首页 > 最新文献

Materials Advances最新文献

英文 中文
Ferroelectric-enabled significant carbon dioxide molecular adsorption on BaTiO3(001)† BaTiO3(001)†上的铁电效应促成的显著二氧化碳分子吸附
IF 5.2 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-10-17 DOI: 10.1039/D4MA00856A
Alexandru-Cristi Iancu, George A. Lungu, Cristian A. Tache and Cristian M. Teodorescu

Carbon dioxide (CO2) is reversibly adsorbed and desorbed from ferroelectric (001) oriented, BaO-terminated barium titanate, as revealed in real time by high resolution and ultrafast photoelectron spectroscopy and certified by low energy electron diffraction. Desorption proceeds when the substrate is heated above its Curie temperature. The amount of CO2 adsorbed is derived to be between one molecule for a surface BaO unit cell (adsorption below room temperature) and one molecule for two unit cells (adsorption above room temperature). The molecule is bound with its carbon to surface oxygen, forming a CO3 structure. The BaTiO3(001) surface is unaffected by repeated cycles of adsorption–desorption. The relatively high amount of CO2 adsorbed and the stability of the substrate after repeated adsorption and desorption processes promotes barium titanate as a promising candidate for decarbonization technologies.

高分辨率和超快光电子能谱实时揭示了二氧化碳(CO2)在铁电(001)取向、BaO 端接的钛酸钡中的可逆吸附和解吸,低能电子衍射也证明了这一点。当基底被加热到居里温度以上时,就会发生解吸。据推算,一个表面 BaO 单胞吸附的二氧化碳量为一个分子(吸附温度低于室温),而两个单胞吸附的二氧化碳量为一个分子(吸附温度高于室温)。分子中的碳与表面的氧结合,形成 CO3 结构。BaTiO3(001) 表面不受反复吸附-解吸循环的影响。相对较高的二氧化碳吸附量以及基底在反复吸附和解吸过程后的稳定性,促使钛酸钡成为脱碳技术的理想候选材料。
{"title":"Ferroelectric-enabled significant carbon dioxide molecular adsorption on BaTiO3(001)†","authors":"Alexandru-Cristi Iancu, George A. Lungu, Cristian A. Tache and Cristian M. Teodorescu","doi":"10.1039/D4MA00856A","DOIUrl":"https://doi.org/10.1039/D4MA00856A","url":null,"abstract":"<p >Carbon dioxide (CO<small><sub>2</sub></small>) is reversibly adsorbed and desorbed from ferroelectric (001) oriented, BaO-terminated barium titanate, as revealed in real time by high resolution and ultrafast photoelectron spectroscopy and certified by low energy electron diffraction. Desorption proceeds when the substrate is heated above its Curie temperature. The amount of CO<small><sub>2</sub></small> adsorbed is derived to be between one molecule for a surface BaO unit cell (adsorption below room temperature) and one molecule for two unit cells (adsorption above room temperature). The molecule is bound with its carbon to surface oxygen, forming a CO<small><sub>3</sub></small> structure. The BaTiO<small><sub>3</sub></small>(001) surface is unaffected by repeated cycles of adsorption–desorption. The relatively high amount of CO<small><sub>2</sub></small> adsorbed and the stability of the substrate after repeated adsorption and desorption processes promotes barium titanate as a promising candidate for decarbonization technologies.</p>","PeriodicalId":18242,"journal":{"name":"Materials Advances","volume":" 22","pages":" 8798-8811"},"PeriodicalIF":5.2,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/ma/d4ma00856a?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142598719","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Variations in γ′ formers and refractory elements for enhanced creep resistance and phase stability of an advanced Ni-based superalloy†‡ 改变γ′形成剂和耐火元素以增强先进镍基超合金的抗蠕变性和相稳定性†‡
IF 5.2 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-10-16 DOI: 10.1039/D4MA00334A
Rui Feng, Chang-Yu Hung, Stoichko Antonov, Jonathan D. Poplawsky, Ke An, Paul D. Jablonski and Martin Detrois

The strong demands on increasing fuel efficiency have continuously driven the optimization of superalloys for high-performance applications. In this study, modifications to the chemistry and heat treatment of HAYNES® 282® alloy (H282) were performed by varying γ′ formers and refractory elements. It was found that increasing Ti and substituting W for some of the Mo in the newly designed alloy (Q) resulted in a significant improvement of creep resistance, up to 130% increase in creep life, compared to standard H282. It was found that Orowan loops and dislocation climb were the dominant creep deformation mechanisms in alloy Q, while extensive dislocation tangling as an additional configuration was observed in the baseline alloy. Moreover, phase stability investigations for up to 5000 h at 800 °C and 900 °C revealed a reduced formation of detrimental σ and μ phases in alloy Q when compared to H282. Atom-probe tomography (APT) revealed that the formation and growth of those phases were responsible for a decrease in Mo content in the matrix, thereby leading to a decrease in solid-solution strengthening in H282 over time. Furthermore, the coarsening of γ′ precipitates was retarded by the substitution of W for Mo, particularly under creep stress. The theoretical and experimental understanding of precipitation strengthening unraveled that higher optimal strengthening occurs at larger particle size for alloy Q, compared to the commercial formulation, further explaining the origin of enhanced creep resistance in the modified alloy.

对提高燃油效率的强烈要求不断推动着高性能应用领域超级合金的优化。在这项研究中,通过改变γ′形成剂和难熔元素,对瀚纳仕® 282® 合金(H282)的化学成分和热处理进行了改良。结果发现,与标准 H282 相比,在新设计的合金(Q)中增加 Ti 并用 W 替代部分 Mo,可显著提高抗蠕变性,蠕变寿命最多可提高 130%。研究发现,在合金 Q 中,奥罗万环和位错攀升是主要的蠕变变形机制,而在基线合金中则观察到广泛的位错缠结作为一种额外的构型。此外,在 800 °C 和 900 °C 下进行长达 5000 小时的相稳定性研究发现,与 H282 相比,合金 Q 中有害的 σ 和 μ 相的形成有所减少。原子探针断层扫描(APT)显示,这些相的形成和生长是基体中钼含量降低的原因,从而导致 H282 的固溶强化随时间推移而降低。此外,用 W 替代 Mo 会延缓 γ′ 沉淀的粗化,尤其是在蠕变应力下。通过对析出强化的理论和实验研究发现,与商用配方相比,合金 Q 的粒度越大,最佳强化效果越好,这进一步解释了改性合金抗蠕变性增强的原因。
{"title":"Variations in γ′ formers and refractory elements for enhanced creep resistance and phase stability of an advanced Ni-based superalloy†‡","authors":"Rui Feng, Chang-Yu Hung, Stoichko Antonov, Jonathan D. Poplawsky, Ke An, Paul D. Jablonski and Martin Detrois","doi":"10.1039/D4MA00334A","DOIUrl":"https://doi.org/10.1039/D4MA00334A","url":null,"abstract":"<p >The strong demands on increasing fuel efficiency have continuously driven the optimization of superalloys for high-performance applications. In this study, modifications to the chemistry and heat treatment of HAYNES® 282® alloy (H282) were performed by varying γ′ formers and refractory elements. It was found that increasing Ti and substituting W for some of the Mo in the newly designed alloy (Q) resulted in a significant improvement of creep resistance, up to 130% increase in creep life, compared to standard H282. It was found that Orowan loops and dislocation climb were the dominant creep deformation mechanisms in alloy Q, while extensive dislocation tangling as an additional configuration was observed in the baseline alloy. Moreover, phase stability investigations for up to 5000 h at 800 °C and 900 °C revealed a reduced formation of detrimental σ and μ phases in alloy Q when compared to H282. Atom-probe tomography (APT) revealed that the formation and growth of those phases were responsible for a decrease in Mo content in the matrix, thereby leading to a decrease in solid-solution strengthening in H282 over time. Furthermore, the coarsening of γ′ precipitates was retarded by the substitution of W for Mo, particularly under creep stress. The theoretical and experimental understanding of precipitation strengthening unraveled that higher optimal strengthening occurs at larger particle size for alloy Q, compared to the commercial formulation, further explaining the origin of enhanced creep resistance in the modified alloy.</p>","PeriodicalId":18242,"journal":{"name":"Materials Advances","volume":" 22","pages":" 8847-8863"},"PeriodicalIF":5.2,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/ma/d4ma00334a?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142598673","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tuning optical absorption in perovskite (K,Na)NbO3 ferroelectrics† 调谐包晶(K,Na)NbO3 铁电体的光吸收。
IF 5.2 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-10-15 DOI: 10.1039/D4MA00396A
V. Vetokhina, N. Nepomniashchaia, E. de Prado, O. Pacherova, T. Kocourek, S. S. Anandakrishnan, Y. Bai, A. Dejneka and M. Tyunina

The ability to tailor the electronic band structure and optical absorption by appropriate cationic substitution in perovskite oxide ferroelectrics is essential for many advanced electronic and optoelectronic applications of these materials. Here, we explored weak (Ba,Ni)-doping for reducing optical bandgaps in (K,Na)NbO3 ferroelectric films and ceramics. The optical absorption in the broad spectral range of (0.7–8.8) eV was investigated in polycrystalline doped, pure, and oxygen deficient films, in doped epitaxial films grown on different substrates, and in doped ceramics. By comparing optical properties of all films and ceramics, it was established that 1–2 at% of cationic substitutions or up to 10 at % of oxygen vacancies have no detectable effect on the direct (∼4.5 eV) and indirect (∼3.9 eV) gaps. Concurrently, substantial sub-gap absorption was revealed and ascribed to structural band tailing in epitaxial films and ceramics. It was suggested that owing to fundamental strain-property couplings in perovskite oxide ferroelectrics, inhomogeneities of lattice strain can lead to increased sub-gap absorption. The uncovered structurally induced sub-gap optical absorption can be relevant for other ferroelectric ceramics and thin films as well as for related perovskite oxides.

在包晶氧化物铁电材料中通过适当的阳离子取代来定制电子能带结构和光吸收的能力,对于这些材料的许多先进电子和光电应用至关重要。在此,我们探索了掺入弱(Ba,Ni)元素以降低(K,Na)NbO3 铁电薄膜和陶瓷的光带隙。我们研究了多晶掺杂薄膜、纯薄膜和缺氧薄膜、生长在不同基底上的掺杂外延薄膜以及掺杂陶瓷在 (0.7-8.8) eV 宽光谱范围内的光吸收。通过比较所有薄膜和陶瓷的光学特性,可以确定 1-2 at% 的阳离子取代或高达 10 at% 的氧空位对直接间隙(∼4.5 eV)和间接间隙(∼3.9 eV)没有可检测到的影响。与此同时,还发现了大量的隙下吸收,并将其归因于外延薄膜和陶瓷中的结构带尾。研究表明,由于包晶氧化物铁电体中基本的应变-性能耦合,晶格应变的不均匀性会导致亚间隙吸收的增加。所揭示的结构诱导的亚间隙光学吸收可能与其他铁电陶瓷和薄膜以及相关的包晶氧化物有关。
{"title":"Tuning optical absorption in perovskite (K,Na)NbO3 ferroelectrics†","authors":"V. Vetokhina, N. Nepomniashchaia, E. de Prado, O. Pacherova, T. Kocourek, S. S. Anandakrishnan, Y. Bai, A. Dejneka and M. Tyunina","doi":"10.1039/D4MA00396A","DOIUrl":"10.1039/D4MA00396A","url":null,"abstract":"<p >The ability to tailor the electronic band structure and optical absorption by appropriate cationic substitution in perovskite oxide ferroelectrics is essential for many advanced electronic and optoelectronic applications of these materials. Here, we explored weak (Ba,Ni)-doping for reducing optical bandgaps in (K,Na)NbO<small><sub>3</sub></small> ferroelectric films and ceramics. The optical absorption in the broad spectral range of (0.7–8.8) eV was investigated in polycrystalline doped, pure, and oxygen deficient films, in doped epitaxial films grown on different substrates, and in doped ceramics. By comparing optical properties of all films and ceramics, it was established that 1–2 at% of cationic substitutions or up to 10 at % of oxygen vacancies have no detectable effect on the direct (∼4.5 eV) and indirect (∼3.9 eV) gaps. Concurrently, substantial sub-gap absorption was revealed and ascribed to structural band tailing in epitaxial films and ceramics. It was suggested that owing to fundamental strain-property couplings in perovskite oxide ferroelectrics, inhomogeneities of lattice strain can lead to increased sub-gap absorption. The uncovered structurally induced sub-gap optical absorption can be relevant for other ferroelectric ceramics and thin films as well as for related perovskite oxides.</p>","PeriodicalId":18242,"journal":{"name":"Materials Advances","volume":" 22","pages":" 8901-8908"},"PeriodicalIF":5.2,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11492214/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142503326","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Rutile-type metal dioxide (110) surfaces for the cyclic oxidation of methane to methanol† 将甲烷循环氧化为甲醇的金红石型二氧化金属(110)表面†
IF 5.2 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-10-15 DOI: 10.1039/D4MA00827H
Farrel Dzaudan Naufal, Hasna Afifah, Marleni Wirmas, Mohammad Kemal Agusta, Adhitya Gandaryus Saputro, Hadi Teguh Yudistira, Aleksandar Staykov, Kazunari Yoshizawa and Muhammad Haris Mahyuddin

The direct conversion of methane to methanol has attracted increasing interests, owing to the necessity for an abundant low-carbon source of energy. However, numerous challenges are encountered in attaining a high conversion rate and selectivity using the existing approach and catalysts. One of them is the need for a reaction halt and a reactivation of the catalyst using an oxidant at high temperature, which makes the whole process non-cyclic. In this study, we employ density functional theory calculations to evaluate rutile-type IrO2(110), β-PtO2(110), and β-MnO2(110) surfaces not only for cleaving the H–CH3 bond but also for forming methanol. We find that IrO2(110) and β-PtO2(110) thermodynamically and kinetically favor the C–H activation on the bridging μO-atom terminations via a heterolytic pathway. However, the formation of strong Ir–C and Pt–C bonds, which initially help the C–H bond scission, hinders the methanol formation. In the β-MnO2(110) case, in contrast, the Mn–C interaction is quite weak, and the Mn(μ-O)Mn active site is electrophilic, thus allowing the formation of a stable ˙CH3 radical intermediate state that becomes the driving force for a low-barrier homolytic C–H bond scission as well as a low-barrier and highly exothermic formation of methanol. This first cycle of methane oxidation results in a reduced β-MnO2(110) surface, where no more μ-O active sites are available for the subsequent cycles of methane activation. Nonetheless, this reduced surface can also oxidize methane to methanol when the H2O2 oxidant is inserted in the mid-way reaction and forms new active sites of μ-OH. The second reaction is also highly exothermic although the C–H activation barrier is not as low as that for the fresh stoichiometric surface. This study suggests the β-MnO2(110) surface as a potential catalyst for the cyclic oxidation of methane to methanol using the H2O2 oxidant without halting for reactivation.

由于需要丰富的低碳能源,甲烷直接转化为甲醇引起了越来越多的关注。然而,在使用现有方法和催化剂实现高转化率和高选择性方面遇到了许多挑战。其中之一是需要停止反应,并在高温下使用氧化剂重新激活催化剂,这使得整个过程无法循环进行。在本研究中,我们采用密度泛函理论计算来评估金红石型 IrO2(110)、β-PtO2(110) 和 β-MnO2(110) 表面不仅能裂解 H-CH3 键,还能形成甲醇。我们发现,IrO2(110) 和 β-PtO2(110) 在热力学和动力学上都有利于通过异质分解途径在桥接的 μO 原子末端激活 C-H。然而,最初有助于 C-H 键裂解的强 Ir-C 键和 Pt-C 键的形成却阻碍了甲醇的形成。与此相反,在 β-MnO2(110)的情况下,Mn-C 相互作用非常弱,Mn(μ-O)Mn 活性位点具有亲电性,从而允许形成稳定的 ˙CH3 自由基中间状态,该状态成为低阻同解 C-H 键裂解以及低阻高放热甲醇形成的驱动力。甲烷氧化的第一个循环会导致 β-MnO2(110)表面的还原,在这个表面上没有更多的 μ-O 活性位点可用于甲烷活化的后续循环。尽管如此,当 H2O2 氧化剂插入中途反应并形成新的μ-OH 活性位点时,这个还原表面也能将甲烷氧化成甲醇。第二个反应也是高度放热的,尽管 C-H 活化障碍没有新鲜的化学计量表面那么低。这项研究表明,β-MnO2(110) 表面是使用 H2O2 氧化剂将甲烷循环氧化成甲醇的潜在催化剂,无需停止再活化。
{"title":"Rutile-type metal dioxide (110) surfaces for the cyclic oxidation of methane to methanol†","authors":"Farrel Dzaudan Naufal, Hasna Afifah, Marleni Wirmas, Mohammad Kemal Agusta, Adhitya Gandaryus Saputro, Hadi Teguh Yudistira, Aleksandar Staykov, Kazunari Yoshizawa and Muhammad Haris Mahyuddin","doi":"10.1039/D4MA00827H","DOIUrl":"https://doi.org/10.1039/D4MA00827H","url":null,"abstract":"<p >The direct conversion of methane to methanol has attracted increasing interests, owing to the necessity for an abundant low-carbon source of energy. However, numerous challenges are encountered in attaining a high conversion rate and selectivity using the existing approach and catalysts. One of them is the need for a reaction halt and a reactivation of the catalyst using an oxidant at high temperature, which makes the whole process non-cyclic. In this study, we employ density functional theory calculations to evaluate rutile-type IrO<small><sub>2</sub></small>(110), β-PtO<small><sub>2</sub></small>(110), and β-MnO<small><sub>2</sub></small>(110) surfaces not only for cleaving the H–CH<small><sub>3</sub></small> bond but also for forming methanol. We find that IrO<small><sub>2</sub></small>(110) and β-PtO<small><sub>2</sub></small>(110) thermodynamically and kinetically favor the C–H activation on the bridging μO-atom terminations <em>via</em> a heterolytic pathway. However, the formation of strong Ir–C and Pt–C bonds, which initially help the C–H bond scission, hinders the methanol formation. In the β-MnO<small><sub>2</sub></small>(110) case, in contrast, the Mn–C interaction is quite weak, and the Mn(μ-O)Mn active site is electrophilic, thus allowing the formation of a stable ˙CH<small><sub>3</sub></small> radical intermediate state that becomes the driving force for a low-barrier homolytic C–H bond scission as well as a low-barrier and highly exothermic formation of methanol. This first cycle of methane oxidation results in a reduced β-MnO<small><sub>2</sub></small>(110) surface, where no more μ-O active sites are available for the subsequent cycles of methane activation. Nonetheless, this reduced surface can also oxidize methane to methanol when the H<small><sub>2</sub></small>O<small><sub>2</sub></small> oxidant is inserted in the mid-way reaction and forms new active sites of μ-OH. The second reaction is also highly exothermic although the C–H activation barrier is not as low as that for the fresh stoichiometric surface. This study suggests the β-MnO<small><sub>2</sub></small>(110) surface as a potential catalyst for the cyclic oxidation of methane to methanol using the H<small><sub>2</sub></small>O<small><sub>2</sub></small> oxidant without halting for reactivation.</p>","PeriodicalId":18242,"journal":{"name":"Materials Advances","volume":" 22","pages":" 8961-8969"},"PeriodicalIF":5.2,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/ma/d4ma00827h?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142598761","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
High-throughput screening of single atom co-catalysts in ZnIn2S4 for photocatalysis† 高通量筛选 ZnIn2S4 中用于光催化的单原子辅助催化剂†。
IF 5.2 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-10-15 DOI: 10.1039/D4MA00616J
Md Habibur Rahman, Yujie Sun and Arun Mannodi-Kanakkithodi

In recent years, ZnIn2S4 (ZIS) has garnered attention as a promising photocatalyst due to its attractive properties. However, its performance is hindered by its restricted range of visible light absorption and the rapid recombination of photoinduced holes and electrons. Single-atom co-catalysts (SACs) can improve photocatalytic activity by providing highly active sites for reactions, enhancing charge separation efficiency, and reducing the recombination rate of photo-generated carriers. In this work, we perform high-throughput density functional theory (DFT) computations to search for SACs in ZIS encompassing 3d, 4d, and 5d transition metals as well as lanthanides, considering both substitutional and interstitial sites. For a total of 172 SACs, defect formation energy (DFE) is computed as a function of chemical potential, charge, and Fermi level (EF), leading to the identification of low energy dopants and their corresponding shallow or deep defect levels. Statistical data analysis shows that DFE is highly correlated with the difference in electron affinity between the host (Zn/In/S) atom and the SAC, followed by the electronegativity and boiling point. Among the 60 lowest energy SACs, CoIn, Ybi, TcZn, AuS, Lai, Eui, Aui, TaIn, HfIn, ZrIn, and NiZn lead to a lowering of the Gibbs free energy for hydrogen evolution reaction, improving upon previous ZIS results. The computational dataset and insights from this work promise to accelerate the experimental design of novel dopants in ZIS with optimized properties for photocatalysis and environmental remediation.

近年来,ZnIn2S4(ZIS)因其极具吸引力的特性而成为一种前景广阔的光催化剂,备受关注。然而,由于其对可见光的吸收范围有限以及光诱导空穴和电子的快速重组,其性能受到了阻碍。单原子辅助催化剂(SAC)可为反应提供高活性位点,提高电荷分离效率,降低光生载流子的重组率,从而提高光催化活性。在这项工作中,我们进行了高通量密度泛函理论(DFT)计算,以寻找 ZIS 中的 SACs,包括 3d、4d 和 5d 过渡金属以及镧系元素,同时考虑了取代位点和间隙位点。共计算了 172 种 SAC 的缺陷形成能(DFE),作为化学势、电荷和费米级(EF)的函数,从而确定了低能掺杂物及其相应的浅缺陷或深缺陷级。统计数据分析显示,DFE 与主(Zn/In/S)原子和 SAC 之间的电子亲和力差异高度相关,其次是电负性和沸点。在 60 种能量最低的 SAC 中,CoIn、Ybi、TcZn、AuS、Lai、Eui、Aui、TaIn、HfIn、ZrIn 和 NiZn 可降低氢进化反应的吉布斯自由能,从而改进了之前的 ZIS 结果。这项工作的计算数据集和见解有望加速 ZIS 中新型掺杂剂的实验设计,这些掺杂剂具有光催化和环境修复的优化特性。
{"title":"High-throughput screening of single atom co-catalysts in ZnIn2S4 for photocatalysis†","authors":"Md Habibur Rahman, Yujie Sun and Arun Mannodi-Kanakkithodi","doi":"10.1039/D4MA00616J","DOIUrl":"https://doi.org/10.1039/D4MA00616J","url":null,"abstract":"<p >In recent years, ZnIn<small><sub>2</sub></small>S<small><sub>4</sub></small> (ZIS) has garnered attention as a promising photocatalyst due to its attractive properties. However, its performance is hindered by its restricted range of visible light absorption and the rapid recombination of photoinduced holes and electrons. Single-atom co-catalysts (SACs) can improve photocatalytic activity by providing highly active sites for reactions, enhancing charge separation efficiency, and reducing the recombination rate of photo-generated carriers. In this work, we perform high-throughput density functional theory (DFT) computations to search for SACs in ZIS encompassing 3d, 4d, and 5d transition metals as well as lanthanides, considering both substitutional and interstitial sites. For a total of 172 SACs, defect formation energy (DFE) is computed as a function of chemical potential, charge, and Fermi level (<em>E</em><small><sub>F</sub></small>), leading to the identification of low energy dopants and their corresponding shallow or deep defect levels. Statistical data analysis shows that DFE is highly correlated with the difference in electron affinity between the host (Zn/In/S) atom and the SAC, followed by the electronegativity and boiling point. Among the 60 lowest energy SACs, Co<small><sub>In</sub></small>, Yb<small><sub>i</sub></small>, Tc<small><sub>Zn</sub></small>, Au<small><sub>S</sub></small>, La<small><sub>i</sub></small>, Eu<small><sub>i</sub></small>, Au<small><sub>i</sub></small>, Ta<small><sub>In</sub></small>, Hf<small><sub>In</sub></small>, Zr<small><sub>In</sub></small>, and Ni<small><sub>Zn</sub></small> lead to a lowering of the Gibbs free energy for hydrogen evolution reaction, improving upon previous ZIS results. The computational dataset and insights from this work promise to accelerate the experimental design of novel dopants in ZIS with optimized properties for photocatalysis and environmental remediation.</p>","PeriodicalId":18242,"journal":{"name":"Materials Advances","volume":" 21","pages":" 8673-8683"},"PeriodicalIF":5.2,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/ma/d4ma00616j?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142524278","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Synergistic effects of astragalus on 3D-printed calcium silicate/poly-ε-caprolactone scaffolds to regulate inflammation/osteogenesis for bone regeneration 黄芪对三维打印硅酸钙/聚ε-己内酯支架的协同作用,可调节炎症/骨生成,促进骨再生
IF 5.2 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-10-15 DOI: 10.1039/D4MA00531G
Jian-Jr Lee, Yen-Hong Lin, Ting-You Kuo, Alvin Kai-Xing Lee, Cheng-Yu Chen and Ming-You Shie

Bone defects represent a significant clinical challenge, traditionally addressed primarily through scaffold-based repair strategies. However, recent studies have revealed that relying solely on scaffolds may not fully overcome the bottlenecks in bone defect repair. Mounting evidence suggests that modulating the inflammatory response plays a crucial role in the bone healing process. While moderate inflammation can promote bone tissue regeneration, excessive or prolonged inflammatory responses may impede the repair process. Our previously developed calcium silicate (CS) scaffold, known to stimulate osteoblast proliferation and accelerate bone tissue formation, was enhanced with magnesium–strontium to boost cellular biological activity and foster bone formation and angiogenesis. In this study, the effects of 3D-printed CS scaffolds reinforced with astragalus (Ast) on inflammation regulation and osteogenic gene expression were examined. X-ray diffraction and Fourier transform infrared spectroscopy confirmed that the Ast phase structure and chemical functional groups were added to the materials. The findings revealed that integrating Ast improves scaffold biocompatibility, bioactivity, and bone and vascular tissue formation efficacy, enhances mechanical strength, and decelerates biodegradation. The 5% Ast-containing CS scaffold exhibited superior capabilities in promoting cell proliferation and differentiation, indicative of effective bone regeneration. Moreover, analysis of hMSC-seeded AstCS scaffold supernatants revealed significantly reduced levels of pro-inflammatory cytokines IL-1β and IL-6, coupled with elevated expression of the anti-inflammatory factor IL-1RA. These results suggest that Astragalus incorporation effectively modulates inflammatory signaling in the scaffold microenvironment. Transcriptome RNA sequencing revealed that this scaffold modulated multiple signaling pathways crucial for bone regeneration, such as WNT, AKT, and PI3K, and significantly influenced genes associated with cellular bone regeneration, angiogenesis, and immune responses. These results highlight the potential of combining Ast with CS in 3D-printed scaffolds for bone tissue engineering, offering new strategies for employing natural pharmaceutical ingredients as bioactivity enhancers and providing a substantial foundation for designing future bone regeneration materials with immune-modulating capabilities.

骨缺损是一项重大的临床挑战,传统上主要通过基于支架的修复策略来解决。然而,最近的研究表明,仅仅依靠支架可能无法完全克服骨缺损修复的瓶颈。越来越多的证据表明,调节炎症反应在骨愈合过程中起着至关重要的作用。虽然适度的炎症可以促进骨组织再生,但过度或长时间的炎症反应可能会阻碍修复过程。我们之前开发的硅酸钙(CS)支架具有刺激成骨细胞增殖和加速骨组织形成的作用,通过添加镁锶来增强细胞的生物活性,促进骨形成和血管生成。本研究考察了用黄芪(Ast)增强的三维打印 CS 支架对炎症调节和成骨基因表达的影响。X 射线衍射和傅立叶变换红外光谱证实,材料中添加了 Ast 相结构和化学官能团。研究结果表明,添加 Ast 能改善支架的生物相容性、生物活性、骨和血管组织形成效果,提高机械强度,并减缓生物降解。含5% Ast的CS支架在促进细胞增殖和分化方面表现出卓越的能力,这表明它能有效促进骨再生。此外,对播种了 AstCS 支架的 hMSC 上清液的分析表明,促炎细胞因子 IL-1β 和 IL-6 的水平显著降低,而抗炎因子 IL-1RA 的表达则有所升高。这些结果表明,黄芪的加入能有效调节支架微环境中的炎症信号转导。转录组 RNA 测序显示,这种支架调节了对骨再生至关重要的多种信号通路,如 WNT、AKT 和 PI3K,并显著影响了与细胞骨再生、血管生成和免疫反应相关的基因。这些结果凸显了将 Ast 与 CS 结合用于骨组织工程三维打印支架的潜力,为采用天然药物成分作为生物活性增强剂提供了新的策略,并为设计具有免疫调节功能的未来骨再生材料奠定了坚实的基础。
{"title":"Synergistic effects of astragalus on 3D-printed calcium silicate/poly-ε-caprolactone scaffolds to regulate inflammation/osteogenesis for bone regeneration","authors":"Jian-Jr Lee, Yen-Hong Lin, Ting-You Kuo, Alvin Kai-Xing Lee, Cheng-Yu Chen and Ming-You Shie","doi":"10.1039/D4MA00531G","DOIUrl":"https://doi.org/10.1039/D4MA00531G","url":null,"abstract":"<p >Bone defects represent a significant clinical challenge, traditionally addressed primarily through scaffold-based repair strategies. However, recent studies have revealed that relying solely on scaffolds may not fully overcome the bottlenecks in bone defect repair. Mounting evidence suggests that modulating the inflammatory response plays a crucial role in the bone healing process. While moderate inflammation can promote bone tissue regeneration, excessive or prolonged inflammatory responses may impede the repair process. Our previously developed calcium silicate (CS) scaffold, known to stimulate osteoblast proliferation and accelerate bone tissue formation, was enhanced with magnesium–strontium to boost cellular biological activity and foster bone formation and angiogenesis. In this study, the effects of 3D-printed CS scaffolds reinforced with astragalus (Ast) on inflammation regulation and osteogenic gene expression were examined. X-ray diffraction and Fourier transform infrared spectroscopy confirmed that the Ast phase structure and chemical functional groups were added to the materials. The findings revealed that integrating Ast improves scaffold biocompatibility, bioactivity, and bone and vascular tissue formation efficacy, enhances mechanical strength, and decelerates biodegradation. The 5% Ast-containing CS scaffold exhibited superior capabilities in promoting cell proliferation and differentiation, indicative of effective bone regeneration. Moreover, analysis of hMSC-seeded AstCS scaffold supernatants revealed significantly reduced levels of pro-inflammatory cytokines IL-1β and IL-6, coupled with elevated expression of the anti-inflammatory factor IL-1RA. These results suggest that Astragalus incorporation effectively modulates inflammatory signaling in the scaffold microenvironment. Transcriptome RNA sequencing revealed that this scaffold modulated multiple signaling pathways crucial for bone regeneration, such as <em>WNT</em>, <em>AKT</em>, and <em>PI3K</em>, and significantly influenced genes associated with cellular bone regeneration, angiogenesis, and immune responses. These results highlight the potential of combining Ast with CS in 3D-printed scaffolds for bone tissue engineering, offering new strategies for employing natural pharmaceutical ingredients as bioactivity enhancers and providing a substantial foundation for designing future bone regeneration materials with immune-modulating capabilities.</p>","PeriodicalId":18242,"journal":{"name":"Materials Advances","volume":" 22","pages":" 8927-8936"},"PeriodicalIF":5.2,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/ma/d4ma00531g?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142598740","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the VOC loss in NiO-based inverted metal halide perovskite solar cells† 基于氧化镍的反相金属卤化物包晶太阳能电池中的 V OC 损耗。
IF 5.2 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-10-14 DOI: 10.1039/D4MA00873A
Kousumi Mukherjee, Denise Kreugel, Nga Phung, Cristian van Helvoirt, Valerio Zardetto and Mariadriana Creatore

Recent reports have shown that nickel oxide (NiO) when adopted as a hole transport layer (HTL) in combination with organic layers, such as PTAA or self-assembled monolayers (SAMs), leads to a higher device yield for both single junction as well as tandem devices. Nevertheless, implementing NiO in devices without PTAA or SAM is seldom reported to lead to high-performance devices. In this work, we assess the effect of key NiO properties deemed relevant in literature, namely- resistivity and surface energy, on the device performance and systematically compare the NiO-based devices with those based on PTAA. To this purpose, (thermal) atomic layer deposited (ALD) NiO (NiOBu-MeAMD), Al-doped NiO (Al:NiOBu-MeAMD), and plasma-assisted ALD NiO (NiOMeCp) films, characterized by a wide range of resistivity, are investigated. Although Al:NiOBu-MeAMD (∼400 Ω cm) and NiOMeCp(∼80 Ωcm) films have a lower resistivity than NiOBu-MeAMD (∼10 kΩ cm), the Al:NiOBu-MeAMD and NiOMeCp-based devices are found to have a modest open circuit voltage (VOC) gain of ∼30 mV compared to NiOBu-MeAMD-based devices. Overall, the best-performing NiO-based devices (∼14.8% power conversion efficiency (PCE)) still lag behind the PTAA-based devices (∼17.5%), primarily due to a VOC loss of ∼100 mV. Further investigation based on light intensity analysis of the VOC and FF and the decrease in VOC compared to the quasi-Fermi level splitting (QFLS) indicates that the VOC is limited by trap-assisted recombination at the NiO/perovskite interface. Additionally, SCAPS simulations show that the presence of a high interfacial trap density leads to a VOC loss in NiO-based devices. Upon passivation of the NiO/perovskite interface with Me-4PACz, the VOC increases by 170–200 mV and is similar for NiOBu-MeAMD and Al:NiOBu-MeAMD, leading to the conclusion that there is no influence of the NiO resistivity on the VOC once interface passivation is realized. Finally, our work highlights the necessity of comparing NiO-based devices with state-of-the-art HTL-based devices to draw conclusion about the influence of specific material properties on device performance.

最新报告显示,氧化镍(NiO)作为空穴传输层(HTL)与有机层(如 PTAA 或自组装单层 SAM)结合使用时,可提高单结和串联器件的良率。然而,很少有报道称在没有 PTAA 或 SAM 的器件中使用氧化镍会产生高性能器件。在这项工作中,我们评估了文献中认为相关的关键氧化镍特性(即电阻率和表面能)对器件性能的影响,并将基于氧化镍的器件与基于 PTAA 的器件进行了系统比较。为此,我们研究了(热)原子层沉积 (ALD) 氧化镍(NiOBu-MeAMD)、掺铝氧化镍(Al:NiOBu-MeAMD)和等离子体辅助 ALD 氧化镍(NiOMeCp)薄膜,它们的电阻率范围都很宽。虽然 Al:NiOBu-MeAMD (∼400 Ω cm)和 NiOMeCp(∼80 Ω cm)薄膜的电阻率低于 NiOBu-MeAMD(∼10 kΩ cm),但与基于 NiOBu-MeAMD 的器件相比,基于 Al:NiOBu-MeAMD 和 NiOMeCp 的器件具有适度的开路电压(V OC)增益(∼30 mV)。总体而言,性能最好的基于 NiO 的器件(功率转换效率为 14.8%)仍然落后于基于 PTAA 的器件(17.5%),这主要是由于 V OC 损失了 100 mV。根据对 V OC 和 FF 的光强分析以及 V OC 与准费米级分裂(QFLS)相比的下降进行的进一步研究表明,V OC 受限于 NiO/perovskite 界面的陷阱辅助重组。此外,SCAPS 模拟表明,高界面陷阱密度的存在会导致氧化镍基器件的 V OC 损失。用 Me-4PACz 对 NiO/perovskite 界面进行钝化后,V OC 增加了 170-200 mV,而且 NiOBu-MeAMD 和 Al:NiOBu-MeAMD 的情况相似,由此得出结论:一旦实现界面钝化,NiO 电阻率对 V OC 没有影响。最后,我们的工作强调了将基于氧化镍的器件与最先进的基于 HTL 的器件进行比较的必要性,从而得出特定材料特性对器件性能影响的结论。
{"title":"On the VOC loss in NiO-based inverted metal halide perovskite solar cells†","authors":"Kousumi Mukherjee, Denise Kreugel, Nga Phung, Cristian van Helvoirt, Valerio Zardetto and Mariadriana Creatore","doi":"10.1039/D4MA00873A","DOIUrl":"10.1039/D4MA00873A","url":null,"abstract":"<p >Recent reports have shown that nickel oxide (NiO) when adopted as a hole transport layer (HTL) in combination with organic layers, such as PTAA or self-assembled monolayers (SAMs), leads to a higher device yield for both single junction as well as tandem devices. Nevertheless, implementing NiO in devices without PTAA or SAM is seldom reported to lead to high-performance devices. In this work, we assess the effect of key NiO properties deemed relevant in literature, namely- resistivity and surface energy, on the device performance and systematically compare the NiO-based devices with those based on PTAA. To this purpose, (thermal) atomic layer deposited (ALD) NiO (NiO<small><sub>Bu-MeAMD</sub></small>), Al-doped NiO (Al:NiO<small><sub>Bu-MeAMD</sub></small>), and plasma-assisted ALD NiO (NiO<small><sub>MeCp</sub></small>) films, characterized by a wide range of resistivity, are investigated. Although Al:NiO<small><sub>Bu-MeAMD</sub></small> (∼400 Ω cm) and NiO<small><sub>MeCp</sub></small>(∼80 Ωcm) films have a lower resistivity than NiO<small><sub>Bu-MeAMD</sub></small> (∼10 kΩ cm), the Al:NiO<small><sub>Bu-MeAMD</sub></small> and NiO<small><sub>MeCp</sub></small>-based devices are found to have a modest open circuit voltage (<em>V</em><small><sub>OC</sub></small>) gain of ∼30 mV compared to NiO<small><sub>Bu-MeAMD</sub></small>-based devices. Overall, the best-performing NiO-based devices (∼14.8% power conversion efficiency (PCE)) still lag behind the PTAA-based devices (∼17.5%), primarily due to a <em>V</em><small><sub>OC</sub></small> loss of ∼100 mV. Further investigation based on light intensity analysis of the <em>V</em><small><sub>OC</sub></small> and FF and the decrease in <em>V</em><small><sub>OC</sub></small> compared to the quasi-Fermi level splitting (QFLS) indicates that the <em>V</em><small><sub>OC</sub></small> is limited by trap-assisted recombination at the NiO/perovskite interface. Additionally, SCAPS simulations show that the presence of a high interfacial trap density leads to a <em>V</em><small><sub>OC</sub></small> loss in NiO-based devices. Upon passivation of the NiO/perovskite interface with Me-4PACz, the <em>V</em><small><sub>OC</sub></small> increases by 170–200 mV and is similar for NiO<small><sub>Bu-MeAMD</sub></small> and Al:NiO<small><sub>Bu-MeAMD</sub></small>, leading to the conclusion that there is no influence of the NiO resistivity on the <em>V</em><small><sub>OC</sub></small> once interface passivation is realized. Finally, our work highlights the necessity of comparing NiO-based devices with state-of-the-art HTL-based devices to draw conclusion about the influence of specific material properties on device performance.</p>","PeriodicalId":18242,"journal":{"name":"Materials Advances","volume":" 21","pages":" 8652-8664"},"PeriodicalIF":5.2,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11472218/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142469171","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The role of lipid oxidation pathway in reactive oxygen species-mediated cargo release from liposomes† 脂质氧化途径在活性氧介导的脂质体货物释放中的作用。
IF 5.2 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-10-12 DOI: 10.1039/D4MA00535J
Olga Lem, Roosa Kekki, Artturi Koivuniemi, Alexander Efimov, Timo Laaksonen and Nikita Durandin

Reactive oxygen species (ROS)-mediated photooxidation is an efficient method for triggering a drug release from liposomes. In addition to the release of small molecules, it also allows the release of large macromolecules, making it a versatile tool for controlled drug delivery. However, the exact release mechanism of large macromolecules from ROS-sensitive liposomes is still unclear. There are no studies on the effect of lipid oxidation on the release of cargo molecules of different sizes. By using HPLC-HRMS method we analyzed the oxidation products of ROS-sensitive DOTAP lipid in phthalocyanine-loaded DOTAP:Cholesterol:DSPE-PEG liposomes after 630 nm light irradiation of different durations. Shorter illumination time (1–2 minutes) led to the formation of hydroperoxides and vic-alcohols predominantly. Longer 9-minute irradiation resulted already in aldehydes generation. Interestingly, the presence of epoxides/mono-hydroperoxides and vic-alcohols in a lipid bilayer ensured a high 90% release of small hydrophilic cargo molecules i.e. calcein, but not large (≥10 KDa) macromolecules. Oxidation till aldehydes was mandatory to deliver e.g. dextrans of 10–70 kDa with ca. 30% efficiency. Molecular dynamics simulations revealed that the formation of aldehydes is required to form pores or even fully disrupt the lipid membrane, while e.g. presence of hydroperoxides is enough to make the bilayer more permeable just for water and small molecules. This is an important finding that shed a light on the release mechanism of different cargo molecules from ROS-sensitive drug delivery systems.

活性氧(ROS)介导的光氧化反应是引发脂质体释放药物的有效方法。除了释放小分子外,它还能释放大分子,使其成为控制药物释放的多功能工具。然而,ROS 敏感脂质体释放大分子的确切机制仍不清楚。目前还没有关于脂质氧化对不同大小的货物分子释放影响的研究。通过 HPLC-HRMS 方法,我们分析了酞菁负载的 DOTAP:Cholesterol:DSPE-PEG 脂质体中对 ROS 敏感的 DOTAP 脂质在不同持续时间的 630 纳米光照射后的氧化产物。较短的照射时间(1-2 分钟)主要形成氢过氧化物和沧醇。照射时间较长(9 分钟)则会产生醛。有趣的是,脂质双分子层中环氧化物/一氢过氧化物和沧醇的存在确保了 90% 的亲水性小分子(如钙黄绿素)的释放,而不是大分子(≥10 KDa)的释放。氧化至醛类是释放 10-70 kDa 右旋糖酐的必要条件,释放效率约为 30%。分子动力学模拟显示,醛的形成是形成孔隙甚至完全破坏脂膜的必要条件,而氢过氧化物的存在则足以使双层膜对水和小分子具有更高的渗透性。这一重要发现揭示了 ROS 敏感给药系统释放不同药物分子的机制。
{"title":"The role of lipid oxidation pathway in reactive oxygen species-mediated cargo release from liposomes†","authors":"Olga Lem, Roosa Kekki, Artturi Koivuniemi, Alexander Efimov, Timo Laaksonen and Nikita Durandin","doi":"10.1039/D4MA00535J","DOIUrl":"10.1039/D4MA00535J","url":null,"abstract":"<p >Reactive oxygen species (ROS)-mediated photooxidation is an efficient method for triggering a drug release from liposomes. In addition to the release of small molecules, it also allows the release of large macromolecules, making it a versatile tool for controlled drug delivery. However, the exact release mechanism of large macromolecules from ROS-sensitive liposomes is still unclear. There are no studies on the effect of lipid oxidation on the release of cargo molecules of different sizes. By using HPLC-HRMS method we analyzed the oxidation products of ROS-sensitive DOTAP lipid in phthalocyanine-loaded DOTAP:Cholesterol:DSPE-PEG liposomes after 630 nm light irradiation of different durations. Shorter illumination time (1–2 minutes) led to the formation of hydroperoxides and vic-alcohols predominantly. Longer 9-minute irradiation resulted already in aldehydes generation. Interestingly, the presence of epoxides/mono-hydroperoxides and vic-alcohols in a lipid bilayer ensured a high 90% release of small hydrophilic cargo molecules <em>i.e.</em> calcein, but not large (≥10 KDa) macromolecules. Oxidation till aldehydes was mandatory to deliver <em>e.g.</em> dextrans of 10–70 kDa with <em>ca.</em> 30% efficiency. Molecular dynamics simulations revealed that the formation of aldehydes is required to form pores or even fully disrupt the lipid membrane, while <em>e.g.</em> presence of hydroperoxides is enough to make the bilayer more permeable just for water and small molecules. This is an important finding that shed a light on the release mechanism of different cargo molecules from ROS-sensitive drug delivery systems.</p>","PeriodicalId":18242,"journal":{"name":"Materials Advances","volume":" 22","pages":" 8878-8888"},"PeriodicalIF":5.2,"publicationDate":"2024-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11491990/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142516502","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Synthesis of colloidal Pd nanoparticles immobilised on poly(N-vinylacetamide): characterisation and application in catalysis† 固定在聚(N-乙烯基乙酰胺)上的胶体钯纳米粒子的合成:特性分析及在催化中的应用†。
IF 5.2 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-10-11 DOI: 10.1039/D4MA00674G
Kazuki Tabaru, Kanji Okada, Tatsuki Nagata, Takeyuki Suzuki, Hiromitsu Sogawa, Fumio Sanda, Takeshi Watanabe and Yasuhi Obora

We immobilised colloidal palladium nanoparticles on poly(N-vinylacetamide). The polymer and the immobilised Pd NPs were characterised with characterisation methods such as transmission electron microscopy, dynamic light scattering, thermogravimetric analysis, Fourier-transform infrared spectroscopy, X-ray absorption spectroscopy, and X-ray photoelectron spectroscopy. Finally, we tested catalytic applications under Suzuki–Miyaura cross-coupling reaction conditions.

我们将胶体钯纳米粒子固定在聚乙烯乙酰胺上。我们采用透射电子显微镜、动态光散射、热重分析、傅立叶变换红外光谱、X 射线吸收光谱和 X 射线光电子能谱等表征方法对聚合物和固定化钯纳米粒子进行了表征。最后,我们测试了在铃木-宫浦交叉偶联反应条件下的催化应用。
{"title":"Synthesis of colloidal Pd nanoparticles immobilised on poly(N-vinylacetamide): characterisation and application in catalysis†","authors":"Kazuki Tabaru, Kanji Okada, Tatsuki Nagata, Takeyuki Suzuki, Hiromitsu Sogawa, Fumio Sanda, Takeshi Watanabe and Yasuhi Obora","doi":"10.1039/D4MA00674G","DOIUrl":"https://doi.org/10.1039/D4MA00674G","url":null,"abstract":"<p >We immobilised colloidal palladium nanoparticles on poly(<em>N</em>-vinylacetamide). The polymer and the immobilised Pd NPs were characterised with characterisation methods such as transmission electron microscopy, dynamic light scattering, thermogravimetric analysis, Fourier-transform infrared spectroscopy, X-ray absorption spectroscopy, and X-ray photoelectron spectroscopy. Finally, we tested catalytic applications under Suzuki–Miyaura cross-coupling reaction conditions.</p>","PeriodicalId":18242,"journal":{"name":"Materials Advances","volume":" 21","pages":" 8439-8443"},"PeriodicalIF":5.2,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/ma/d4ma00674g?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142524361","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Injectable peptide-glycosaminoglycan hydrogels for soft tissue repair: in vitro assessment for nucleus augmentation† 用于软组织修复的可注射肽-氨基葡聚糖水凝胶:用于细胞核增大的体外评估。
IF 5.2 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-10-10 DOI: 10.1039/D4MA00613E
James P. Warren, Ruth H. Coe, Matthew P. Culbert, Andrew R. Dixon, Danielle E. Miles, Marlène Mengoni, Paul A. Beales and Ruth K. Wilcox

We report the development of peptide-glycosaminoglycan hydrogels as injectable biomaterials for load-bearing soft tissue repair. The hydrogels are injectable as a liquid for clinical delivery, rapidly form a gel in situ, and mimic the osmotic swelling behaviour of natural tissue. We used a new in vitro model to demonstrate their application as a nucleus augmentation material for the treatment of intervertebral disc degeneration. Our study compared a complex lab gel preparation method to a simple clinical benchtop process. We showed pH differences did not significantly affect gel formation, and temperature variations had no impact on gel performance. Rheological results demonstrated consistency after benchtop mixing or needle injection. In our in vitro disc degeneration model, we established that peptide augmentation could restore the native biomechanical properties. This suggests the feasibility of minimally invasive peptide-GAG gel delivery, maintaining consistent properties across temperature and needle sizes while restoring disc height and stiffness in vitro.

我们报告了肽-糖胺聚糖水凝胶作为可注射生物材料用于承重软组织修复的研发情况。这种水凝胶可作为液体注射用于临床,能在原位快速形成凝胶,并能模拟天然组织的渗透膨胀行为。我们使用了一种新的体外模型来证明水凝胶作为椎间盘退变治疗的髓核增强材料的应用。我们的研究将复杂的实验室凝胶制备方法与简单的临床台式工艺进行了比较。结果表明,pH 值的差异对凝胶的形成没有明显影响,温度的变化对凝胶的性能也没有影响。流变学结果表明,台式混合或针头注射后的凝胶具有一致性。在我们的体外椎间盘退变模型中,我们证实多肽增量可以恢复原生生物力学特性。这表明微创多肽-GAG凝胶递送是可行的,它能在体外恢复椎间盘高度和硬度的同时,在不同温度和针头大小下保持稳定的性能。
{"title":"Injectable peptide-glycosaminoglycan hydrogels for soft tissue repair: in vitro assessment for nucleus augmentation†","authors":"James P. Warren, Ruth H. Coe, Matthew P. Culbert, Andrew R. Dixon, Danielle E. Miles, Marlène Mengoni, Paul A. Beales and Ruth K. Wilcox","doi":"10.1039/D4MA00613E","DOIUrl":"10.1039/D4MA00613E","url":null,"abstract":"<p >We report the development of peptide-glycosaminoglycan hydrogels as injectable biomaterials for load-bearing soft tissue repair. The hydrogels are injectable as a liquid for clinical delivery, rapidly form a gel <em>in situ</em>, and mimic the osmotic swelling behaviour of natural tissue. We used a new <em>in vitro</em> model to demonstrate their application as a nucleus augmentation material for the treatment of intervertebral disc degeneration. Our study compared a complex lab gel preparation method to a simple clinical benchtop process. We showed pH differences did not significantly affect gel formation, and temperature variations had no impact on gel performance. Rheological results demonstrated consistency after benchtop mixing or needle injection. In our <em>in vitro</em> disc degeneration model, we established that peptide augmentation could restore the native biomechanical properties. This suggests the feasibility of minimally invasive peptide-GAG gel delivery, maintaining consistent properties across temperature and needle sizes while restoring disc height and stiffness <em>in vitro</em>.</p>","PeriodicalId":18242,"journal":{"name":"Materials Advances","volume":" 21","pages":" 8665-8672"},"PeriodicalIF":5.2,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11474259/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142469170","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Materials Advances
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1