub Date: 2024-01-05DOI: 10.1080/19420862.2023.2297450
Silvia Crescioli, Hélène Kaplon, Alicia Chenoweth, Lin Wang, Jyothsna Visweswaraiah, Janice M Reichert
The 'Antibodies to Watch' article series provides an annual summary of commercially sponsored monoclonal antibody therapeutics currently in late-stage clinical development, regulatory review, and those recently granted a first approval in any country. In this installment, we discuss key details for 16 antibody therapeutics granted a first approval in 2023, as of November 17 (lecanemab (Leqembi), rozanolixizumab (RYSTIGGO), pozelimab (VEOPOZ), mirikizumab (Omvoh), talquetamab (Talvey), elranatamab (Elrexfio), epcoritamab (EPKINLY), glofitamab (COLUMVI), retifanlimab (Zynyz), concizumab (Alhemo), lebrikizumab (EBGLYSS), tafolecimab (SINTBILO), narlumosbart (Jinlitai), zuberitamab (Enrexib), adebrelimab (Arelili), and divozilimab (Ivlizi)). We briefly review 26 product candidates for which marketing applications are under consideration in at least one country or region, and 23 investigational antibody therapeutics that are forecast to enter regulatory review by the end of 2024 based on company disclosures. These nearly 50 product candidates include numerous innovative bispecific antibodies, such as odronextamab, ivonescimab, linvoseltamab, zenocutuzumab, and erfonrilimab, and antibody-drug conjugates, such as trastuzumab botidotin, patritumab deruxtecan, datopotamab deruxtecan, and MRG002, as well as a mixture of two immunocytokines (bifikafusp alfa and onfekafusp alfa). We also discuss clinical phase transition and overall approval success rates for antibody therapeutics, which are crucial to the biopharmaceutical industry because these rates inform decisions about resource allocation. Our analyses indicate that these molecules have approval success rates in the range of 14-32%, with higher rates associated with antibodies developed for non-cancer indications. Overall, our data suggest that antibody therapeutic development efforts by the biopharmaceutical industry are robust and increasingly successful.
{"title":"Antibodies to watch in 2024.","authors":"Silvia Crescioli, Hélène Kaplon, Alicia Chenoweth, Lin Wang, Jyothsna Visweswaraiah, Janice M Reichert","doi":"10.1080/19420862.2023.2297450","DOIUrl":"10.1080/19420862.2023.2297450","url":null,"abstract":"<p><p>The 'Antibodies to Watch' article series provides an annual summary of commercially sponsored monoclonal antibody therapeutics currently in late-stage clinical development, regulatory review, and those recently granted a first approval in any country. In this installment, we discuss key details for 16 antibody therapeutics granted a first approval in 2023, as of November 17 (lecanemab (Leqembi), rozanolixizumab (RYSTIGGO), pozelimab (VEOPOZ), mirikizumab (Omvoh), talquetamab (Talvey), elranatamab (Elrexfio), epcoritamab (EPKINLY), glofitamab (COLUMVI), retifanlimab (Zynyz), concizumab (Alhemo), lebrikizumab (EBGLYSS), tafolecimab (SINTBILO), narlumosbart (Jinlitai), zuberitamab (Enrexib), adebrelimab (Arelili), and divozilimab (Ivlizi)). We briefly review 26 product candidates for which marketing applications are under consideration in at least one country or region, and 23 investigational antibody therapeutics that are forecast to enter regulatory review by the end of 2024 based on company disclosures. These nearly 50 product candidates include numerous innovative bispecific antibodies, such as odronextamab, ivonescimab, linvoseltamab, zenocutuzumab, and erfonrilimab, and antibody-drug conjugates, such as trastuzumab botidotin, patritumab deruxtecan, datopotamab deruxtecan, and MRG002, as well as a mixture of two immunocytokines (bifikafusp alfa and onfekafusp alfa). We also discuss clinical phase transition and overall approval success rates for antibody therapeutics, which are crucial to the biopharmaceutical industry because these rates inform decisions about resource allocation. Our analyses indicate that these molecules have approval success rates in the range of 14-32%, with higher rates associated with antibodies developed for non-cancer indications. Overall, our data suggest that antibody therapeutic development efforts by the biopharmaceutical industry are robust and increasingly successful.</p>","PeriodicalId":18206,"journal":{"name":"mAbs","volume":"16 1","pages":"2297450"},"PeriodicalIF":5.6,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10773713/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139098161","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01Epub Date: 2024-06-18DOI: 10.1080/19420862.2024.2365891
Yuxin Hao, Jiabin Yan, Courtney Fraser, Aiping Jiang, Murali Anuganti, Roushu Zhang, Kenneth Lloyd, Joseph Jardine, Jessica Coppola, Rob Meijers, Jing Li, Timothy A Springer
Integrins are cell surface receptors that mediate the interactions of cells with their surroundings and play essential roles in cell adhesion, migration, and homeostasis. Eight of the 24 integrins bind to the tripeptide Arg-Gly-Asp (RGD) motif in their extracellular ligands, comprising the RGD-binding integrin subfamily. Despite similarity in recognizing the RGD motif and some redundancy, these integrins can selectively recognize RGD-containing ligands to fulfill specific functions in cellular processes. Antibodies against individual RGD-binding integrins are desirable for investigating their specific functions, and were selected here from a synthetic yeast-displayed Fab library. We discovered 11 antibodies that exhibit high specificity and affinity toward their target integrins, i.e. αVβ3, αVβ5, αVβ6, αVβ8, and α5β1. Of these, six are function-blocking antibodies and contain a ligand-mimetic R(G/L/T)D motif in their CDR3 sequences. We report antibody-binding specificity, kinetics, and binding affinity for purified integrin ectodomains, as well as intact integrins on the cell surface. We further used these antibodies to reveal binding preferences of the αV subunit for its 5 β-subunit partners: β6 = β8 > β3 > β1 = β5.
{"title":"Synthetic integrin antibodies discovered by yeast display reveal αV subunit pairing preferences with β subunits.","authors":"Yuxin Hao, Jiabin Yan, Courtney Fraser, Aiping Jiang, Murali Anuganti, Roushu Zhang, Kenneth Lloyd, Joseph Jardine, Jessica Coppola, Rob Meijers, Jing Li, Timothy A Springer","doi":"10.1080/19420862.2024.2365891","DOIUrl":"10.1080/19420862.2024.2365891","url":null,"abstract":"<p><p>Integrins are cell surface receptors that mediate the interactions of cells with their surroundings and play essential roles in cell adhesion, migration, and homeostasis. Eight of the 24 integrins bind to the tripeptide Arg-Gly-Asp (RGD) motif in their extracellular ligands, comprising the RGD-binding integrin subfamily. Despite similarity in recognizing the RGD motif and some redundancy, these integrins can selectively recognize RGD-containing ligands to fulfill specific functions in cellular processes. Antibodies against individual RGD-binding integrins are desirable for investigating their specific functions, and were selected here from a synthetic yeast-displayed Fab library. We discovered 11 antibodies that exhibit high specificity and affinity toward their target integrins, i.e. αVβ3, αVβ5, αVβ6, αVβ8, and α5β1. Of these, six are function-blocking antibodies and contain a ligand-mimetic R(G/L/T)D motif in their CDR3 sequences. We report antibody-binding specificity, kinetics, and binding affinity for purified integrin ectodomains, as well as intact integrins on the cell surface. We further used these antibodies to reveal binding preferences of the αV subunit for its 5 β-subunit partners: β6 = β8 > β3 > β1 = β5.</p>","PeriodicalId":18206,"journal":{"name":"mAbs","volume":"16 1","pages":"2365891"},"PeriodicalIF":5.6,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11188837/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141419776","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01Epub Date: 2024-02-19DOI: 10.1080/19420862.2024.2315640
Ammelie Svea Boje, Lukas Pekar, Katharina Koep, Britta Lipinski, Brian Rabinovich, Andreas Evers, Carina Lynn Gehlert, Steffen Krohn, Yanping Xiao, Simon Krah, Rinat Zaynagetdinov, Lars Toleikis, Sven Poetzsch, Matthias Peipp, Stefan Zielonka, Katja Klausz
Natural killer (NK) cells emerged as a promising effector population that can be harnessed for anti-tumor therapy. In this work, we constructed NK cell engagers (NKCEs) based on NKp30-targeting single domain antibodies (sdAbs) that redirect the cytotoxic potential of NK cells toward epidermal growth factor receptor (EGFR)-expressing tumor cells. We investigated the impact of crucial parameters such as sdAb location, binding valencies, the targeted epitope on NKp30, and the overall antibody architecture on the redirection capacity. Our study exploited two NKp30-specific sdAbs, one of which binds a similar epitope on NKp30 as its natural ligand B7-H6, while the other sdAb addresses a non-competing epitope. For EGFR-positive tumor targeting, humanized antigen-binding domains of therapeutic antibody cetuximab were used. We demonstrate that NKCEs bivalently targeting EGFR and bivalently engaging NKp30 are superior to monovalent NKCEs in promoting NK cell-mediated tumor cell lysis and that the architecture of the NKCE can substantially influence killing capacities depending on the NKp30-targeting sdAb utilized. While having a pronounced impact on NK cell killing efficacy, the capabilities of triggering antibody-dependent cellular phagocytosis or complement-dependent cytotoxicity were not significantly affected comparing the bivalent IgG-like NKCEs with cetuximab. However, the fusion of sdAbs can have a slight impact on the NK cell release of immunomodulatory cytokines, as well as on the pharmacokinetic profile of the NKCE due to unfavorable spatial orientation within the molecule architecture. Ultimately, our findings reveal novel insights for the engineering of potent NKCEs triggering the NKp30 axis.
自然杀伤(NK)细胞是一种很有前景的效应细胞群,可用于抗肿瘤治疗。在这项研究中,我们构建了基于 NKp30 靶向单域抗体(sdAb)的 NK 细胞吞噬因子(NKCEs),它能将 NK 细胞的细胞毒性潜能重新导向表皮生长因子受体(EGFR)表达的肿瘤细胞。我们研究了 sdAb 的位置、结合价、NKp30 上的靶标表位和整体抗体结构等关键参数对重定向能力的影响。我们的研究利用了两种 NKp30 特异性 sdAb,其中一种结合了 NKp30 上与其天然配体 B7-H6 相似的表位,而另一种 sdAb 则针对非竞争表位。为了靶向表皮生长因子受体阳性肿瘤,我们使用了治疗性抗体西妥昔单抗的人源化抗原结合域。我们的研究表明,在促进 NK 细胞介导的肿瘤细胞溶解方面,以表皮生长因子受体为靶点并与 NKp30 双价结合的 NKCE 优于单价 NKCE,而且 NKCE 的结构会极大地影响杀伤能力,具体取决于所使用的 NKp30 靶向 sdAb。二价 IgG 样 NKCE 与西妥昔单抗相比,虽然对 NK 细胞杀伤效力有明显影响,但引发抗体依赖性细胞吞噬或补体依赖性细胞毒性的能力并没有受到显著影响。然而,sdAbs 的融合会对 NK 细胞释放免疫调节细胞因子以及 NKCE 的药代动力学特征产生轻微影响,原因是分子结构中的空间取向不利。最终,我们的研究结果揭示了设计触发 NKp30 轴的强效 NKCE 的新见解。
{"title":"Impact of antibody architecture and paratope valency on effector functions of bispecific NKp30 x EGFR natural killer cell engagers.","authors":"Ammelie Svea Boje, Lukas Pekar, Katharina Koep, Britta Lipinski, Brian Rabinovich, Andreas Evers, Carina Lynn Gehlert, Steffen Krohn, Yanping Xiao, Simon Krah, Rinat Zaynagetdinov, Lars Toleikis, Sven Poetzsch, Matthias Peipp, Stefan Zielonka, Katja Klausz","doi":"10.1080/19420862.2024.2315640","DOIUrl":"10.1080/19420862.2024.2315640","url":null,"abstract":"<p><p>Natural killer (NK) cells emerged as a promising effector population that can be harnessed for anti-tumor therapy. In this work, we constructed NK cell engagers (NKCEs) based on NKp30-targeting single domain antibodies (sdAbs) that redirect the cytotoxic potential of NK cells toward epidermal growth factor receptor (EGFR)-expressing tumor cells. We investigated the impact of crucial parameters such as sdAb location, binding valencies, the targeted epitope on NKp30, and the overall antibody architecture on the redirection capacity. Our study exploited two NKp30-specific sdAbs, one of which binds a similar epitope on NKp30 as its natural ligand B7-H6, while the other sdAb addresses a non-competing epitope. For EGFR-positive tumor targeting, humanized antigen-binding domains of therapeutic antibody cetuximab were used. We demonstrate that NKCEs bivalently targeting EGFR and bivalently engaging NKp30 are superior to monovalent NKCEs in promoting NK cell-mediated tumor cell lysis and that the architecture of the NKCE can substantially influence killing capacities depending on the NKp30-targeting sdAb utilized. While having a pronounced impact on NK cell killing efficacy, the capabilities of triggering antibody-dependent cellular phagocytosis or complement-dependent cytotoxicity were not significantly affected comparing the bivalent IgG-like NKCEs with cetuximab. However, the fusion of sdAbs can have a slight impact on the NK cell release of immunomodulatory cytokines, as well as on the pharmacokinetic profile of the NKCE due to unfavorable spatial orientation within the molecule architecture. Ultimately, our findings reveal novel insights for the engineering of potent NKCEs triggering the NKp30 axis.</p>","PeriodicalId":18206,"journal":{"name":"mAbs","volume":"16 1","pages":"2315640"},"PeriodicalIF":5.3,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10877975/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139900204","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01Epub Date: 2024-03-04DOI: 10.1080/19420862.2024.2310890
David L Niquille, Kyle M Fitzgerald, Nimish Gera
Biparatopic antibodies (bpAbs) bind distinct, non-overlapping epitopes on an antigen. This unique binding mode enables new mechanisms of action beyond monospecific and bispecific antibodies (bsAbs) that can make bpAbs effective therapeutics for various indications, including oncology and infectious diseases. Biparatopic binding can lead to superior affinity and specificity, promote antagonism, lock target conformation, and result in higher-order target clustering. Such antibody-target complexes can elicit strong agonism, increase immune effector function, or result in rapid target downregulation and lysosomal trafficking. These are not only attractive properties for therapeutic antibodies but are increasingly being explored for other modalities such as antibody-drug conjugates, T-cell engagers and chimeric antigen receptors. Recent advances in bpAb engineering have enabled the construction of ever more sophisticated formats that are starting to show promise in the clinic.
{"title":"Biparatopic antibodies: therapeutic applications and prospects.","authors":"David L Niquille, Kyle M Fitzgerald, Nimish Gera","doi":"10.1080/19420862.2024.2310890","DOIUrl":"10.1080/19420862.2024.2310890","url":null,"abstract":"<p><p>Biparatopic antibodies (bpAbs) bind distinct, non-overlapping epitopes on an antigen. This unique binding mode enables new mechanisms of action beyond monospecific and bispecific antibodies (bsAbs) that can make bpAbs effective therapeutics for various indications, including oncology and infectious diseases. Biparatopic binding can lead to superior affinity and specificity, promote antagonism, lock target conformation, and result in higher-order target clustering. Such antibody-target complexes can elicit strong agonism, increase immune effector function, or result in rapid target downregulation and lysosomal trafficking. These are not only attractive properties for therapeutic antibodies but are increasingly being explored for other modalities such as antibody-drug conjugates, T-cell engagers and chimeric antigen receptors. Recent advances in bpAb engineering have enabled the construction of ever more sophisticated formats that are starting to show promise in the clinic.</p>","PeriodicalId":18206,"journal":{"name":"mAbs","volume":"16 1","pages":"2310890"},"PeriodicalIF":5.6,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10936611/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140028389","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01Epub Date: 2024-07-10DOI: 10.1080/19420862.2024.2375798
Melanie Maier, Linus Weiß, Nikolas Zeh, Valerie Schmieder-Todtenhaupt, Alireza Dehghani, Marius Nicolaus Felix, Daniel Heinzelmann, Benjamin Lindner, Moritz Schmidt, Joey Studts, Patrick Schulz, Bernd Reisinger, Kerstin Otte, Matthias Franzreb, Daniel Lakatos, Simon Fischer
Monoclonal antibodies (mAb) and other biological drugs are affected by enzymatic polysorbate (PS) degradation that reduces product stability and jeopardizes the supply of innovative medicines. PS represents a critical surfactant stabilizing the active pharmaceutical ingredients, which are produced by recombinant Chinese hamster ovary (CHO) cell lines. While the list of potential PS-degrading CHO host cell proteins (HCPs) has grown over the years, tangible data on industrially relevant HCPs are still scarce. By means of a highly sensitive liquid chromatography-tandem mass spectrometry method, we investigated seven different mAb products, resulting in the identification of 12 potentially PS-degrading hydrolases, including the strongly PS-degrading lipoprotein lipase (LPL). Using an LPL knockout CHO host cell line, we were able to stably overexpress and purify the remaining candidate hydrolases through orthogonal affinity chromatography methods, enabling their detailed functional characterization. Applying a PS degradation assay, we found nine mostly secreted, PS-active hydrolases with varying hydrolytic activity. All active hydrolases showed a serine-histidine-aspartate/glutamate catalytical triad. Further, we subjected the active hydrolases to pH-screenings and revealed a diverse range of activity optima, which can facilitate the identification of residual hydrolases during bioprocess development. Ultimately, we compiled our dataset in a risk matrix identifying PAF-AH, LIPA, PPT1, and LPLA2 as highly critical hydrolases based on their cellular expression, detection in purified antibodies, active secretion, and PS degradation activity. With this work, we pave the way toward a comprehensive functional characterization of PS-degrading hydrolases and provide a basis for a future reduction of PS degradation in biopharmaceutical drug products.
{"title":"Illuminating a biologics development challenge: systematic characterization of CHO cell-derived hydrolases identified in monoclonal antibody formulations.","authors":"Melanie Maier, Linus Weiß, Nikolas Zeh, Valerie Schmieder-Todtenhaupt, Alireza Dehghani, Marius Nicolaus Felix, Daniel Heinzelmann, Benjamin Lindner, Moritz Schmidt, Joey Studts, Patrick Schulz, Bernd Reisinger, Kerstin Otte, Matthias Franzreb, Daniel Lakatos, Simon Fischer","doi":"10.1080/19420862.2024.2375798","DOIUrl":"10.1080/19420862.2024.2375798","url":null,"abstract":"<p><p>Monoclonal antibodies (mAb) and other biological drugs are affected by enzymatic polysorbate (PS) degradation that reduces product stability and jeopardizes the supply of innovative medicines. PS represents a critical surfactant stabilizing the active pharmaceutical ingredients, which are produced by recombinant Chinese hamster ovary (CHO) cell lines. While the list of potential PS-degrading CHO host cell proteins (HCPs) has grown over the years, tangible data on industrially relevant HCPs are still scarce. By means of a highly sensitive liquid chromatography-tandem mass spectrometry method, we investigated seven different mAb products, resulting in the identification of 12 potentially PS-degrading hydrolases, including the strongly PS-degrading lipoprotein lipase (LPL). Using an LPL knockout CHO host cell line, we were able to stably overexpress and purify the remaining candidate hydrolases through orthogonal affinity chromatography methods, enabling their detailed functional characterization. Applying a PS degradation assay, we found nine mostly secreted, PS-active hydrolases with varying hydrolytic activity. All active hydrolases showed a serine-histidine-aspartate/glutamate catalytical triad. Further, we subjected the active hydrolases to pH-screenings and revealed a diverse range of activity optima, which can facilitate the identification of residual hydrolases during bioprocess development. Ultimately, we compiled our dataset in a risk matrix identifying PAF-AH, LIPA, PPT1, and LPLA2 as highly critical hydrolases based on their cellular expression, detection in purified antibodies, active secretion, and PS degradation activity. With this work, we pave the way toward a comprehensive functional characterization of PS-degrading hydrolases and provide a basis for a future reduction of PS degradation in biopharmaceutical drug products.</p>","PeriodicalId":18206,"journal":{"name":"mAbs","volume":"16 1","pages":"2375798"},"PeriodicalIF":5.6,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11238916/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141563681","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01Epub Date: 2024-03-18DOI: 10.1080/19420862.2024.2329321
W van der Wulp, W Luu, M E Ressing, J Schuurman, S I van Kasteren, L Guelen, R C Hoeben, B Bleijlevens, M H M Heemskerk
Antibody-mediated delivery of immunogenic viral CD8+ T-cell epitopes to redirect virus-specific T cells toward cancer cells is a promising new therapeutic avenue to increase the immunogenicity of tumors. Multiple strategies for viral epitope delivery have been shown to be effective. So far, most of these have relied on a free C-terminus of the immunogenic epitope for extracellular delivery. Here, we demonstrate that antibody-epitope conjugates (AECs) with genetically fused epitopes to the N-terminus of the antibody can also sensitize tumors for attack by virus-specific CD8+ T cells. AECs carrying epitopes genetically fused at the N-terminus of the light chains of cetuximab and trastuzumab demonstrate an even more efficient delivery of the T-cell epitopes compared to AECs with the epitope fused to the C-terminus of the heavy chain. We demonstrate that this increased efficiency is not caused by the shift in location of the cleavage site from the N- to the C-terminus, but by its increased proximity to the cell surface. We hypothesize that this facilitates more efficient epitope delivery. These findings not only provide additional insights into the mechanism of action of AECs but also broaden the possibilities for genetically fused AECs as an avenue for the redirection of multiple virus-specific T cells toward tumors.
抗体介导的免疫原性病毒 CD8+ T 细胞表位递送可将病毒特异性 T 细胞重新导向癌细胞,是一种很有希望的提高肿瘤免疫原性的新疗法。多种病毒表位递送策略已被证明是有效的。迄今为止,这些策略大多依赖于免疫原表位的游离 C 端进行细胞外递送。在这里,我们证明了将表位基因融合到抗体 N 端的抗体-表位共轭物(AECs)也能使肿瘤受到病毒特异性 CD8+ T 细胞的攻击。与将表位融合在重链 C 端的 AEC 相比,将表位基因融合在西妥昔单抗和曲妥珠单抗轻链 N 端的 AEC 能更有效地传递 T 细胞表位。我们证明,效率的提高并不是因为裂解位点从 N 端转移到了 C 端,而是因为裂解位点更接近细胞表面。我们假设这有利于更有效地传递表位。这些发现不仅让我们对 AECs 的作用机制有了更多的了解,而且拓宽了基因融合 AECs 作为将多种病毒特异性 T 细胞重新导向肿瘤的途径的可能性。
{"title":"Antibody-epitope conjugates deliver immunogenic T-cell epitopes more efficiently when close to cell surfaces.","authors":"W van der Wulp, W Luu, M E Ressing, J Schuurman, S I van Kasteren, L Guelen, R C Hoeben, B Bleijlevens, M H M Heemskerk","doi":"10.1080/19420862.2024.2329321","DOIUrl":"10.1080/19420862.2024.2329321","url":null,"abstract":"<p><p>Antibody-mediated delivery of immunogenic viral CD8<sup>+</sup> T-cell epitopes to redirect virus-specific T cells toward cancer cells is a promising new therapeutic avenue to increase the immunogenicity of tumors. Multiple strategies for viral epitope delivery have been shown to be effective. So far, most of these have relied on a free C-terminus of the immunogenic epitope for extracellular delivery. Here, we demonstrate that antibody-epitope conjugates (AECs) with genetically fused epitopes to the N-terminus of the antibody can also sensitize tumors for attack by virus-specific CD8<sup>+</sup> T cells. AECs carrying epitopes genetically fused at the N-terminus of the light chains of cetuximab and trastuzumab demonstrate an even more efficient delivery of the T-cell epitopes compared to AECs with the epitope fused to the C-terminus of the heavy chain. We demonstrate that this increased efficiency is not caused by the shift in location of the cleavage site from the <i>N</i>- to the C-terminus, but by its increased proximity to the cell surface. We hypothesize that this facilitates more efficient epitope delivery. These findings not only provide additional insights into the mechanism of action of AECs but also broaden the possibilities for genetically fused AECs as an avenue for the redirection of multiple virus-specific T cells toward tumors.</p>","PeriodicalId":18206,"journal":{"name":"mAbs","volume":"16 1","pages":"2329321"},"PeriodicalIF":5.3,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10950288/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140143825","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01Epub Date: 2024-03-28DOI: 10.1080/19420862.2024.2333436
David Hoffmann, Joschka Bauer, Markus Kossner, Andrew Henry, Anne R Karow-Zwick, Giuseppe Licari
Asparagine (Asn) deamidation and aspartic acid (Asp) isomerization are common degradation pathways that affect the stability of therapeutic antibodies. These modifications can pose a significant challenge in the development of biopharmaceuticals. As such, the early engineering and selection of chemically stable monoclonal antibodies (mAbs) can substantially mitigate the risk of subsequent failure. In this study, we introduce a novel in silico approach for predicting deamidation and isomerization sites in therapeutic antibodies by analyzing the structural environment surrounding asparagine and aspartate residues. The resulting quantitative structure-activity relationship (QSAR) model was trained using previously published forced degradation data from 57 clinical-stage mAbs. The predictive accuracy of the model was evaluated for four different states of the protein structure: (1) static homology models, (2) enhancing low-frequency vibrational modes during short molecular dynamics (MD) runs, (3) a combination of (2) with a protonation state reassignment, and (4) conventional full-atomistic MD simulations. The most effective QSAR model considered the accessible surface area (ASA) of the residue, the pKa value of the backbone amide, and the root mean square deviations of both the alpha carbon and the side chain. The accuracy was further enhanced by incorporating the QSAR model into a decision tree, which also includes empirical information about the sequential successor and the position in the protein. The resulting model has been implemented as a plugin named "Forecasting Reactivity of Isomerization and Deamidation in Antibodies" in MOE software, completed with a user-friendly graphical interface to facilitate its use.
{"title":"Predicting deamidation and isomerization sites in therapeutic antibodies using structure-based <i>in silico</i> approaches.","authors":"David Hoffmann, Joschka Bauer, Markus Kossner, Andrew Henry, Anne R Karow-Zwick, Giuseppe Licari","doi":"10.1080/19420862.2024.2333436","DOIUrl":"10.1080/19420862.2024.2333436","url":null,"abstract":"<p><p>Asparagine (Asn) deamidation and aspartic acid (Asp) isomerization are common degradation pathways that affect the stability of therapeutic antibodies. These modifications can pose a significant challenge in the development of biopharmaceuticals. As such, the early engineering and selection of chemically stable monoclonal antibodies (mAbs) can substantially mitigate the risk of subsequent failure. In this study, we introduce a novel in silico approach for predicting deamidation and isomerization sites in therapeutic antibodies by analyzing the structural environment surrounding asparagine and aspartate residues. The resulting quantitative structure-activity relationship (QSAR) model was trained using previously published forced degradation data from 57 clinical-stage mAbs. The predictive accuracy of the model was evaluated for four different states of the protein structure: (1) static homology models, (2) enhancing low-frequency vibrational modes during short molecular dynamics (MD) runs, (3) a combination of (2) with a protonation state reassignment, and (4) conventional full-atomistic MD simulations. The most effective QSAR model considered the accessible surface area (ASA) of the residue, the pKa value of the backbone amide, and the root mean square deviations of both the alpha carbon and the side chain. The accuracy was further enhanced by incorporating the QSAR model into a decision tree, which also includes empirical information about the sequential successor and the position in the protein. The resulting model has been implemented as a plugin named \"Forecasting Reactivity of Isomerization and Deamidation in Antibodies\" in MOE software, completed with a user-friendly graphical interface to facilitate its use.</p>","PeriodicalId":18206,"journal":{"name":"mAbs","volume":"16 1","pages":"2333436"},"PeriodicalIF":5.3,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10984128/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140318621","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01Epub Date: 2024-06-06DOI: 10.1080/19420862.2024.2361928
Pawel Dudzic, Dawid Chomicz, Jarosław Kończak, Tadeusz Satława, Bartosz Janusz, Sonia Wrobel, Tomasz Gawłowski, Igor Jaszczyszyn, Weronika Bielska, Samuel Demharter, Roberto Spreafico, Lukas Schulte, Kyle Martin, Stephen R Comeau, Konrad Krawczyk
The naïve human antibody repertoire has theoretical access to an estimated > 1015 antibodies. Identifying subsets of this prohibitively large space where therapeutically relevant antibodies may be found is useful for development of these agents. It was previously demonstrated that, despite the immense sequence space, different individuals can produce the same antibodies. It was also shown that therapeutic antibodies, which typically follow seemingly unnatural development processes, can arise independently naturally. To check for biases in how the sequence space is explored, we data mined public repositories to identify 220 bioprojects with a combined seven billion reads. Of these, we created a subset of human bioprojects that we make available as the AbNGS database (https://naturalantibody.com/ngs/). AbNGS contains 135 bioprojects with four billion productive human heavy variable region sequences and 385 million unique complementarity-determining region (CDR)-H3s. We find that 270,000 (0.07% of 385 million) unique CDR-H3s are highly public in that they occur in at least five of 135 bioprojects. Of 700 unique therapeutic CDR-H3, a total of 6% has direct matches in the small set of 270,000. This observation extends to a match between CDR-H3 and V-gene call as well. Thus, the subspace of shared ('public') CDR-H3s shows utility for serving as a starting point for therapeutic antibody design.
{"title":"Large-scale data mining of four billion human antibody variable regions reveals convergence between therapeutic and natural antibodies that constrains search space for biologics drug discovery.","authors":"Pawel Dudzic, Dawid Chomicz, Jarosław Kończak, Tadeusz Satława, Bartosz Janusz, Sonia Wrobel, Tomasz Gawłowski, Igor Jaszczyszyn, Weronika Bielska, Samuel Demharter, Roberto Spreafico, Lukas Schulte, Kyle Martin, Stephen R Comeau, Konrad Krawczyk","doi":"10.1080/19420862.2024.2361928","DOIUrl":"10.1080/19420862.2024.2361928","url":null,"abstract":"<p><p>The naïve human antibody repertoire has theoretical access to an estimated > 10<sup>15</sup> antibodies. Identifying subsets of this prohibitively large space where therapeutically relevant antibodies may be found is useful for development of these agents. It was previously demonstrated that, despite the immense sequence space, different individuals can produce the same antibodies. It was also shown that therapeutic antibodies, which typically follow seemingly unnatural development processes, can arise independently naturally. To check for biases in how the sequence space is explored, we data mined public repositories to identify 220 bioprojects with a combined seven billion reads. Of these, we created a subset of human bioprojects that we make available as the AbNGS database (https://naturalantibody.com/ngs/). AbNGS contains 135 bioprojects with four billion productive human heavy variable region sequences and 385 million unique complementarity-determining region (CDR)-H3s. We find that 270,000 (0.07% of 385 million) unique CDR-H3s are highly public in that they occur in at least five of 135 bioprojects. Of 700 unique therapeutic CDR-H3, a total of 6% has direct matches in the small set of 270,000. This observation extends to a match between CDR-H3 and V-gene call as well. Thus, the subspace of shared ('public') CDR-H3s shows utility for serving as a starting point for therapeutic antibody design.</p>","PeriodicalId":18206,"journal":{"name":"mAbs","volume":"16 1","pages":"2361928"},"PeriodicalIF":5.3,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11164219/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141284137","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}