首页 > 最新文献

Materials Science for Energy Technologies最新文献

英文 中文
Advancements in thermoelectric materials: A comprehensive review 热电材料的进步:全面回顾
Q1 Materials Science Pub Date : 2024-01-01 DOI: 10.1016/j.mset.2024.06.002
Syed Irfan , Zhiyuan Yan , Sadaf Bashir Khan

Due to their broad range of uses in thermo-electric devices, aerospace, and other industries, thermoelectric materials have garnered much attention. To expand the scope of their applications, thermoelectric materials’ thermoelectric characteristics must be effectively improved. Improved thermoelectrical properties with advancement is one of the critical strategies. Even though it is challenging to do small-scale measurements, it is crucial to precisely gauge the thermoelectric characteristics of varying materials (organic/inorganic/MXenes). Two-dimensional materials have drawn much interest for technological applications because of their unique properties. MXenes are a class of two-dimensional (2D) transition metal carbides, nitrides, and carbonitrides that have garnered significant attention for their promising properties by showing high electrical conductivity, controllable thermal conductivity, and high Seebeck coefficient value making suitable candidates for thermoelectric energy conversion. Thermal and electrical parameters are currently measured using a variety of techniques. However, the advanced thermoelectric properties with advanced thermoelectric materials, such as thermopower, thermal conductance, and electrical conductivity, are compiled in this review. Also outlined are measurement techniques for thermoelectric properties of selected advanced and 2D materials. Lastly, the challenges of integrated measurement methods are suggested, and a few integrated measurement solutions that work well with many inorganic/organic composites and two-dimensional materials MXenes are most proposed.

由于热电材料在热电设备、航空航天和其他工业领域的广泛应用,热电材料备受关注。为了扩大其应用范围,必须有效改善热电材料的热电特性。提高热电特性的先进性是关键策略之一。尽管进行小规模测量具有挑战性,但精确测量不同材料(有机/无机/二甲苯)的热电特性至关重要。二维材料因其独特的性能而在技术应用中备受关注。MXenes 是一类二维(2D)过渡金属碳化物、氮化物和碳氮化物,因其具有高导电性、可控热导率和高塞贝克系数值等良好特性而备受关注,是热电能量转换的理想候选材料。目前,人们使用各种技术测量热参数和电参数。然而,本综述汇编了先进热电材料的先进热电特性,如热电功率、热导率和电导率。此外,还概述了某些先进材料和二维材料的热电性能测量技术。最后,提出了综合测量方法所面临的挑战,并提出了一些可与许多无机/有机复合材料和二维材料 MXenes 完美配合的综合测量解决方案。
{"title":"Advancements in thermoelectric materials: A comprehensive review","authors":"Syed Irfan ,&nbsp;Zhiyuan Yan ,&nbsp;Sadaf Bashir Khan","doi":"10.1016/j.mset.2024.06.002","DOIUrl":"https://doi.org/10.1016/j.mset.2024.06.002","url":null,"abstract":"<div><p>Due to their broad range of uses in thermo-electric devices, aerospace, and other industries, thermoelectric materials have garnered much attention. To expand the scope of their applications, thermoelectric materials’ thermoelectric characteristics must be effectively improved. Improved thermoelectrical properties with advancement is one of the critical strategies. Even though it is challenging to do small-scale measurements, it is crucial to precisely gauge the thermoelectric characteristics of varying materials (organic/inorganic/MXenes). Two-dimensional materials have drawn much interest for technological applications because of their unique properties. MXenes are a class of two-dimensional (2D) transition metal carbides, nitrides, and carbonitrides that have garnered significant attention for their promising properties by showing high electrical conductivity, controllable thermal conductivity, and high Seebeck coefficient value making suitable candidates for thermoelectric energy conversion. Thermal and electrical parameters are currently measured using a variety of techniques. However, the advanced thermoelectric properties with advanced thermoelectric materials, such as thermopower, thermal conductance, and electrical conductivity, are compiled in this review. Also outlined are measurement techniques for thermoelectric properties of selected advanced and 2D materials. Lastly, the challenges of integrated measurement methods are suggested, and a few integrated measurement solutions that work well with many inorganic/organic composites and two-dimensional materials MXenes are most proposed.</p></div>","PeriodicalId":18283,"journal":{"name":"Materials Science for Energy Technologies","volume":"7 ","pages":"Pages 349-373"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2589299124000107/pdfft?md5=75913d3e568946a98e0349556f130036&pid=1-s2.0-S2589299124000107-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141313417","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Making of Belanda Teak wood powder with bentonite as ceramic material 用膨润土作为陶瓷材料制作贝兰达柚木粉
Q1 Materials Science Pub Date : 2024-01-01 DOI: 10.1016/j.mset.2024.03.001
Martha Rianna , Regina Aperita Lusiana Harahap , Putri Cahaya Situmorang , Timbangen Sembiring , Timbang Pangaribuan , Muhammad Khalid Hussain , Eko Arief Setiadi , Anggito P. Tetuko , Perdamean Sebayang

In this research has been conducted on manufacturing ceramic materials based on Belanda Teak wood powder and bentonite using Solid State Reaction method. The composition variation of Belanda Teak wood powder with bentonite is 4:5, 5:5 and 6:5, then activated at 1000°C. Then, mixed using ball milling at 500 rpm for 30 min. Density analysis was conducted to determine the density. The density analysis obtained was 2.20 gr/cm3, 2.32 gr/cm3, and 2.33 gr/cm3 for samples 4:5, 5:5, and 6:5. The characterization analysis was SEM-EDX, XRD, and DTA. The results of XRD analysis obtained a hexagonal crystal structure. The size of the crystal diameter will increase as the teak wood powder mass ratio decreases in each sample. SEM-EDX results obtained morphology in the 4:5 composition is better than the 5:5 and 6:5 samples, and the optimum composition spectrum is 6:5, which has a maximum weight and atomic percentage and there are no other elements mixed beside the main elements. The DTA results stated that the sample phase start from 95.05°C, and there is an endothermic peak at a temperature of 427.54 °C with a mass loss of 9.14 mg and there is an increase in temperature to 534.29 °C with a mass loss of 4.34 mg due to recrystallization. Based on the results of this research, these materials can be recommended to become making ceramics materials.

本研究采用固态反应法,以贝兰达柚木粉和膨润土为基础制造陶瓷材料。贝朗达柚木粉与膨润土的成分变化为 4:5、5:5 和 6:5,然后在 1000°C 下活化。然后,在 500 rpm 的转速下混合 30 分钟。进行密度分析以确定密度。样品 4:5、5:5 和 6:5 的密度分别为 2.20 gr/cm3、2.32 gr/cm3 和 2.33 gr/cm3。表征分析包括 SEM-EDX、XRD 和 DTA。XRD 分析结果表明,样品呈六方晶体结构。随着每个样品中柚木粉质量比的降低,晶体直径的尺寸也会增大。SEM-EDX 分析结果表明,4:5 成分的样品形态优于 5:5 和 6:5 样品,最佳成分谱为 6:5,其重量和原子百分比最大,且除主要元素外没有其他元素混杂。DTA 结果表明,样品相从 95.05 ℃ 开始,在 427.54 ℃ 出现一个内热峰,质量损失为 9.14 毫克,由于再结晶,温度上升到 534.29 ℃,质量损失为 4.34 毫克。根据这项研究的结果,这些材料可推荐用于制作陶瓷材料。
{"title":"Making of Belanda Teak wood powder with bentonite as ceramic material","authors":"Martha Rianna ,&nbsp;Regina Aperita Lusiana Harahap ,&nbsp;Putri Cahaya Situmorang ,&nbsp;Timbangen Sembiring ,&nbsp;Timbang Pangaribuan ,&nbsp;Muhammad Khalid Hussain ,&nbsp;Eko Arief Setiadi ,&nbsp;Anggito P. Tetuko ,&nbsp;Perdamean Sebayang","doi":"10.1016/j.mset.2024.03.001","DOIUrl":"10.1016/j.mset.2024.03.001","url":null,"abstract":"<div><p>In this research has been conducted on manufacturing ceramic materials based on Belanda Teak wood powder and bentonite using Solid State Reaction method. The composition variation of Belanda Teak wood powder with bentonite is 4:5, 5:5 and 6:5, then activated at 1000°C. Then, mixed using ball milling at 500 rpm for 30 min. Density analysis was conducted to determine the density. The density analysis obtained was 2.20 gr/cm<sup>3</sup>, 2.32 gr/cm<sup>3</sup>, and 2.33 gr/cm<sup>3</sup> for samples 4:5, 5:5, and 6:5. The characterization analysis was SEM-EDX, XRD, and DTA. The results of XRD analysis obtained a hexagonal crystal structure. The size of the crystal diameter will increase as the teak wood powder mass ratio decreases in each sample. SEM-EDX results obtained morphology in the 4:5 composition is better than the 5:5 and 6:5 samples, and the optimum composition spectrum is 6:5, which has a maximum weight and atomic percentage and there are no other elements mixed beside the main elements. The DTA results stated that the sample phase start from 95.05°C, and there is an endothermic peak at a temperature of 427.54 °C with a mass loss of 9.14 mg and there is an increase in temperature to 534.29 °C with a mass loss of 4.34 mg due to recrystallization. Based on the results of this research, these materials can be recommended to become making ceramics materials.</p></div>","PeriodicalId":18283,"journal":{"name":"Materials Science for Energy Technologies","volume":"7 ","pages":"Pages 282-286"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S258929912400003X/pdfft?md5=5bca8ca116135d6e3336fe02e8e2cfa9&pid=1-s2.0-S258929912400003X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140278139","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Activated carbon from biomass waste candlenut shells (Aleurites moluccana) doped ZIF-67/Fe3O4 as advanced materials for supercapacitor 掺杂 ZIF-67/Fe3O4 的生物质废烛台壳(Aleurites moluccana)活性炭作为超级电容器的先进材料
Q1 Materials Science Pub Date : 2024-01-01 DOI: 10.1016/j.mset.2024.07.004
Muhammadin Hamid , Noor Haida Mohd Kaus , Syahrul Humaidi , Isnaeni Isnaeni , Amru Daulay , Indah Revita Saragi

Biomass waste candlenut shells, such as adsorbent carbon, can be utilized. Fe3O4 has great electrical conductivity, and ZIF-67 has diverse pores. Activated carbon, Fe3O4, and ZIF-67 were prepared to obtain a combination of these materials using the co-precipitation method. FTIR spectra show a peak at 1341 cm−1, which depicts the Fe-O bending vibration. At peak 1558 cm−1 shows C = N streching. The top of 1412 cm−1 and 991 cm−1 extend the full ring. The sp2 aromatic peak may be seen at 1150 cm-1C-H bond. The surface area is 17.76 m2/g, and the pore size is 14.99 nm. Coercivity is 119.63 Oe, which shows a strong magnet. The highlight of the study was activated carbon from biomass waste candlenut shells (Aleurites moluccana) doped ZIF-67 supported Fe3O4 with specific capacitance shows high. The diffusion percentage shows fewer electrolyte ions entering the active material, and resistance also showed low results. It can increase the percentage of capacitive ions, thus improving the electrode. Electrochemical results show 1335F/g of high specific capacity at 1 A/g current density. It indicates a suitable candidate material for supercapacitor electrodes.

生物质废烛台壳可用作吸附碳。Fe3O4 具有很强的导电性,ZIF-67 具有多种孔隙。利用共沉淀法制备了活性炭、Fe3O4 和 ZIF-67,得到了这些材料的组合。傅立叶变换红外光谱显示,在 1341 cm-1 处有一个峰,描述了 Fe-O 的弯曲振动。1558 cm-1 处的峰值显示了 C = N 的条纹。1412 cm-1 和 991 cm-1 顶部延伸了整个环。在 1150 cm-1C-H 键处可以看到 sp2 芳香族峰。表面积为 17.76 m2/g,孔径为 14.99 nm。矫顽力为 119.63 Oe,显示出较强的磁性。该研究的亮点是生物质废弃物蜡烛果壳(Aleurites moluccana)掺杂 ZIF-67 的活性炭,其支持的 Fe3O4 具有较高的比电容。扩散百分比表明,进入活性材料的电解质离子较少,电阻也较低。它可以增加电容离子的百分比,从而改善电极。电化学结果显示,在电流密度为 1 A/g 时,比容量高达 1335F/g。这表明它是超级电容器电极的合适候选材料。
{"title":"Activated carbon from biomass waste candlenut shells (Aleurites moluccana) doped ZIF-67/Fe3O4 as advanced materials for supercapacitor","authors":"Muhammadin Hamid ,&nbsp;Noor Haida Mohd Kaus ,&nbsp;Syahrul Humaidi ,&nbsp;Isnaeni Isnaeni ,&nbsp;Amru Daulay ,&nbsp;Indah Revita Saragi","doi":"10.1016/j.mset.2024.07.004","DOIUrl":"https://doi.org/10.1016/j.mset.2024.07.004","url":null,"abstract":"<div><p>Biomass waste candlenut shells, such as adsorbent carbon, can be utilized. Fe<sub>3</sub>O<sub>4</sub> has great electrical conductivity, and ZIF-67 has diverse pores. Activated carbon, Fe<sub>3</sub>O<sub>4</sub>, and ZIF-67 were prepared to obtain a combination of these materials using the co-precipitation method. FTIR spectra show a peak at 1341 cm<sup>−1</sup>, which depicts the Fe-O bending vibration. At peak 1558 cm<sup>−1</sup> shows C = N streching. The top of 1412 cm<sup>−1</sup> and 991 cm<sup>−1</sup> extend the full ring. The sp<sup>2</sup> aromatic peak may be seen at 1150 cm<sup>-1</sup>C-H bond. The surface area is 17.76 m<sup>2</sup>/g, and the pore size is 14.99 nm. Coercivity is 119.63 Oe, which shows a strong magnet. The highlight of the study was activated carbon from biomass waste candlenut shells (<em>Aleurites moluccana</em>) doped ZIF-67 supported Fe<sub>3</sub>O<sub>4</sub> with specific capacitance shows high. The diffusion percentage shows fewer electrolyte ions entering the active material, and resistance also showed low results. It can increase the percentage of capacitive ions, thus improving the electrode. Electrochemical results show 1335F/g of high specific capacity at 1 A/g current density. It indicates a suitable candidate material for supercapacitor electrodes.</p></div>","PeriodicalId":18283,"journal":{"name":"Materials Science for Energy Technologies","volume":"7 ","pages":"Pages 381-390"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2589299124000144/pdfft?md5=54cf7f9d6f6931862676e2c336dc74dc&pid=1-s2.0-S2589299124000144-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141605484","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nanoparticle-enhanced biodiesel blends: A comprehensive review on improving engine performance and emissions 纳米颗粒增强生物柴油混合物:关于改善发动机性能和排放的全面综述
Q1 Materials Science Pub Date : 2024-01-01 DOI: 10.1016/j.mset.2024.02.001
Veeranna Modi , Prasad B. Rampure , Atul Babbar , Raman Kumar , Madeva Nagaral , Abhijit Bhowmik , Raman Kumar , Shatrudhan Pandey , S.M. Mozammil Hasnain , Muhammad Mahmood Ali , Muhammad Nasir Bashir

Environmental sustainability concerns have led to exploring alternative fuels like biodiesel in transportation. However, biodiesel engines emit pollutants like NOx, CO, and PM, posing health and environmental risks. This review explores the use of Aluminium Oxide (Al2O3), Ruthenium Oxide (RuO2), Titanium Oxide (TiO2), Cerium Oxide (CeO2), Graphene Oxide, Multi-walled Carbon Nanotubes (CNT) and other nanoparticles, in biodiesel engine. It focuses on their unique properties, characterization, emission control, environmental impact, and engine performance. The study emphasizes the significance of different biodiesel blends, compositions, and nanoparticle additions in determining engine performance and emissions. Results vary based on nanoparticle type, size, concentration, and blend composition. The review examines the impact of nanoparticles on various aspects of biodiesel blends, including density, viscosity, cetane number, calorific value, and flash points. It found that nanoparticle additives significantly influence Brake Thermal Efficiency and combustion efficiency. The study also found that nanoparticle-enhanced biodiesel blends have improved ignition properties, faster evaporation, higher oxygen content, and elevated cetane numbers, leading to cleaner combustion and more environmentally friendly engine operation. The research supports the beneficial effects of nanoparticles on biodiesel characteristics and emissions reduction. The review suggests that nanoparticles in biodiesel engines can improve fuel characteristics, engine performance, and emissions reduction but cautions against potential environmental and health risks. The findings suggest further research and optimization for sustainable and efficient engine performance in pursuing greener transportation fuels, highlighting the potential of nanoparticles in biodiesel blends.

出于对环境可持续性的考虑,人们开始探索生物柴油等替代燃料在交通运输中的应用。然而,生物柴油发动机会排放氮氧化物、一氧化碳和可吸入颗粒物等污染物,带来健康和环境风险。本综述探讨了氧化铝(Al2O3)、氧化钌(RuO2)、氧化钛(TiO2)、氧化铈(CeO2)、氧化石墨烯、多壁碳纳米管(CNT)和其他纳米颗粒在生物柴油发动机中的应用。研究重点是它们的独特性质、表征、排放控制、环境影响和发动机性能。研究强调了不同的生物柴油混合物、成分和纳米颗粒添加量在决定发动机性能和排放方面的重要性。结果因纳米粒子的类型、大小、浓度和混合成分而异。综述研究了纳米颗粒对生物柴油混合物各方面的影响,包括密度、粘度、十六烷值、热值和闪点。研究发现,纳米颗粒添加剂对制动热效率和燃烧效率有显著影响。研究还发现,纳米颗粒增强型生物柴油混合物具有更好的点火性能、更快的蒸发速度、更高的含氧量和更高的十六烷值,从而实现更清洁的燃烧和更环保的发动机运行。研究支持纳米粒子对生物柴油特性和减排的有益影响。综述表明,生物柴油发动机中的纳米颗粒可以改善燃料特性、发动机性能和减排效果,但要警惕潜在的环境和健康风险。研究结果建议进一步研究和优化可持续和高效的发动机性能,以追求更环保的运输燃料,同时强调了纳米颗粒在生物柴油混合物中的潜力。
{"title":"Nanoparticle-enhanced biodiesel blends: A comprehensive review on improving engine performance and emissions","authors":"Veeranna Modi ,&nbsp;Prasad B. Rampure ,&nbsp;Atul Babbar ,&nbsp;Raman Kumar ,&nbsp;Madeva Nagaral ,&nbsp;Abhijit Bhowmik ,&nbsp;Raman Kumar ,&nbsp;Shatrudhan Pandey ,&nbsp;S.M. Mozammil Hasnain ,&nbsp;Muhammad Mahmood Ali ,&nbsp;Muhammad Nasir Bashir","doi":"10.1016/j.mset.2024.02.001","DOIUrl":"https://doi.org/10.1016/j.mset.2024.02.001","url":null,"abstract":"<div><p>Environmental sustainability concerns have led to exploring alternative fuels like biodiesel in transportation. However, biodiesel engines emit pollutants like NOx, CO, and PM, posing health and environmental risks. This review explores the use of Aluminium Oxide (Al<sub>2</sub>O<sub>3</sub>), Ruthenium Oxide (RuO<sub>2</sub>), Titanium Oxide (TiO<sub>2</sub>), Cerium Oxide (CeO<sub>2</sub>), Graphene Oxide, Multi-walled Carbon Nanotubes (CNT) and other nanoparticles, in biodiesel engine. It focuses on their unique properties, characterization, emission control, environmental impact, and engine performance. The study emphasizes the significance of different biodiesel blends, compositions, and nanoparticle additions in determining engine performance and emissions. Results vary based on nanoparticle type, size, concentration, and blend composition. The review examines the impact of nanoparticles on various aspects of biodiesel blends, including density, viscosity, cetane number, calorific value, and flash points. It found that nanoparticle additives significantly influence Brake Thermal Efficiency and combustion efficiency. The study also found that nanoparticle-enhanced biodiesel blends have improved ignition properties, faster evaporation, higher oxygen content, and elevated cetane numbers, leading to cleaner combustion and more environmentally friendly engine operation. The research supports the beneficial effects of nanoparticles on biodiesel characteristics and emissions reduction. The review suggests that nanoparticles in biodiesel engines can improve fuel characteristics, engine performance, and emissions reduction but cautions against potential environmental and health risks. The findings suggest further research and optimization for sustainable and efficient engine performance in pursuing greener transportation fuels, highlighting the potential of nanoparticles in biodiesel blends.</p></div>","PeriodicalId":18283,"journal":{"name":"Materials Science for Energy Technologies","volume":"7 ","pages":"Pages 257-273"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2589299124000016/pdfft?md5=c24d83020cd5bfbc20a4a073aec98281&pid=1-s2.0-S2589299124000016-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140000095","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The brief study of ZnO/PEDOT:PSS counter electrode in DSSC Based on solid electrolyte YSZ 基于固体电解质 YSZ 的 DSSC 中 ZnO/PEDOT:PSS 对电极的简要研究
Q1 Materials Science Pub Date : 2024-01-01 DOI: 10.1016/j.mset.2024.04.003
Anissa Chairani Alfin Nadhira , Nandang Mufti , Muhammad Safwan Aziz , Eprilia Trikusuma Sari , Erma Surya Yuliana , M. Tommy Hasan Abadi , Atika Sari Puspita Dewi , Poppy Puspitasari , Markus Diantoro , Henry Setiyanto

Dye-Sensitized Solar Cell (DSSC) is a photovoltaic technology that is eco-friendly, has affordable costs, an easy fabrication process, and high power conversion efficiency. The application of solid electrolytes in DSSC is a promising option compared to using liquid electrolytes because liquid electrolytes easily cause corrosion on the photoanode and counter electrode. The role of the counter electrode in DSSC is crucial to speed up the electron transfer process to enhance the performance of DSSC devices. Much research on DSSC still uses a lot of platinum and graphene which are relatively expensive and supplies are limited. Therefore, this research will develop a low-cost and easy to fabricate counter electrode made of ZnO/PEDOT:PSS composite. Adding ZnO in PEDOT:PSS polymer can obtain higher catalytic activity, that can accelerate oxidation–reduction reactions to improve the performance of DSSC solar cells. From the results of this study, it can be concluded that the addition of ZnO mass to the ZnO/PEDOT: PSS composite can increase lattice parameters, crystal size, porosity values, and light absorbance. Based on the I-V testing, it shows that the addition of ZnO mass to the ZnO/PEDOT:PSS composite results in the highest efficiency of 3.29%.

染料敏化太阳能电池(DSSC)是一种光伏技术,具有环保、成本低廉、制造工艺简单、功率转换效率高等优点。与使用液态电解质相比,在 DSSC 中应用固态电解质是一种很有前景的选择,因为液态电解质容易对光阳极和对电极造成腐蚀。对电极在 DSSC 中的作用对于加快电子转移过程以提高 DSSC 器件的性能至关重要。有关 DSSC 的许多研究仍在使用大量的铂和石墨烯,而这两种材料相对昂贵且供应有限。因此,本研究将开发一种由 ZnO/PEDOT:PSS 复合材料制成的低成本且易于制造的对电极。在 PEDOT:PSS 聚合物中添加氧化锌可以获得更高的催化活性,从而加速氧化还原反应,提高 DSSC 太阳能电池的性能。从本研究的结果可以得出结论,在 ZnO/PEDOT:PSS 复合材料中添加大量 ZnO 可以增加晶格:PSS 复合材料可以增加晶格参数、晶体尺寸、孔隙率值和光吸收率。根据 I-V 测试,在 ZnO/PEDOT:PSS 复合材料中添加氧化锌后,效率最高,达到 3.29%。
{"title":"The brief study of ZnO/PEDOT:PSS counter electrode in DSSC Based on solid electrolyte YSZ","authors":"Anissa Chairani Alfin Nadhira ,&nbsp;Nandang Mufti ,&nbsp;Muhammad Safwan Aziz ,&nbsp;Eprilia Trikusuma Sari ,&nbsp;Erma Surya Yuliana ,&nbsp;M. Tommy Hasan Abadi ,&nbsp;Atika Sari Puspita Dewi ,&nbsp;Poppy Puspitasari ,&nbsp;Markus Diantoro ,&nbsp;Henry Setiyanto","doi":"10.1016/j.mset.2024.04.003","DOIUrl":"10.1016/j.mset.2024.04.003","url":null,"abstract":"<div><p>Dye-Sensitized Solar Cell (DSSC) is a photovoltaic technology that is eco-friendly, has affordable costs, an easy fabrication process, and high power conversion efficiency. The application of solid electrolytes in DSSC is a promising option compared to using liquid electrolytes because liquid electrolytes easily cause corrosion on the photoanode and counter electrode. The role of the counter electrode in DSSC is crucial to speed up the electron transfer process to enhance the performance of DSSC devices. Much research on DSSC still uses a lot of platinum and graphene which are relatively expensive and supplies are limited. Therefore, this research will develop a low-cost and easy to fabricate counter electrode made of ZnO/PEDOT:PSS composite. Adding ZnO in PEDOT:PSS polymer can obtain higher catalytic activity, that can accelerate oxidation–reduction reactions to improve the performance of DSSC solar cells. From the results of this study, it can be concluded that the addition of ZnO mass to the ZnO/PEDOT: PSS composite can increase lattice parameters, crystal size, porosity values, and light absorbance. Based on the I-V testing, it shows that the addition of ZnO mass to the ZnO/PEDOT:PSS composite results in the highest efficiency of 3.29%.</p></div>","PeriodicalId":18283,"journal":{"name":"Materials Science for Energy Technologies","volume":"7 ","pages":"Pages 309-317"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2589299124000065/pdfft?md5=8bfe14768ca810229cb9a9fd84687899&pid=1-s2.0-S2589299124000065-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140796075","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Photocatalytic performance of Fe3O4-TiO2 in the degradation of methylene blue dye: Optimizing the usability of natural iron sand Fe3O4-TiO2 在降解亚甲基蓝染料中的光催化性能:优化天然铁砂的可用性
Q1 Materials Science Pub Date : 2024-01-01 DOI: 10.1016/j.mset.2024.06.001
Sri Nengsih , Syahrun Nur Abdulmadjid , Mursal Mursal , Zulkarnain Jalil

Methylene blue dye is still widely used as a clothing dye in the textile industry. Therefore, it is necessary to process this dye waste before it enters water bodies so that it does not damage the environment. The aim of this research was to optimize the function of magnetite (Fe3O4) extracted from iron sand combined with TiO2 for degrading methylene blue dye. The iron sand was extracted using a bar magnet, sieved, washed, milled, and dried. Iron sand (20 g) was converted into magnetite using the co-precipitation method with a stirring speed of 800 rpm at a temperature of 80 °C for 30 min. Magnetite was mixed with TiO2 with 30 % ethanol using a mechanical stirring method. The characteristics of Fe3O4-TiO2 photocatalyst were tested using XRD, SEM-EDX and VSM. According to the XRD data, the crystal size of the Fe3O4-TiO2 photocatalyst was below 40 nm. The presence of Fe and Ti in the photocatalyst material and their even distribution were determined by SEM-EDX testing. Through VSM, it was confirmed that soft magnetic properties were present in this material. The performance of the Fe3O4-TiO2 photocatalyst in the degradation of methylene blue dye was analyzed using a UV–Vis spectrophotometer. The test results showed that the performance of the photocatalyst improved as the contact time increased and was marked by a decrease in the optical absorption intensity; the best performance of the Fe3O4-TiO2 photocatalyst reached 93 %. Therefore, it can be concluded that iron sand as part of the photocatalyst material, play a role in the photodegradation of methylene blue dye.

亚甲基蓝染料仍被纺织业广泛用作服装染料。因此,有必要在这种染料废料进入水体之前对其进行处理,以免对环境造成破坏。本研究旨在优化从铁砂中提取的磁铁矿(Fe3O4)与二氧化钛结合降解亚甲基蓝染料的功能。使用条形磁铁提取铁砂,然后过筛、洗涤、研磨和干燥。使用共沉淀法将铁砂(20 克)转化为磁铁矿,搅拌速度为 800 转/分钟,温度为 80 ℃,时间为 30 分钟。用机械搅拌法将磁铁矿与含 30% 乙醇的 TiO2 混合。利用 XRD、SEM-EDX 和 VSM 测试了 Fe3O4-TiO2 光催化剂的特性。根据 XRD 数据,Fe3O4-TiO2 光催化剂的晶体尺寸低于 40 纳米。通过 SEM-EDX 测试确定了光催化剂材料中铁和钛的存在及其均匀分布。通过 VSM,证实了这种材料具有软磁特性。使用紫外可见分光光度计分析了 Fe3O4-TiO2 光催化剂降解亚甲基蓝染料的性能。测试结果表明,光催化剂的性能随着接触时间的延长而提高,并以光吸收强度的下降为标志;Fe3O4-TiO2 光催化剂的最佳性能达到了 93%。因此,可以得出结论,铁砂作为光催化剂材料的一部分,在亚甲基蓝染料的光降解中发挥了作用。
{"title":"Photocatalytic performance of Fe3O4-TiO2 in the degradation of methylene blue dye: Optimizing the usability of natural iron sand","authors":"Sri Nengsih ,&nbsp;Syahrun Nur Abdulmadjid ,&nbsp;Mursal Mursal ,&nbsp;Zulkarnain Jalil","doi":"10.1016/j.mset.2024.06.001","DOIUrl":"10.1016/j.mset.2024.06.001","url":null,"abstract":"<div><p>Methylene blue dye is still widely used as a clothing dye in the textile industry. Therefore, it is necessary to process this dye waste before it enters water bodies so that it does not damage the environment. The aim of this research was to optimize the function of magnetite (Fe<sub>3</sub>O<sub>4</sub>) extracted from iron sand combined with TiO<sub>2</sub> for degrading methylene blue dye. The iron sand was extracted using a bar magnet, sieved, washed, milled, and dried. Iron sand (20 g) was converted into magnetite using the co-precipitation method with a stirring speed of 800 rpm at a temperature of 80 °C for 30 min. Magnetite was mixed with TiO<sub>2</sub> with 30 % ethanol using a mechanical stirring method. The characteristics of Fe<sub>3</sub>O<sub>4</sub>-TiO<sub>2</sub> photocatalyst were tested using XRD, SEM-EDX and VSM. According to the XRD data, the crystal size of the Fe<sub>3</sub>O<sub>4</sub>-TiO<sub>2</sub> photocatalyst was below 40 nm. The presence of Fe and Ti in the photocatalyst material and their even distribution were determined by SEM-EDX testing. Through VSM, it was confirmed that soft magnetic properties were present in this material. The performance of the Fe<sub>3</sub>O<sub>4</sub>-TiO<sub>2</sub> photocatalyst in the degradation of methylene blue dye was analyzed using a UV–Vis spectrophotometer. The test results showed that the performance of the photocatalyst improved as the contact time increased and was marked by a decrease in the optical absorption intensity; the best performance of the Fe<sub>3</sub>O<sub>4</sub>-TiO<sub>2</sub> photocatalyst reached 93 %. Therefore, it can be concluded that iron sand as part of the photocatalyst material, play a role in the photodegradation of methylene blue dye.</p></div>","PeriodicalId":18283,"journal":{"name":"Materials Science for Energy Technologies","volume":"7 ","pages":"Pages 374-380"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2589299124000090/pdfft?md5=d9d3332c0fd92e7afa8de3ede89fc096&pid=1-s2.0-S2589299124000090-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141396133","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Production of biochar from waste biomass using slow pyrolysis: Studies of the effect of pyrolysis temperature and holding time on biochar yield and properties 利用缓慢热解从废弃生物质中生产生物炭:研究热解温度和保温时间对生物炭产量和特性的影响
Q1 Materials Science Pub Date : 2024-01-01 DOI: 10.1016/j.mset.2024.05.002
Karthik Kumar Byappanahalli Suresh Babu , Mukesha Nataraj , Mahesh Tayappa , Yash Vyas , Ranjeet Kumar Mishra , Bishnu Acharya

The present study deals with developing biochar from the waste biomass using slow pyrolysis at dynamic temperatures (400, 600, and 800 °C) and holding times (30, 45, and 60 min). The produced biochars were characterized by their thermal, physical, and chemical properties. The biomass characterization confirmed its candidacy for being used as a biochar feedstock. An XRF study of ash content confirmed that biomass has a lower possibility of slagging and fouling issues. A kinetic study of biomass confirmed that activation energy increased substantially (34.37–90.34 and 22.74–63.92 kJ mol−1 for MWS and CNW, respectively) by varying the reaction order. The outcomes of the pyrolysis process revealed that elevating the pyrolysis temperature from 400 to 800 °C resulted in a decrease in the yield of biochar, accompanied by an increase in its carbon content. XRD study of biochar established that rising pyrolysis temperature caused a change in the mineral content of biochar. HHV and bulk density of biochar were found to be increased by increasing pyrolysis temperature from 400–800 °C. Moreover, it was observed that BET surface area and Zeta potential increased as the pyrolysis temperature rose from 400–800 °C. FE-SEM study of biochar, established by increasing temperature from 400–800 °C, accelerated the volatilization activity and caused a considerable surface modification in the resulting biochar. Overall, biochar displayed various mineralogical compositions, surface alteration, high thermal stability, carbon content, and pH, making them appropriate for strengthening the procedures of different industrial applications.

本研究利用动态温度(400、600 和 800 °C)和保温时间(30、45 和 60 分钟)下的缓慢热解,从废弃生物质中提取生物炭。生产出的生物炭具有热、物理和化学特性。生物质表征证实了其可用作生物炭原料。对灰分含量的 XRF 研究证实,生物质出现结渣和结垢问题的可能性较低。生物质的动力学研究证实,通过改变反应顺序,活化能大幅增加(MWS 和 CNW 的活化能分别为 34.37-90.34 和 22.74-63.92 kJ mol-1)。热解过程的结果表明,将热解温度从 400 ℃ 提高到 800 ℃ 会导致生物炭产率下降,同时碳含量增加。生物炭的 XRD 研究表明,热解温度升高导致生物炭的矿物含量发生变化。研究发现,生物炭的 HHV 和体积密度随着热解温度在 400-800 °C 之间的升高而增加。此外,还观察到随着热解温度从 400 ℃ 升至 800 ℃,BET 表面积和 Zeta 电位也随之增加。对生物炭的 FE-SEM 研究表明,温度从 400 ℃ 升至 800 ℃ 会加速生物炭的挥发活动,并使生成的生物炭表面发生显著变化。总之,生物炭显示出不同的矿物成分、表面改性、高热稳定性、碳含量和 pH 值,使其适合加强不同工业应用的程序。
{"title":"Production of biochar from waste biomass using slow pyrolysis: Studies of the effect of pyrolysis temperature and holding time on biochar yield and properties","authors":"Karthik Kumar Byappanahalli Suresh Babu ,&nbsp;Mukesha Nataraj ,&nbsp;Mahesh Tayappa ,&nbsp;Yash Vyas ,&nbsp;Ranjeet Kumar Mishra ,&nbsp;Bishnu Acharya","doi":"10.1016/j.mset.2024.05.002","DOIUrl":"10.1016/j.mset.2024.05.002","url":null,"abstract":"<div><p>The present study deals with developing biochar from the waste biomass using slow pyrolysis at dynamic temperatures (400, 600, and 800 °C) and holding times (30, 45, and 60 min). The produced biochars were characterized by their thermal, physical, and chemical properties. The biomass characterization confirmed its candidacy for being used as a biochar feedstock. An XRF study of ash content confirmed that biomass has a lower possibility of slagging and fouling issues. A kinetic study of biomass confirmed that activation energy increased substantially (34.37–90.34 and 22.74–63.92 kJ mol<sup>−1</sup> for MWS and CNW, respectively) by varying the reaction order. The outcomes of the pyrolysis process revealed that elevating the pyrolysis temperature from 400 to 800 °C resulted in a decrease in the yield of biochar, accompanied by an increase in its carbon content. XRD study of biochar established that rising pyrolysis temperature caused a change in the mineral content of biochar. HHV and bulk density of biochar were found to be increased by increasing pyrolysis temperature from 400–800 °C. Moreover, it was observed that BET surface area and Zeta potential increased as the pyrolysis temperature rose from 400–800 °C. FE-SEM study of biochar, established by increasing temperature from 400–800 °C, accelerated the volatilization activity and caused a considerable surface modification in the resulting biochar. Overall, biochar displayed various mineralogical compositions, surface alteration, high thermal stability, carbon content, and pH, making them appropriate for strengthening the procedures of different industrial applications.</p></div>","PeriodicalId":18283,"journal":{"name":"Materials Science for Energy Technologies","volume":"7 ","pages":"Pages 318-334"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2589299124000089/pdfft?md5=5ef31fe2170a952bb12da3a6a3ed41d4&pid=1-s2.0-S2589299124000089-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141130123","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Innovative photovoltaic approach: Cd1-xBexTe mixed semiconductor crystals for novel dye-sensitized solar cells 创新的光伏方法:用于新型染料敏化太阳能电池的 Cd1-xBexTe 混合半导体晶体
Q1 Materials Science Pub Date : 2024-01-01 DOI: 10.1016/j.mset.2024.04.001
Diksha Singh , Sushant Kumar , Pramod K. Singh , Karol Strzałkowski , Nada.A. Masmali , Grzegorz Trykowski

This paper deals with the synthesis and properties of new ternary mixed Cd1-xBexTe (cadmium beryllium telluride) crystal-based electrodes for photovoltaic cells which is a modified version of dye- sensitized solar cells. We determined the thermal stability and photovoltaic performance of the obtained devices. Cd1-xBexTe crystals are grown using the Bridgman technique at high temperatures and pressure for different compositions. Using the modified doctor blade method, we fabricated dye-sensitized solar cells (DSSC) using Cd1-xBexTe-based film as working electrodes. The mixed crystals with the highest beryllium content (10 %) and the lowest (1 %) are used. At the same time, the counter electrode and polymer electrolytes are common. Comparative studies with standard DSSC are also undertaken to compare the stability and charge mechanism. As prepared, DSSC using ternary Cd1-xBexTe showed efficiency as high as 3.11 % at 1 sun condition. The life span measurement indicated promising results, and DSSC is stable up to 720 h with a reasonable decrease in fill factor from 84 to 55.

本文论述了基于 Cd1-xBexTe(碲化镉)晶体的新型三元混合光伏电池电极的合成和性能。我们测定了所获器件的热稳定性和光伏性能。Cd1-xBexTe 晶体是利用布里奇曼技术在高温高压下生长出来的,具有不同的成分。我们采用改良刮刀法,以 Cd1-xBexTe 薄膜为工作电极,制造了染料敏化太阳能电池(DSSC)。我们使用了铍含量最高(10%)和最低(1%)的混合晶体。同时,对电极和聚合物电解质也是通用的。还进行了与标准 DSSC 的比较研究,以比较其稳定性和充电机制。经过制备,使用三元 Cd1-xBexTe 的 DSSC 在 1 太阳光条件下的效率高达 3.11%。寿命测量结果表明,DSSC 的稳定性可达 720 小时,填充因子从 84 合理地降至 55。
{"title":"Innovative photovoltaic approach: Cd1-xBexTe mixed semiconductor crystals for novel dye-sensitized solar cells","authors":"Diksha Singh ,&nbsp;Sushant Kumar ,&nbsp;Pramod K. Singh ,&nbsp;Karol Strzałkowski ,&nbsp;Nada.A. Masmali ,&nbsp;Grzegorz Trykowski","doi":"10.1016/j.mset.2024.04.001","DOIUrl":"https://doi.org/10.1016/j.mset.2024.04.001","url":null,"abstract":"<div><p>This paper deals with the synthesis and properties of new ternary mixed Cd1-xBexTe (cadmium beryllium telluride) crystal-based electrodes for photovoltaic cells which is a modified version of dye- sensitized solar cells. We determined the thermal stability and photovoltaic performance of the obtained devices. Cd1-xBexTe crystals are grown using the Bridgman technique at high temperatures and pressure for different compositions. Using the modified doctor blade method, we fabricated dye-sensitized solar cells (DSSC) using Cd1-xBexTe-based film as working electrodes. The mixed crystals with the highest beryllium content (10 %) and the lowest (1 %) are used. At the same time, the counter electrode and polymer electrolytes are common. Comparative studies with standard DSSC are also undertaken to compare the stability and charge mechanism. As prepared, DSSC using ternary Cd1-xBexTe showed efficiency as high as 3.11 % at 1 sun condition. The life span measurement indicated promising results, and DSSC is stable up to 720 h with a reasonable decrease in fill factor from 84 to 55.</p></div>","PeriodicalId":18283,"journal":{"name":"Materials Science for Energy Technologies","volume":"7 ","pages":"Pages 287-296"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2589299124000041/pdfft?md5=e380b1163f4398a00dc9eaf182ec5896&pid=1-s2.0-S2589299124000041-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140631757","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Efficient integration of photo voltaic and hydro energy technologies for sustainable power generation in rural areas: A case study 有效整合光电和水能技术,促进农村地区可持续发电:案例研究
Q1 Materials Science Pub Date : 2024-01-01 DOI: 10.1016/j.mset.2024.04.002
Pulkit Kumar , Harpreet Kaur Channi , Raman Kumar , Chander Prakash , Abhijit Bhowmik , Shatrudhan Pandey , Abhishek Kumar Singh , Muhammad Mahmood Ali , Manzoore Elahi M. Soudagar

This research aims to provide an efficient and cost-effective renewable energy supply. It assesses the potential for photovoltaic (PV) and hydro energy in Pirthala, Haryana, India, using HOMER Pro® v3.14.2. A Hybrid renewable energy system (HRES) can continuously power 855 homes. The optimal HRES configuration comprises well-optimized PV modules, hydro turbines, converters, and batteries. The top four configurations were selected based on criteria such as net present cost (NPC) and cost of energy production (COE). The most effective HRES configuration involves a 3461-kW solar array, a 98.1 kW hydro turbine, 304 lithium-ion batteries of 100 kWh, and a 2785-kW converter, achieving a 100 % integration of renewable energy. This ideal HRES was thoroughly assessed regarding economic, technical, and renewable energy considerations. The results and the optimized HRES configuration can serve as a valuable reference for similar initiatives in rural areas, contributing to adopting renewable energy sources and enhancing energy access and reliability.

本研究旨在提供高效且具有成本效益的可再生能源供应。它使用 HOMER Pro® v3.14.2 评估了印度哈里亚纳邦 Pirthala 的光伏 (PV) 和水能潜力。混合可再生能源系统(HRES)可为 855 户家庭持续供电。最佳 HRES 配置包括优化的光伏组件、水轮机、变流器和电池。根据净现值成本(NPC)和发电成本(COE)等标准,选出了前四种配置。最有效的 HRES 配置包括一个 3461 千瓦的太阳能电池阵、一个 98.1 千瓦的水轮机、304 个 100 千瓦时的锂离子电池和一个 2785 千瓦的变流器,实现了 100% 的可再生能源集成。我们从经济、技术和可再生能源等方面对这一理想的 HRES 进行了全面评估。评估结果和优化后的 HRES 配置可作为农村地区类似举措的宝贵参考,有助于采用可再生能源,提高能源的可及性和可靠性。
{"title":"Efficient integration of photo voltaic and hydro energy technologies for sustainable power generation in rural areas: A case study","authors":"Pulkit Kumar ,&nbsp;Harpreet Kaur Channi ,&nbsp;Raman Kumar ,&nbsp;Chander Prakash ,&nbsp;Abhijit Bhowmik ,&nbsp;Shatrudhan Pandey ,&nbsp;Abhishek Kumar Singh ,&nbsp;Muhammad Mahmood Ali ,&nbsp;Manzoore Elahi M. Soudagar","doi":"10.1016/j.mset.2024.04.002","DOIUrl":"https://doi.org/10.1016/j.mset.2024.04.002","url":null,"abstract":"<div><p>This research aims to provide an efficient and cost-effective renewable energy supply. It assesses the potential for photovoltaic (PV) and hydro energy in Pirthala, Haryana, India, using HOMER Pro® v3.14.2. A Hybrid renewable energy system (HRES) can continuously power 855 homes. The optimal HRES configuration comprises well-optimized PV modules, hydro turbines, converters, and batteries. The top four configurations were selected based on criteria such as net present cost (NPC) and cost of energy production (COE). The most effective HRES configuration involves a 3461-kW solar array, a 98.1 kW hydro turbine, 304 lithium-ion batteries of 100 kWh, and a 2785-kW converter, achieving a 100 % integration of renewable energy. This ideal HRES was thoroughly assessed regarding economic, technical, and renewable energy considerations. The results and the optimized HRES configuration can serve as a valuable reference for similar initiatives in rural areas, contributing to adopting renewable energy sources and enhancing energy access and reliability.</p></div>","PeriodicalId":18283,"journal":{"name":"Materials Science for Energy Technologies","volume":"7 ","pages":"Pages 297-308"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2589299124000053/pdfft?md5=6c8717936789a885b5a64ce38e187902&pid=1-s2.0-S2589299124000053-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140632862","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ag-doped TiO2 as photoanode for high performance dye sensitized solar cells 掺银 TiO2 作为光阳极用于高性能染料敏化太阳能电池
Q1 Materials Science Pub Date : 2024-01-01 DOI: 10.1016/j.mset.2024.02.002
Dea Agnestasya Kurnia Ramadhani , Nabella Sholeha , Nanda Nafi'atul Khusna , Markus Diantoro , Arif Nur Afandi , Zurina Osman , Herlin Pujiarti

Titanium dioxide (TiO2) nanoparticles are commonly used as photoanode materials in dye-sensitized solar cells (DSSC). The structure of TiO2 can be modified by doping to enhance its optical and electrical performance. The modification carried out in this research was by providing Ag doping on TiO2. Silver (Ag) added to TiO2 is convinced to reduce the recombination and increase the energy level of the photo-excited electrons from the TiO2 conduction band. Ag-doped TiO2 was carried out by a simple mixing method. The microstructure of Ag-doped TiO2 was successfully characterized by XRD and SEM. The absorbance of the Ag-doped TiO2 thin films was measured by UV–Vis spectroscopy, confirming the optimum energy gap of 3.09 eV and resulting in the best PCE of 6.31 %.

二氧化钛(TiO2)纳米粒子通常用作染料敏化太阳能电池(DSSC)的光阳极材料。通过掺杂可以改变二氧化钛的结构,从而提高其光学和电学性能。本研究通过在 TiO2 中掺杂 Ag 来对其进行改性。在二氧化钛中添加银(Ag)可减少重组,提高二氧化钛导带中光激发电子的能级。掺银二氧化钛是通过简单的混合方法实现的。XRD 和 SEM 成功地表征了掺银 TiO2 的微观结构。通过紫外-可见光谱法测量了掺银 TiO2 薄膜的吸光度,证实其最佳能隙为 3.09 eV,从而获得了 6.31 % 的最佳 PCE。
{"title":"Ag-doped TiO2 as photoanode for high performance dye sensitized solar cells","authors":"Dea Agnestasya Kurnia Ramadhani ,&nbsp;Nabella Sholeha ,&nbsp;Nanda Nafi'atul Khusna ,&nbsp;Markus Diantoro ,&nbsp;Arif Nur Afandi ,&nbsp;Zurina Osman ,&nbsp;Herlin Pujiarti","doi":"10.1016/j.mset.2024.02.002","DOIUrl":"https://doi.org/10.1016/j.mset.2024.02.002","url":null,"abstract":"<div><p>Titanium dioxide (TiO<sub>2</sub>) nanoparticles are commonly used as photoanode materials in dye-sensitized solar cells (DSSC). The structure of TiO<sub>2</sub> can be modified by doping to enhance its optical and electrical performance. The modification carried out in this research was by providing Ag doping on TiO<sub>2</sub>. Silver (Ag) added to TiO<sub>2</sub> is convinced to reduce the recombination and increase the energy level of the photo-excited electrons from the TiO<sub>2</sub> conduction band. Ag-doped TiO<sub>2</sub> was carried out by a simple mixing method. The microstructure of Ag-doped TiO<sub>2</sub> was successfully characterized by XRD and SEM. The absorbance of the Ag-doped TiO<sub>2</sub> thin films was measured by UV–Vis spectroscopy, confirming the optimum energy gap of 3.09 eV and resulting in the best PCE of 6.31 %.</p></div>","PeriodicalId":18283,"journal":{"name":"Materials Science for Energy Technologies","volume":"7 ","pages":"Pages 274-281"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2589299124000028/pdfft?md5=e1818aa79e6ea6cb9290f3f38acdc276&pid=1-s2.0-S2589299124000028-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140016154","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Materials Science for Energy Technologies
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1