Tingting Zheng, Caoimhe O’Neill, John F. Marshall, Thomas Iskratsch and Matteo Palma
Here we present a nanopatterning strategy utilising thermal scanning probe lithography (t-SPL) for the precise organisation of DNA origami into nanoarrays. The aim of this approach is to demonstrate control in the fabrication of nanoarray platforms exhibiting single-molecule accuracy. Combining the inherent programmability of DNA origami structures with t-SPL nanopatterning, we demonstrated the controlled immobilisation on surfaces of functionalised DNA origami – as proof of concept we employed gold nanoparticles (AuNPs) and quantum dots (QDs) – at predefined positions and in nanoarray configurations. This method holds great potential for the construction of hetero-functionalised biomolecular nanoarrays with single-molecule control, with applications in bionanotechnology and (nano)materials science.
在这里,我们介绍一种利用热扫描探针光刻技术(t-SPL)将 DNA 折纸精确组织成纳米阵列的纳米图案化策略。这种方法的目的是展示对纳米阵列平台制造的控制,展现单分子精度。结合 DNA 折纸结构固有的可编程性和 t-SPL 纳米图案化技术,我们展示了在预定位置和纳米阵列配置上可控地固定功能化 DNA 折纸(作为概念验证,我们采用了金纳米粒子(AuNPs)和量子点(QDs))。这种方法在构建单分子控制的异功能化生物分子纳米阵列方面具有巨大潜力,可应用于仿生技术和(纳米)材料科学。
{"title":"Selective placement of functionalised DNA origami via thermal scanning probe lithography patterning†","authors":"Tingting Zheng, Caoimhe O’Neill, John F. Marshall, Thomas Iskratsch and Matteo Palma","doi":"10.1039/D4MA00828F","DOIUrl":"10.1039/D4MA00828F","url":null,"abstract":"<p >Here we present a nanopatterning strategy utilising thermal scanning probe lithography (t-SPL) for the precise organisation of DNA origami into nanoarrays. The aim of this approach is to demonstrate control in the fabrication of nanoarray platforms exhibiting single-molecule accuracy. Combining the inherent programmability of DNA origami structures with t-SPL nanopatterning, we demonstrated the controlled immobilisation on surfaces of functionalised DNA origami – as proof of concept we employed gold nanoparticles (AuNPs) and quantum dots (QDs) – at predefined positions and in nanoarray configurations. This method holds great potential for the construction of hetero-functionalised biomolecular nanoarrays with single-molecule control, with applications in bionanotechnology and (nano)materials science.</p>","PeriodicalId":18242,"journal":{"name":"Materials Advances","volume":" 23","pages":" 9376-9382"},"PeriodicalIF":5.2,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11563210/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142648618","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Aditya Tiwari, Vivek Adepu, Rikitha S. Fernandes, Nilanjan Dey, Parikshit Sahatiya and Sayan Kanungo
This work presents a detailed comparative study on the effects of functional groups on engineered PDI (perylene diimide) compounds for pressure and breath sensing applications using experimental findings and density functional theory (DFT)-based theoretical calculations. The results demonstrate that the deposition of N-substituted perylene-3,4-dicarboxylic acid imide derivatives (PDI-1, PDI-2, PDI-3, and PDI-4) with different functional groups (3-aminopentane, 2,5-di-tert-butylaniline, 1-phenylethylamine, etc.) on the paper substrate forms a moderately conducting percolating molecular network with enhanced pressure and breath-sensing performances. The determined pressure sensitivity value for PDI-1 was 0.315 kPa−1, for PDI-2 was 1.266 kPa−1, for PDI-3 was 0.749 kPa−1, and for PDI-4 was 2.120 kPa−1. Among all the fabricated PDI-based pressure sensors, PDI-4 displayed maximum sensitivity owing to the inherent asymmetric nature of the compound with two different terminal substituents. The sensor displayed a steady response of up to ∼8000–10 000 cycles, confirming the mechanical sturdiness of fabricated PDI-based pressure sensors. The DFT-based theoretical analysis offers detailed insight into the transduction mechanism of pressure and breath sensing for different PDI molecules, wherein it can be surmised that both the structural configuration and electronic properties of PDI-4 (PDI-1) are suitable (undesirable) to ensure a large increase in intermolecular tunneling components and, thereby, in the overall conductivity of the percolating network under applied pressure. Hence, PDI-4 (PDI-1) is the most (least) favorable PDI molecule for pressure sensing applications. In contrast, a moderate response can be expected in PDI-2 and PDI-3 during pressure sensing as two competing factors influence the overall efficacy of transduction in these cases.
{"title":"Perylene diimide architecture-based electromechanical sensors: a systematic experimental and theoretical framework for the comparative analysis and study of the transduction mechanism†","authors":"Aditya Tiwari, Vivek Adepu, Rikitha S. Fernandes, Nilanjan Dey, Parikshit Sahatiya and Sayan Kanungo","doi":"10.1039/D4MA00846D","DOIUrl":"https://doi.org/10.1039/D4MA00846D","url":null,"abstract":"<p >This work presents a detailed comparative study on the effects of functional groups on engineered PDI (perylene diimide) compounds for pressure and breath sensing applications using experimental findings and density functional theory (DFT)-based theoretical calculations. The results demonstrate that the deposition of <em>N</em>-substituted perylene-3,4-dicarboxylic acid imide derivatives (<strong>PDI-1</strong>, <strong>PDI-2</strong>, <strong>PDI-3</strong>, and <strong>PDI-4</strong>) with different functional groups (3-aminopentane, 2,5-di-<em>tert</em>-butylaniline, 1-phenylethylamine, <em>etc.</em>) on the paper substrate forms a moderately conducting percolating molecular network with enhanced pressure and breath-sensing performances. The determined pressure sensitivity value for <strong>PDI-1</strong> was 0.315 kPa<small><sup>−1</sup></small>, for <strong>PDI-2</strong> was 1.266 kPa<small><sup>−1</sup></small>, for <strong>PDI-3</strong> was 0.749 kPa<small><sup>−1</sup></small>, and for <strong>PDI-4</strong> was 2.120 kPa<small><sup>−1</sup></small>. Among all the fabricated PDI-based pressure sensors, <strong>PDI-4</strong> displayed maximum sensitivity owing to the inherent asymmetric nature of the compound with two different terminal substituents. The sensor displayed a steady response of up to ∼8000–10 000 cycles, confirming the mechanical sturdiness of fabricated PDI-based pressure sensors. The DFT-based theoretical analysis offers detailed insight into the transduction mechanism of pressure and breath sensing for different PDI molecules, wherein it can be surmised that both the structural configuration and electronic properties of <strong>PDI-4</strong> (<strong>PDI-1</strong>) are suitable (undesirable) to ensure a large increase in intermolecular tunneling components and, thereby, in the overall conductivity of the percolating network under applied pressure. Hence, <strong>PDI-4</strong> (<strong>PDI-1</strong>) is the most (least) favorable PDI molecule for pressure sensing applications. In contrast, a moderate response can be expected in <strong>PDI-2</strong> and <strong>PDI-3</strong> during pressure sensing as two competing factors influence the overall efficacy of transduction in these cases.</p>","PeriodicalId":18242,"journal":{"name":"Materials Advances","volume":" 23","pages":" 9243-9258"},"PeriodicalIF":5.2,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/ma/d4ma00846d?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142694707","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sanjana Mathew, Sayan Halder, Keerthi C. J., Saurjyesh Hota, Maitreyi Suntha, Chanchal Chakraborty and Subhradeep Pal
Our present study developed high-performance organic photodetectors (OPDs) with broad-spectrum capabilities utilizing a thiazolo[5,4-d]thiazole containing a high-mobility conjugated polymer P-TZTZ. The low bandgap polymer with 2D nanosheet morphology is synthesized by an easy condensation reaction between dithiooxamide and terephthalaldehyde. Based on the used substrate (Si-wafer and PET substrate), two variants of the proposed photodetectors were fabricated. Both variants of the fabricated photodetectors (PDs) demonstrated comparable photodetection capabilities in a broad region from 400 to 1000 nm. Under the presence of a broadband white light source, the peak photo-to-dark current ratio (PDCR) values for the PD fabricated on Si-substrate (PD1) are calculated to be 42.58 and 5.68 at the bias voltage (VB) of −0.1 and +1.0 V, respectively. Similarly, the PD fabricated on ITO-coated PET substrate (PD2) under the influence of a broadband white light source offered PDCR values of 8.65 and 7.25 at a VB of −4 V and +4 V, respectively. Experimental findings indicate that the fabricated PD1 achieves a peak responsivity of 2.12 A W−1 at 410 nm with peak external quantum efficiency (EQE) values of 6.41% and 4.32% at 410 and 530 nm, respectively. The specific detectivity (D) values are estimated to be 4.42 × 1013 Jones at 410 nm and 3.71 × 1013 Jones at 530 nm. Similarly, the fabricated PD2 achieves the peak responsivity, external quantum efficiency, and specific detectivity values of 1.98 A W−1, 5.9% and 1.71 × 1013 Jones at 410 nm, respectively. Transient performance analysis revealed that the P-TZTZ-based flexible PD exhibited rise and fall times of 180 ms and 100 ms, respectively. The high responsivity, detectivity, and millisecond-order switching time in rigid and flexible P-TZTZ-based PDs demonstrate the versatility and potential for diverse applications covering from rigid to flexible electronics.
本研究利用含有高迁移率共轭聚合物 P-TZTZ 的噻唑并[5,4-d]噻唑,开发了具有广谱能力的高性能有机光电探测器(OPD)。这种具有二维纳米片形态的低带隙聚合物是通过二硫代草酰氨和对苯二甲醛之间的简易缩合反应合成的。根据所使用的衬底(Si-wafer 和 PET 衬底),制造出了两种不同的光电探测器。制造出的两种光电探测器(PDs)在 400 到 1000 纳米的宽广区域内都表现出了相当的光电探测能力。在宽带白光光源的作用下,计算得出在硅基底上制造的光电探测器(PD1)在偏置电压(VB)为-0.1 V 和 +1.0 V 时的光暗电流比(PDCR)峰值分别为 42.58 和 5.68。同样,在宽带白光光源的影响下,在 ITO 涂层 PET 衬底上制作的 PD(PD2)在偏置电压为 -4 V 和 +4 V 时的 PDCR 值分别为 8.65 和 7.25。实验结果表明,所制造的 PD1 在 410 纳米波长处的峰值响应率为 2.12 A W-1,在 410 纳米波长和 530 纳米波长处的峰值外部量子效率 (EQE) 值分别为 6.41% 和 4.32%。据估计,在 410 纳米波长和 530 纳米波长处的比检出率(D)分别为 4.42 × 1013 琼斯和 3.71 × 1013 琼斯。同样,所制造的 PD2 在 410 纳米波长处的峰值响应度、外部量子效率和比检测度值分别为 1.98 A W-1、5.9% 和 1.71 × 1013 Jones。瞬态性能分析表明,基于 P-TZTZ 的柔性光致发光器件的上升和下降时间分别为 180 毫秒和 100 毫秒。基于刚性和柔性 P-TZTZ 的光致发光器件的高响应度、检测度和毫秒级开关时间证明了其在刚性和柔性电子器件等各种应用领域的多功能性和潜力。
{"title":"A high-performance broadband organic flexible photodetector from a narrow-bandgap thiazolo[5,4-d]thiazole containing conjugated polymer","authors":"Sanjana Mathew, Sayan Halder, Keerthi C. J., Saurjyesh Hota, Maitreyi Suntha, Chanchal Chakraborty and Subhradeep Pal","doi":"10.1039/D4MA00780H","DOIUrl":"https://doi.org/10.1039/D4MA00780H","url":null,"abstract":"<p >Our present study developed high-performance organic photodetectors (OPDs) with broad-spectrum capabilities utilizing a thiazolo[5,4-<em>d</em>]thiazole containing a high-mobility conjugated polymer P-TZTZ. The low bandgap polymer with 2D nanosheet morphology is synthesized by an easy condensation reaction between dithiooxamide and terephthalaldehyde. Based on the used substrate (Si-wafer and PET substrate), two variants of the proposed photodetectors were fabricated. Both variants of the fabricated photodetectors (PDs) demonstrated comparable photodetection capabilities in a broad region from 400 to 1000 nm. Under the presence of a broadband white light source, the peak photo-to-dark current ratio (PDCR) values for the PD fabricated on Si-substrate (PD1) are calculated to be 42.58 and 5.68 at the bias voltage (<em>V</em><small><sub>B</sub></small>) of −0.1 and +1.0 V, respectively. Similarly, the PD fabricated on ITO-coated PET substrate (PD2) under the influence of a broadband white light source offered PDCR values of 8.65 and 7.25 at a <em>V</em><small><sub>B</sub></small> of −4 V and +4 V, respectively. Experimental findings indicate that the fabricated PD1 achieves a peak responsivity of 2.12 A W<small><sup>−1</sup></small> at 410 nm with peak external quantum efficiency (EQE) values of 6.41% and 4.32% at 410 and 530 nm, respectively. The specific detectivity (<em>D)</em> values are estimated to be 4.42 × 10<small><sup>13</sup></small> Jones at 410 nm and 3.71 × 10<small><sup>13</sup></small> Jones at 530 nm. Similarly, the fabricated PD2 achieves the peak responsivity, external quantum efficiency, and specific detectivity values of 1.98 A W<small><sup>−1</sup></small>, 5.9% and 1.71 × 10<small><sup>13</sup></small> Jones at 410 nm, respectively. Transient performance analysis revealed that the P-TZTZ-based flexible PD exhibited rise and fall times of 180 ms and 100 ms, respectively. The high responsivity, detectivity, and millisecond-order switching time in rigid and flexible P-TZTZ-based PDs demonstrate the versatility and potential for diverse applications covering from rigid to flexible electronics.</p>","PeriodicalId":18242,"journal":{"name":"Materials Advances","volume":" 23","pages":" 9488-9499"},"PeriodicalIF":5.2,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/ma/d4ma00780h?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142694731","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
M. Farzana Alam, M. Atikur Rahman, Md. Sarowar Hossain, M. N. I. Khan, R. Rashid, M. Saiful Islam, William Ghann, M. K. Alam and Jamal Uddin
Ni–Zn-based ferrites (NZFO) need to possess the ideal ratio of dielectric and magnetic characteristics for uses involving electromagnetic fields. Consequently, the NZFO system has been modified by Ti4+ substitution at Fe3+ producing Ni0.5Zn0.5TixFe2−xO4 (x = 0.00, 0.02, 0.04, 0.06, 0.08 and 0.10) and a conventional sol–gel process was followed for the synthesis. The structure of the synthesized samples was evaluated from the X-ray diffraction (XRD) patterns. Fourier transform infrared (FTIR) measurement provided information on chemical interaction with thermodynamic conditions. In addition, the grain sizes were obtained from scanning electron microscopy (SEM). Furthermore, the studied samples exhibit a notable light absorption in the visible spectrum with band gaps between 3.8 and 4.8 eV. The magneto-dielectric properties were analyzed by field (H) dependent magnetization (M), frequency-dependent permeability (μ), and permittivity (ε) measurements. Ti4+ substitution in NZFO led to a decrease in magnetic saturation (Ms) and μ while the values of creased and improved the mismatching impedance (Z/η0 = (μ′/ε′)1/2). The lowest value of Ms (14 emu g−1) is achieved for the sample with x = 0.1 for which μ is also the lowest. Finally, a stable value of Z/η0 (∼4.0) has been obtained for the x = 0.10 sample over a wide range of frequencies (1–10 MHz), making it suitable as a miniaturizing device material in this frequency range.
{"title":"Synthesis and magneto-dielectric properties of Ti-doped Ni0.5Zn0.5TixFe2−xO4 ferrite via a conventional sol–gel process","authors":"M. Farzana Alam, M. Atikur Rahman, Md. Sarowar Hossain, M. N. I. Khan, R. Rashid, M. Saiful Islam, William Ghann, M. K. Alam and Jamal Uddin","doi":"10.1039/D4MA00529E","DOIUrl":"https://doi.org/10.1039/D4MA00529E","url":null,"abstract":"<p >Ni–Zn-based ferrites (NZFO) need to possess the ideal ratio of dielectric and magnetic characteristics for uses involving electromagnetic fields. Consequently, the NZFO system has been modified by Ti<small><sup>4+</sup></small> substitution at Fe<small><sup>3+</sup></small> producing Ni<small><sub>0.5</sub></small>Zn<small><sub>0.5</sub></small>Ti<small><sub><em>x</em></sub></small>Fe<small><sub>2−<em>x</em></sub></small>O<small><sub>4</sub></small> (<em>x</em> = 0.00, 0.02, 0.04, 0.06, 0.08 and 0.10) and a conventional sol–gel process was followed for the synthesis. The structure of the synthesized samples was evaluated from the X-ray diffraction (XRD) patterns. Fourier transform infrared (FTIR) measurement provided information on chemical interaction with thermodynamic conditions. In addition, the grain sizes were obtained from scanning electron microscopy (SEM). Furthermore, the studied samples exhibit a notable light absorption in the visible spectrum with band gaps between 3.8 and 4.8 eV. The magneto-dielectric properties were analyzed by field (<em>H</em>) dependent magnetization (<em>M</em>), frequency-dependent permeability (<em>μ</em>), and permittivity (<em>ε</em>) measurements. Ti<small><sup>4+</sup></small> substitution in NZFO led to a decrease in magnetic saturation (<em>M</em><small><sub>s</sub></small>) and <em>μ</em> while the values of creased and improved the mismatching impedance (<em>Z</em>/<em>η</em><small><sub>0</sub></small> = (<em>μ</em>′/<em>ε</em>′)<small><sup>1/2</sup></small>). The lowest value of <em>M</em><small><sub>s</sub></small> (14 emu g<small><sup>−1</sup></small>) is achieved for the sample with <em>x</em> = 0.1 for which <em>μ</em> is also the lowest. Finally, a stable value of <em>Z</em>/<em>η</em><small><sub>0</sub></small> (∼4.0) has been obtained for the <em>x</em> = 0.10 sample over a wide range of frequencies (1–10 MHz), making it suitable as a miniaturizing device material in this frequency range.</p>","PeriodicalId":18242,"journal":{"name":"Materials Advances","volume":" 22","pages":" 9041-9054"},"PeriodicalIF":5.2,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/ma/d4ma00529e?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142598768","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Edible oils are prone to spoilage through aerial oxidation, leading to a reduction in their shelf life. In this study, we developed a nanocomposite biopolymer film designed for packaging edible oils. To enhance the antioxidant properties of the film, an extract from Moringa oleifera plants was obtained through solvent extraction and incorporated into the biopolymer. This infusion of plant extract bestowed antioxidant characteristics upon the resulting material. It was determined by GC–MS that Moringa oleifera water extract contains 9-octadecenamide, (Z)-(an Oleamide), which provides antioxidant properties. Additionally, cellulose nanofibers (CNF) were extracted from Terminalia arjuna plant fruits using the acid hydrolysis method. These CNFs were further introduced into the biopolymer to reinforce its mechanical properties of the biopolymer. The stability of the biopolymer film was evaluated in various edible oils (viz. mustard oil, olive oil, soybean oil, and sunflower oil), and the optimized nanocomposite film exhibited a tensile strength of approximately 44 MPa in the dry state. The antioxidant capacity was assessed using DPPH (2,2-diphenyl-1-picrylhydrazyl) and ABTS (2,2′-azina-bis(3-ethylbenzothiazoline-6-sulfonic acid)) free radical scavenging assays. The plant extract-based biopolymer nanocomposite film, specifically the (0.25CNF-4WME-SA) formulation, demonstrated the highest antioxidant activity, reaching 60.55% and 41.33% against ABTS and DPPH, respectively. The practical effectiveness of the 0.25CNF-4WME-SA film was further demonstrated through its application in packaging edible oil, showcasing its ability to scavenge free radicals generated during the storage of edible oil. The cytotoxicity of the fabricated film was evaluated using CC1 hepatocyte cells as an in vitro model. The developed nanocomposite material, incorporating plant extract, holds promise as an active packaging material for edible oils.
{"title":"Sodium alginate-nanocellulose-based active composite film for edible oils packaging applications†","authors":"Sazzadur Rahman, Chandramani Batsh, Shalini Gurumayam, Jagat Chandra Borah and Devasish Chowdhury","doi":"10.1039/D4MA00670D","DOIUrl":"https://doi.org/10.1039/D4MA00670D","url":null,"abstract":"<p >Edible oils are prone to spoilage through aerial oxidation, leading to a reduction in their shelf life. In this study, we developed a nanocomposite biopolymer film designed for packaging edible oils. To enhance the antioxidant properties of the film, an extract from <em>Moringa oleifera</em> plants was obtained through solvent extraction and incorporated into the biopolymer. This infusion of plant extract bestowed antioxidant characteristics upon the resulting material. It was determined by GC–MS that <em>Moringa oleifera</em> water extract contains 9-octadecenamide, (<em>Z</em>)-(an Oleamide), which provides antioxidant properties. Additionally, cellulose nanofibers (CNF) were extracted from <em>Terminalia arjuna</em> plant fruits using the acid hydrolysis method. These CNFs were further introduced into the biopolymer to reinforce its mechanical properties of the biopolymer. The stability of the biopolymer film was evaluated in various edible oils (<em>viz.</em> mustard oil, olive oil, soybean oil, and sunflower oil), and the optimized nanocomposite film exhibited a tensile strength of approximately 44 MPa in the dry state. The antioxidant capacity was assessed using DPPH (2,2-diphenyl-1-picrylhydrazyl) and ABTS (2,2′-azina-bis(3-ethylbenzothiazoline-6-sulfonic acid)) free radical scavenging assays. The plant extract-based biopolymer nanocomposite film, specifically the (0.25CNF-4WME-SA) formulation, demonstrated the highest antioxidant activity, reaching 60.55% and 41.33% against ABTS and DPPH, respectively. The practical effectiveness of the 0.25CNF-4WME-SA film was further demonstrated through its application in packaging edible oil, showcasing its ability to scavenge free radicals generated during the storage of edible oil. The cytotoxicity of the fabricated film was evaluated using CC1 hepatocyte cells as an <em>in vitro</em> model. The developed nanocomposite material, incorporating plant extract, holds promise as an active packaging material for edible oils.</p>","PeriodicalId":18242,"journal":{"name":"Materials Advances","volume":" 23","pages":" 9314-9329"},"PeriodicalIF":5.2,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/ma/d4ma00670d?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142694712","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Timur Sh. Atabaev, Dinara Askar, Zarina Baranchiyeva, Balnur A. Zhainsabayeva, Timur Elebessov, Moon Sung Kang, Bakyt Duisenbayeva, Ellina A. Mun, Tri Thanh Pham and Dong-Wook Han
Carbon dot-based radiocontrast agents have recently sparked the interest of researchers owing to their better contrasting capabilities, simple synthesis protocols, high colloidal stability, and good biocompatibility. In this study, we propose for the first time the synthesis of iodine-doped carbon dots (I-CDs) using low-cost reagents such as citric acid (C6H8O7), urea (CH4N2O) and potassium iodide (KI). The as-prepared I-CDs demonstrated excellent colloidal stability (with a zeta potential value of −64.7 mV), excitation-dependent fluorescent properties (with a maximum quantum yield of ∼8.9%), and a mean iodine concentration of ∼4.67 wt%. Notably, the as-prepared I-CDs displayed greater X-ray attenuation efficiency (42.87 HU mL mg−1) as compared to the commercially employed iopromide radiocontrast agent (30.98 HU mL mg−1). Furthermore, ATPase activity, cytotoxicity analysis with HeLa, NHDF, HEK293, and A549 cell lines, and live-cell imaging experiments of the Drosophila neuroblasts in intact brain lobes suggested high biocompatibility and nontoxicity of the prepared I-CDs. Overall, biocompatible and low-cost I-CDs show great promise as bifunctional radiocontrast and fluorescent agents for biomedical applications.
以碳点为基础的放射对比剂因其较好的对比能力、简单的合成方案、较高的胶体稳定性和良好的生物相容性,最近引发了研究人员的兴趣。在本研究中,我们首次提出使用柠檬酸(C6H8O7)、尿素(CH4N2O)和碘化钾(KI)等低成本试剂合成碘掺杂碳点(I-CDs)。所制备的 I-CD 具有优异的胶体稳定性(zeta 电位值为 -64.7 mV)、激发相关荧光特性(最大量子产率为 8.9%)和平均碘浓度为 4.67 wt%。值得注意的是,与市场上使用的碘普罗米德放射性对比剂(30.98 HU mL mg-1)相比,制备的 I-CD 具有更高的 X 射线衰减效率(42.87 HU mL mg-1)。此外,ATPase 活性、HeLa、NHDF、HEK293 和 A549 细胞系的细胞毒性分析以及果蝇神经细胞在完整脑叶中的活细胞成像实验表明,制备的 I-CD 具有很高的生物相容性和无毒性。总之,生物相容性好且成本低廉的 I-CDs 作为双功能放射对比剂和荧光剂在生物医学应用中大有可为。
{"title":"Biocompatible and low-cost iodine-doped carbon dots as a bifunctional fluorescent and radiocontrast agent for X-ray CT imaging†","authors":"Timur Sh. Atabaev, Dinara Askar, Zarina Baranchiyeva, Balnur A. Zhainsabayeva, Timur Elebessov, Moon Sung Kang, Bakyt Duisenbayeva, Ellina A. Mun, Tri Thanh Pham and Dong-Wook Han","doi":"10.1039/D4MA00823E","DOIUrl":"https://doi.org/10.1039/D4MA00823E","url":null,"abstract":"<p >Carbon dot-based radiocontrast agents have recently sparked the interest of researchers owing to their better contrasting capabilities, simple synthesis protocols, high colloidal stability, and good biocompatibility. In this study, we propose for the first time the synthesis of iodine-doped carbon dots (I-CDs) using low-cost reagents such as citric acid (C<small><sub>6</sub></small>H<small><sub>8</sub></small>O<small><sub>7</sub></small>), urea (CH<small><sub>4</sub></small>N<small><sub>2</sub></small>O) and potassium iodide (KI). The as-prepared I-CDs demonstrated excellent colloidal stability (with a zeta potential value of −64.7 mV), excitation-dependent fluorescent properties (with a maximum quantum yield of ∼8.9%), and a mean iodine concentration of ∼4.67 wt%. Notably, the as-prepared I-CDs displayed greater X-ray attenuation efficiency (42.87 HU mL mg<small><sup>−1</sup></small>) as compared to the commercially employed iopromide radiocontrast agent (30.98 HU mL mg<small><sup>−1</sup></small>). Furthermore, ATPase activity, cytotoxicity analysis with HeLa, NHDF, HEK293, and A549 cell lines, and live-cell imaging experiments of the <em>Drosophila</em> neuroblasts in intact brain lobes suggested high biocompatibility and nontoxicity of the prepared I-CDs. Overall, biocompatible and low-cost I-CDs show great promise as bifunctional radiocontrast and fluorescent agents for biomedical applications.</p>","PeriodicalId":18242,"journal":{"name":"Materials Advances","volume":" 22","pages":" 9000-9006"},"PeriodicalIF":5.2,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/ma/d4ma00823e?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142598764","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nandang Mufti, Olga Dilivia Ardilla, Erma Surya Yuliana, Retno Fitri Wulandari, Ahmad Taufiq, Henry Setiyanto, Muhammad Aziz, Ali Aqeel Salim, Risa Suryana and Wilman Septina
Efficiency improvement of heterogeneous silicon thin-film solar cells (SiTFSCs) remains challenging. Thus, single-walled carbon nanotube (SWCNT) and zinc oxide nanostructures (ZnO NCs) were integrated into Si thin films using the spray-spin coating approach to realize such solar cells. The effect of various annealing temperatures (100–175 °C) on the solar cells’ efficiency, structure, morphology, and absorbance was assessed. X-ray diffraction analysis confirmed the existence of highly crystalline wurtzite and hexagonal structures corresponding to ZnO and graphite with maximum nanocrystallite sizes of 51.92 nm. Scanning electron microscopy images of the samples showed uniform surface morphology without any aggregation. In addition, with the increase of the annealing temperature from 100 to 175 °C, the efficiency, porosity, optical absorbance bands, and band gap energy of the films were increased from 17.0–18.6%, 70–74.8%, 246–326 nm, and 2.0–2.5 eV, respectively. It was asserted that by controlling the annealing temperature, the overall performance of the proposed SWCNT/ZnO NC-integrated SiTFSC can be enhanced, contributing to the further advancement of high-performance Si-based photovoltaics.
{"title":"Improved performance of a SWCNT/ZnO nanostructure-integrated silicon thin-film solar cell: role of annealing temperature","authors":"Nandang Mufti, Olga Dilivia Ardilla, Erma Surya Yuliana, Retno Fitri Wulandari, Ahmad Taufiq, Henry Setiyanto, Muhammad Aziz, Ali Aqeel Salim, Risa Suryana and Wilman Septina","doi":"10.1039/D4MA00726C","DOIUrl":"https://doi.org/10.1039/D4MA00726C","url":null,"abstract":"<p >Efficiency improvement of heterogeneous silicon thin-film solar cells (SiTFSCs) remains challenging. Thus, single-walled carbon nanotube (SWCNT) and zinc oxide nanostructures (ZnO NCs) were integrated into Si thin films using the spray-spin coating approach to realize such solar cells. The effect of various annealing temperatures (100–175 °C) on the solar cells’ efficiency, structure, morphology, and absorbance was assessed. X-ray diffraction analysis confirmed the existence of highly crystalline wurtzite and hexagonal structures corresponding to ZnO and graphite with maximum nanocrystallite sizes of 51.92 nm. Scanning electron microscopy images of the samples showed uniform surface morphology without any aggregation. In addition, with the increase of the annealing temperature from 100 to 175 °C, the efficiency, porosity, optical absorbance bands, and band gap energy of the films were increased from 17.0–18.6%, 70–74.8%, 246–326 nm, and 2.0–2.5 eV, respectively. It was asserted that by controlling the annealing temperature, the overall performance of the proposed SWCNT/ZnO NC-integrated SiTFSC can be enhanced, contributing to the further advancement of high-performance Si-based photovoltaics.</p>","PeriodicalId":18242,"journal":{"name":"Materials Advances","volume":" 22","pages":" 9018-9031"},"PeriodicalIF":5.2,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/ma/d4ma00726c?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142598766","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pamburayi Mpofu, Houyem Hafdi, Jonas Lauridsen, Oscar Alm, Tommy Larsson and Henrik Pedersen
Dialkylamido compounds, such as tris-dimethylamido aluminum (TDMAA, Al(NMe2)3) and tetrakis-dimethylamido titanium (TDMAT, Ti(NMe2)4) are interesting precursors for depositing nitrides using atomic layer deposition (ALD) due to their high volatility and reactivity at low temperatures. In this study, we explored surface chemistry using mass spectrometry and discovered that the surface mechanisms involved β-hydride elimination and ligand decomposition, as well as transamination and hydrogenation reactions which facilitate ligand exchange. This is mainly based on the –N(Me)2 and HN(Me)2 detected during both TDMAA and NH3 pulses, and CH4 signals detected during the NH3 pulse stage. The expected reductive elimination of the two dimethylamido ligands, via a direct nitrogen–nitrogen coupling reaction was not observed, suggesting that it is less thermodynamically favorable compared to reduction by NH3. Arrhenius analysis between 150 and 300 °C found activation energies (Ea) = 27–30 kJ mol−1 and pre-exponential factors (A) = 3–5 s−1 for the reaction between TDMAA and NH3.
{"title":"A mass spectrometrical surface chemistry study of aluminum nitride ALD from tris-dimethylamido aluminum and ammonia†","authors":"Pamburayi Mpofu, Houyem Hafdi, Jonas Lauridsen, Oscar Alm, Tommy Larsson and Henrik Pedersen","doi":"10.1039/D4MA00922C","DOIUrl":"https://doi.org/10.1039/D4MA00922C","url":null,"abstract":"<p >Dialkylamido compounds, such as tris-dimethylamido aluminum (TDMAA, Al(NMe<small><sub>2</sub></small>)<small><sub>3</sub></small>) and tetrakis-dimethylamido titanium (TDMAT, Ti(NMe<small><sub>2</sub></small>)<small><sub>4</sub></small>) are interesting precursors for depositing nitrides using atomic layer deposition (ALD) due to their high volatility and reactivity at low temperatures. In this study, we explored surface chemistry using mass spectrometry and discovered that the surface mechanisms involved β-hydride elimination and ligand decomposition, as well as transamination and hydrogenation reactions which facilitate ligand exchange. This is mainly based on the –N(Me)<small><sub>2</sub></small> and HN(Me)<small><sub>2</sub></small> detected during both TDMAA and NH<small><sub>3</sub></small> pulses, and CH<small><sub>4</sub></small> signals detected during the NH<small><sub>3</sub></small> pulse stage. The expected reductive elimination of the two dimethylamido ligands, <em>via</em> a direct nitrogen–nitrogen coupling reaction was not observed, suggesting that it is less thermodynamically favorable compared to reduction by NH<small><sub>3</sub></small>. Arrhenius analysis between 150 and 300 °C found activation energies (<em>E</em><small><sub>a</sub></small>) = 27–30 kJ mol<small><sup>−1</sup></small> and pre-exponential factors (<em>A</em>) = 3–5 s<small><sup>−1</sup></small> for the reaction between TDMAA and NH<small><sub>3</sub></small>.</p>","PeriodicalId":18242,"journal":{"name":"Materials Advances","volume":" 23","pages":" 9259-9269"},"PeriodicalIF":5.2,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/ma/d4ma00922c?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142694708","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A. B. Mostert, S. Mattiello, S. Li, G. Perna, M. Lasalvia, P. F. Ambrico, J. V. Paulin, J. V. M. Lima, C. F. O. Graeff, J. W. Phua, M. Matta, A. J. Surman, R. Gunnella and M. Ambrico
Eumelanin is a black-brown biopigment that provides photoprotection and pigmentation in mammals, insects, and invertebrates. It can be obtained by oxidative polymerisation of 5,6-dihydroxyindole (DHI) and its 2-carboxylic acid (DHICA). Due to its unique physical and chemical properties and its biocompatibility, eumelanin is a promising biomaterial for applications in energy storage, biomedicine, and sensing. However, poor solubility in water and lack of sustainable and low-cost sources of eumelanin have so far limited the full exploitation of this biomaterial. Insect farming is rapidly emerging as an alternative source of eumelanin. Unlike other types of eumelanin, BSF eumelanin, which is extracted from the exoskeleton of the black soldier fly (BSF, Hermetia illucens), is water-dispersible; however, its fundamental chemical properties are not completely understood. Here, we report the characterisation of BSF eumelanin using various spectroscopy techniques. Contrary to what is known about other insect eumelanins, which are believed to contain exclusively DHI, our results indicate that BSF eumelanin may contain both DHI and DHICA moieties. We discuss the potential reasons for this discrepancy.
{"title":"Exploring the chemistry and composition of black soldier fly eumelanin, a material for a circular economy†","authors":"A. B. Mostert, S. Mattiello, S. Li, G. Perna, M. Lasalvia, P. F. Ambrico, J. V. Paulin, J. V. M. Lima, C. F. O. Graeff, J. W. Phua, M. Matta, A. J. Surman, R. Gunnella and M. Ambrico","doi":"10.1039/D4MA00825A","DOIUrl":"https://doi.org/10.1039/D4MA00825A","url":null,"abstract":"<p >Eumelanin is a black-brown biopigment that provides photoprotection and pigmentation in mammals, insects, and invertebrates. It can be obtained by oxidative polymerisation of 5,6-dihydroxyindole (DHI) and its 2-carboxylic acid (DHICA). Due to its unique physical and chemical properties and its biocompatibility, eumelanin is a promising biomaterial for applications in energy storage, biomedicine, and sensing. However, poor solubility in water and lack of sustainable and low-cost sources of eumelanin have so far limited the full exploitation of this biomaterial. Insect farming is rapidly emerging as an alternative source of eumelanin. Unlike other types of eumelanin, BSF eumelanin, which is extracted from the exoskeleton of the black soldier fly (BSF, <em>Hermetia illucens</em>), is water-dispersible; however, its fundamental chemical properties are not completely understood. Here, we report the characterisation of BSF eumelanin using various spectroscopy techniques. Contrary to what is known about other insect eumelanins, which are believed to contain exclusively DHI, our results indicate that BSF eumelanin may contain both DHI and DHICA moieties. We discuss the potential reasons for this discrepancy.</p>","PeriodicalId":18242,"journal":{"name":"Materials Advances","volume":" 22","pages":" 8986-8999"},"PeriodicalIF":5.2,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/ma/d4ma00825a?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142598763","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Josipa Sarjanović, Mateja Cader, Edi Topić, Marta Razum, Dominique Agustin, Mirta Rubčić, Luka Pavić and Jana Pisk
Polynuclear and mononuclear molybdenum(VI) complexes, coordinated with water or methanol, were synthesized using acyl-hydrazone ligands, derived from the reactions of 2-hydroxy-3-methoxybenzaldehyde with formic – (H2L1) or acetic acid hydrazide (H2L2). Characterization of the complexes was conducted utilizing advanced spectroscopic techniques and elemental analysis. Crystal and molecular structures of ligand H2L2, and complexes [MoO2(L1)(H2O)], [MoO2(L2)(MeOH)], together with (Hpy)2Mo8O26 were determined by single crystal X-ray diffraction. The thermogravimetry provided insights into the thermal stability and decomposition patterns of the complexes. In situ solid-state impedance spectroscopy was employed, revealing correlations between the electrical properties and the thermal and structural transformations of Mo complexes. This multifaceted approach enabled a profound understanding of the interplay between structure, thermal behaviour, and electrical characteristics. The polynuclear complex [MoO2(L1)]n exhibited remarkable conductivity, achieving values up to 10−8 (Ω cm)−1 at room temperature. This performance, compared to previously reported vanadium-based analogues, highlights its considerable potential for integration into electronic device manufacturing. Additionally, the catalytic efficiency of these newly synthesized molybdenum complexes was evaluated in linalool oxidation, alongside previously reported vanadium compounds, further demonstrating their promising applications in catalysis.
{"title":"Bifunctional molybdenum and vanadium materials: semiconductor properties for advanced electronics and catalytic efficiency in linalool oxidation†","authors":"Josipa Sarjanović, Mateja Cader, Edi Topić, Marta Razum, Dominique Agustin, Mirta Rubčić, Luka Pavić and Jana Pisk","doi":"10.1039/D4MA00790E","DOIUrl":"https://doi.org/10.1039/D4MA00790E","url":null,"abstract":"<p >Polynuclear and mononuclear molybdenum(<small>VI</small>) complexes, coordinated with water or methanol, were synthesized using acyl-hydrazone ligands, derived from the reactions of 2-hydroxy-3-methoxybenzaldehyde with formic – (H<small><sub>2</sub></small>L<small><sup>1</sup></small>) or acetic acid hydrazide (H<small><sub>2</sub></small>L<small><sup>2</sup></small>). Characterization of the complexes was conducted utilizing advanced spectroscopic techniques and elemental analysis. Crystal and molecular structures of ligand H<small><sub>2</sub></small>L<small><sup>2</sup></small>, and complexes [MoO<small><sub>2</sub></small>(L<small><sup>1</sup></small>)(H<small><sub>2</sub></small>O)], [MoO<small><sub>2</sub></small>(L<small><sup>2</sup></small>)(MeOH)], together with (Hpy)<small><sub>2</sub></small>Mo<small><sub>8</sub></small>O<small><sub>26</sub></small> were determined by single crystal X-ray diffraction. The thermogravimetry provided insights into the thermal stability and decomposition patterns of the complexes. <em>In situ</em> solid-state impedance spectroscopy was employed, revealing correlations between the electrical properties and the thermal and structural transformations of Mo complexes. This multifaceted approach enabled a profound understanding of the interplay between structure, thermal behaviour, and electrical characteristics. The polynuclear complex [MoO<small><sub>2</sub></small>(L<small><sup>1</sup></small>)]<small><sub><em>n</em></sub></small> exhibited remarkable conductivity, achieving values up to 10<small><sup>−8</sup></small> (Ω cm)<small><sup>−1</sup></small> at room temperature. This performance, compared to previously reported vanadium-based analogues, highlights its considerable potential for integration into electronic device manufacturing. Additionally, the catalytic efficiency of these newly synthesized molybdenum complexes was evaluated in linalool oxidation, alongside previously reported vanadium compounds, further demonstrating their promising applications in catalysis.</p>","PeriodicalId":18242,"journal":{"name":"Materials Advances","volume":" 23","pages":" 9391-9402"},"PeriodicalIF":5.2,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/ma/d4ma00790e?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142694720","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}