Pub Date : 2023-01-01DOI: 10.1016/j.mset.2023.03.004
C. Hermama , B. Bensiali , S. Lahbabi , A. El Maliki
The effective thermal conductivity is the most useful characteristic property to distinguish between two or more insulation materials. It is always the same by using different boundary conditions or different representative elementary volume sizes. The objective of this paper is to set variational formulations of different types of boundary conditions Dirichelet boundary condition (EBC), Neumann boundary condition (NBC), Mixed boundary condition (MBC) and Periodic boundary condition (PBC). Then effective thermal conductivity are investigated by scale effect study of the representative elementary volume size of the different categories of Polyurethane foam, closed cell foam, open cell foam and mixed cell foam. The apparent conductivity remain the same for MBC, PBC and EBC in the case of closed and open unit cell foam. The effective thermal conductivity for the different categories of PU foam converge as the REVs sizes increase. A comparative study with numerical, analytical and experimental thermal conductivity is performed in order to validate the results. A hybrid model is proposed in order to overcome the computational cost of the investigation of the effective thermal conductivity of mixed cell foam.
{"title":"Computational thermal conductivity in polyurethane mixed cell foam: Numerical boundary effects and hybrid model","authors":"C. Hermama , B. Bensiali , S. Lahbabi , A. El Maliki","doi":"10.1016/j.mset.2023.03.004","DOIUrl":"10.1016/j.mset.2023.03.004","url":null,"abstract":"<div><p>The effective thermal conductivity is the most useful characteristic property to distinguish between two or more insulation materials. It is always the same by using different boundary conditions or different representative elementary volume sizes. The objective of this paper is to set variational formulations of different types of boundary conditions Dirichelet boundary condition (EBC), Neumann boundary condition (NBC), Mixed boundary condition (MBC) and Periodic boundary condition (PBC). Then effective thermal conductivity are investigated by scale effect study of the representative elementary volume size of the different categories of Polyurethane foam, closed cell foam, open cell foam and mixed cell foam. The apparent conductivity remain the same for MBC, PBC and EBC in the case of closed and open unit cell foam. The effective thermal conductivity for the different categories of PU foam converge as the REVs sizes increase. A comparative study with numerical, analytical and experimental thermal conductivity is performed in order to validate the results. A hybrid model is proposed in order to overcome the computational cost of the investigation of the effective thermal conductivity of mixed cell foam.</p></div>","PeriodicalId":18283,"journal":{"name":"Materials Science for Energy Technologies","volume":"6 ","pages":"Pages 572-583"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47490200","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The synthesis of materials on magnetic activated carbon is of concern, with a simple and environmentally friendly. The research used pecan shell (Aleurites moluccana) as a carbon source. The breakthrough made in this research is to make magnetic activated carbon electrodes in supercapacitors. Obtained on the XRD diffractograms show the graphite lattice, respectively. Also, a sharp, narrow peak is seen at 2θ = 26° in the carbon samples spectrum, showing a highly graphitized fraction. FESEM-EDX showed AC20/80 that the shape of the particles was like plates indicating that the particles had been formed. AC80/20 is the surface morphology in which particles with irregular shapes indicate that particles have been formed, where the shape of the particles is irregular. The composition between C and O is also balanced. AC80/20 has lower Co content than AC20/80, AC40/60, AC60/40, and AC50/50 and it appears that AC80/20 is better than the others. The magnitude of the coercivity states that AC20/80, AC80/20, AC40/60, AC60/40, and AC50/50 are strong magnets. The lower the value of the open circuit potential, it will show electrochemical stability. The Nyquist plots of magnetic activated carbon show a straight vertical indicating the process of charge transfer resistance at the low electrode. Obtained specific capacitance AC80/20 at 150F/g.
{"title":"Synthesis of magnetic activated carbon-supported cobalt(II) chloride derived from pecan shell (Aleurites moluccana) with co-precipitation method as the electrode in supercapacitors","authors":"Muhammadin Hamid , Susilawati , Suci Aisyah Amaturrahim , Ivi Briliansi Dalimunthe , Amru Daulay","doi":"10.1016/j.mset.2023.04.004","DOIUrl":"10.1016/j.mset.2023.04.004","url":null,"abstract":"<div><p>The synthesis of materials on magnetic activated carbon is of concern, with a simple and environmentally friendly. The research used pecan shell (<em>Aleurites moluccana</em>) as a carbon source. The breakthrough made in this research is to make magnetic activated carbon electrodes in supercapacitors. Obtained on the XRD diffractograms show the graphite lattice, respectively. Also, a sharp, narrow peak is seen at 2θ = 26° in the carbon samples spectrum, showing a highly graphitized fraction. FESEM-EDX showed AC20/80 that the shape of the particles was like plates indicating that the particles had been formed. AC80/20 is the surface morphology in which particles with irregular shapes indicate that particles have been formed, where the shape of the particles is irregular. The composition between C and O is also balanced. AC80/20 has lower Co content than AC20/80, AC40/60, AC60/40, and AC50/50 and it appears that AC80/20 is better than the others. The magnitude of the coercivity states that AC20/80, AC80/20, AC40/60, AC60/40, and AC50/50 are strong magnets. The lower the value of the open circuit potential, it will show electrochemical stability. The Nyquist plots of magnetic activated carbon show a straight vertical indicating the process of charge transfer resistance at the low electrode. Obtained specific capacitance AC80/20 at 150F/g.</p></div>","PeriodicalId":18283,"journal":{"name":"Materials Science for Energy Technologies","volume":"6 ","pages":"Pages 429-436"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44097899","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-01DOI: 10.1016/j.mset.2023.04.009
Nurul Iffah Farhah Mohd Yusof , Nurul Aqilah Shamsuddin , Hidayatul Aini Zakaria , Nur Farizan Munajat
The growing global demand for fish has led to an increase in fish waste (FW) production, necessitating efficient waste management strategies. Pyrolysis is a promising way to convert fish waste into high-value products. To achieve optimal waste mass reduction and gain insights into the pyrolysis process, estimating kinetic parameters is essential. This study investigated the pyrolysis of FW, Sardinella fimbriata, a previously unexplored waste source, using a thermogravimetric analyser. The study determined an average activation energy value of 84–124 kJ/mol using model-free isoconversional methods including Flynn-Wall–Ozawa, Kissinger–Akahira–Sunose, and Starink, whereas pre-exponential factor values were predicted to be between 102 and 1011 s−1. Further analysis using Criado's reduced master-plot approach showed that the experimental curves for pyrolysis coincided with many different theoretical plots for reaction mechanisms, with a concentration on reaction-order models. The analysis of thermodynamic parameters showed positive values of enthalpy change and Gibbs energy change for S. fimbriata FW pyrolysis, suggesting that the process is endothermic and non-spontaneous, while negative values of entropy change were observed across all conversion degrees as a result of the breakdown of complex organic molecules into simpler compounds. This study provides insights into the feasibility of thermal processes and offers new guidance for FW waste management and resource recovery, expanding the understanding of pyrolysis kinetics and thermodynamics for fish waste treatment.
{"title":"Exploring the potential of fish waste (Sardinella fimbriata) through pyrolysis: A study of kinetics and thermodynamics using isoconversional methods","authors":"Nurul Iffah Farhah Mohd Yusof , Nurul Aqilah Shamsuddin , Hidayatul Aini Zakaria , Nur Farizan Munajat","doi":"10.1016/j.mset.2023.04.009","DOIUrl":"10.1016/j.mset.2023.04.009","url":null,"abstract":"<div><p>The growing global demand for fish has led to an increase in fish waste (FW) production, necessitating efficient waste management strategies. Pyrolysis is a promising way to convert fish waste into high-value products. To achieve optimal waste mass reduction and gain insights into the pyrolysis process, estimating kinetic parameters is essential. This study investigated the pyrolysis of FW, <em>Sardinella fimbriata</em>, a previously unexplored waste source, using a thermogravimetric analyser. The study determined an average activation energy value of 84–124 kJ/mol using model-free isoconversional methods including Flynn-Wall–Ozawa, Kissinger–Akahira–Sunose, and Starink, whereas pre-exponential factor values were predicted to be between 10<sup>2</sup> and 10<sup>11</sup> s<sup>−1</sup>. Further analysis using Criado's reduced master-plot approach showed that the experimental curves for pyrolysis coincided with many different theoretical plots for reaction mechanisms, with a concentration on reaction-order models. The analysis of thermodynamic parameters showed positive values of enthalpy change and Gibbs energy change for <em>S. fimbriata</em> FW pyrolysis, suggesting that the process is endothermic and non-spontaneous, while negative values of entropy change were observed across all conversion degrees as a result of the breakdown of complex organic molecules into simpler compounds. This study provides insights into the feasibility of thermal processes and offers new guidance for FW waste management and resource recovery, expanding the understanding of pyrolysis kinetics and thermodynamics for fish waste treatment.</p></div>","PeriodicalId":18283,"journal":{"name":"Materials Science for Energy Technologies","volume":"6 ","pages":"Pages 460-471"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49395294","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-01DOI: 10.1016/j.mset.2022.12.002
Xiaofei Ge, Tao Zhang
Carbon neutrality innovation technologies are a leading research topic in sustainable development. Among these, anaerobic digestion is considered as a better choice for biowaste utilization. However, large amounts of produced biogas slurry hamper the widespread application of anaerobic digestion. The hydrothermal process is regarded as favorable to treat biogas slurry. The effects of inorganic and organic matter in processed water from the hydrothermal-treated biogas slurry were investigated in our research. The changes in inorganic elements such as P, Ca, Mg, Cu, and Zn were detected at different reaction temperatures (90, 120, 150, 180, 210, and 240 ℃) and acid catalytic conditions (0.5, 1, 2, 3, 4, 4.5, and 5 mL 5 M HCl). The changes in organic matter were analyzed using three-dimensional excitation emission matrix fluorescence spectroscopy. With the increase in the hydrothermal reaction temperatures, the quantity of total and inorganic P and the concentration of Ca initially increased and then decreased, concentration of Mg remained constant, while the concentration of Zn and Cu showed a trend of initial decrease and then increase, and the macromolecular organic matter was hydrolyzed into small, soluble molecular organic matter. With the increase in HCl, the amount of released total and inorganic P and concentrations of Ca, Mg, Zn, and Cu increased, and the macromolecular organic matter was hydrolyzed into small molecular organic matter. The hydroponic testing indicated that the processed water has a positive effect on the growth of maize. These results provide critical findings on the reuse of biogas slurry, which is useful for biowaste management and improves carbon neutrality strategy.
碳中和创新技术是可持续发展领域的前沿研究课题。其中,厌氧消化被认为是生物垃圾利用的较好选择。然而,大量产生的沼液阻碍了厌氧消化的广泛应用。水热法被认为是处理沼液的有利工艺。研究了水热处理后的沼液中无机和有机物对废水的影响。在不同的反应温度(90、120、150、180、210和240℃)和酸催化条件(0.5、1、2、3、4、4.5和5 mL 5 M HCl)下,检测了无机元素P、Ca、Mg、Cu和Zn的变化。利用三维激发发射矩阵荧光光谱分析了有机物质的变化。随着水热反应温度的升高,总磷和无机磷含量及Ca浓度先升高后降低,Mg浓度保持不变,而Zn和Cu浓度呈现先降低后升高的趋势,大分子有机质被水解为可溶的小分子有机质。随着HCl的增加,总磷和无机磷的释放量以及Ca、Mg、Zn和Cu的浓度增加,大分子有机质被水解成小分子有机质。水培试验表明,处理后的水对玉米的生长有积极的影响。这些结果为沼气浆的再利用提供了重要的发现,这对生物废物管理和改善碳中和战略是有用的。
{"title":"Changes in inorganic and organic matters in processed water from hydrothermal-treated biogas slurry","authors":"Xiaofei Ge, Tao Zhang","doi":"10.1016/j.mset.2022.12.002","DOIUrl":"10.1016/j.mset.2022.12.002","url":null,"abstract":"<div><p>Carbon neutrality innovation technologies are a leading research topic in sustainable development. Among these, anaerobic digestion is considered as a better choice for biowaste utilization. However, large amounts of produced biogas slurry hamper the widespread application of anaerobic digestion. The hydrothermal process is regarded as favorable to treat biogas slurry. The effects of inorganic and organic matter in processed water from the hydrothermal-treated biogas slurry were investigated in our research. The changes in inorganic elements such as P, Ca, Mg, Cu, and Zn were detected at different reaction temperatures (90, 120, 150, 180, 210, and 240 ℃) and acid catalytic conditions (0.5, 1, 2, 3, 4, 4.5, and 5 mL 5 M HCl). The changes in organic matter were analyzed using three-dimensional excitation emission matrix fluorescence spectroscopy. With the increase in the hydrothermal reaction temperatures, the quantity of total and inorganic P and the concentration of Ca initially increased and then decreased, concentration of Mg remained constant, while the concentration of Zn and Cu showed a trend of initial decrease and then increase, and the macromolecular organic matter was hydrolyzed into small, soluble molecular organic matter. With the increase in HCl, the amount of released total and inorganic P and concentrations of Ca, Mg, Zn, and Cu increased, and the macromolecular organic matter was hydrolyzed into small molecular organic matter. The hydroponic testing indicated that the processed water has a positive effect on the growth of maize. These results provide critical findings on the reuse of biogas slurry, which is useful for biowaste management and improves carbon neutrality strategy.</p></div>","PeriodicalId":18283,"journal":{"name":"Materials Science for Energy Technologies","volume":"6 ","pages":"Pages 145-157"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49532725","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-01DOI: 10.1016/j.mset.2022.12.007
Aboulouard Abdelkhalk , Can Mustafa , El Azze Siham , El Baz Morad , Elhadadi Benachir , El idrissi Mohammed , Laasri Said
During the past few years, researchers have devoted extensive efforts to improve organic solar cell (OSC) performance to reach interesting power conversion efficiencies (PCE) exceeding 10 %. Among heterojunctions OSCs (BHJ) types, Fullerene based small molecule acceptors (SMAs) have proved to be a favorable option in virtue of their high-power conversion efficiency (PCE), good electronic conductivity and superior charge segregation. Yet, they represent some serious limitations, such as low light absorption over 600 nm, solubility in organic solvents, and inefficient processing. Accordingly, the so-called non-fullerene acceptors (NFA) organic group was developed and showed excellent characteristics over fullerene acceptors with their easily tunable band gap, strong absorption in the visible region, low voltage loss, good morphological stability and simple fabrication techniques. In the present paper, a series of non-fullerene electron acceptors (C1–C4) were designed by modifying the reference material R. we have obtained new conjugated organic structures by adding more functional capped units. The quantum chemical study (DFT/TD-DFT) approach was used to perform theoretical calculations in order to characterize the effect of end group redistribution via the frontier molecular orbital (FMO), optical absorption, reorganization energy in accordance with R. Using PTB7-Th as an electron donor, open circuit voltage (Voc), photovoltaic properties and intermolecular charge transfer have been also calculated for all the conceived compounds. The findings revealed that all engineered materials (C1–C4) possess narrow band gap and great optical characteristics. In addition the proposed structures have displayed comparatively lower electron and hole reorganization energies, we have found that C1 represents the lowest electron and hole reorganization energies, respectively 0.048 eV and 0.028 eV, consequently the highest electron and hole mobility [1]. These interesting outcomes could prove proposed electron acceptors to be excellent candidates in the improvement of optoelectronic properties of organic solar cell technology.
{"title":"A computational study of thiophene containing small-molecule electron acceptors for non-fullerene organic photovoltaic cells","authors":"Aboulouard Abdelkhalk , Can Mustafa , El Azze Siham , El Baz Morad , Elhadadi Benachir , El idrissi Mohammed , Laasri Said","doi":"10.1016/j.mset.2022.12.007","DOIUrl":"https://doi.org/10.1016/j.mset.2022.12.007","url":null,"abstract":"<div><p>During the past few years, researchers have devoted extensive efforts to improve organic solar cell (OSC) performance to reach interesting power conversion efficiencies (PCE) exceeding 10 %. Among heterojunctions OSCs (BHJ) types, Fullerene based small molecule acceptors (SMAs) have proved to be a favorable option in virtue of their high-power conversion efficiency (PCE), good electronic conductivity and superior charge segregation. Yet, they represent some serious limitations, such as low light absorption over 600 nm, solubility in organic solvents, and inefficient processing. Accordingly, the so-called non-fullerene acceptors (NFA) organic group was developed and showed excellent characteristics over fullerene acceptors with their easily tunable band gap, strong absorption in the visible region, low voltage loss, good morphological stability and simple fabrication techniques. In the present paper, a series of non-fullerene electron acceptors (C1–C4) were designed by modifying the reference material R. we have obtained new conjugated organic structures by adding more functional capped units. The quantum chemical study (DFT/TD-DFT) approach was used to perform theoretical calculations in order to characterize the effect of end group redistribution via the frontier molecular orbital (FMO), optical absorption, reorganization energy in accordance with R. Using PTB7-Th as an electron donor, open circuit voltage (Voc), photovoltaic properties and intermolecular charge transfer have been also calculated for all the conceived compounds. The findings revealed that all engineered materials (C1–C4) possess narrow band gap and great optical characteristics. In addition the proposed structures have displayed comparatively lower electron and hole reorganization energies, we have found that C1 represents the lowest electron and hole reorganization energies, respectively 0.048 eV and 0.028 eV, consequently the highest electron and hole mobility <span>[1]</span>. These interesting outcomes could prove proposed electron acceptors to be excellent candidates in the improvement of optoelectronic properties of organic solar cell technology.</p></div>","PeriodicalId":18283,"journal":{"name":"Materials Science for Energy Technologies","volume":"6 ","pages":"Pages 137-144"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49752091","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-01DOI: 10.1016/j.mset.2022.11.002
Iwan Ridwan, Herawati Budiastuti, Retno Indarti, Ninik Lintang Edi Wahyuni, Hasna Mutiara Safitri, Rama Luthfi Ramadhan
The present work aims to investigate the impact of tetrahydrofuran as a co-solvent on biodiesel production from rubber seeds to accelerate the transesterification reaction with a high biodiesel yield. We extracted the oil from rubber seeds before being reacted with methanol to synthesize biodiesel. It reveals that the composition of rubber seed oil was palmitic acid of 9.71 %, stearic acid of 13.09 %, oleic acid of 19.23 %, linoleic acid of 37.49 %, and linolenic acid of 20.47 %. The esterification process was examined to diminish the FFA content from 5.00 % to 1.99 %. The transesterification process was then examined to convert the triglycerides of rubber seed oil into biodiesel. The process variables in the transesterification were defined by Box Behnken Design, and the optimum condition was evaluated by response surface methodology. We found that the optimum condition was at temperature of 52 °C, reaction time of 30 min, and mass ratio of tetrahydrofuran to methanol of 1.4:1 to achieve a biodiesel yield of 97 %. The result suggests that the addition of tetrahydrofuran as a co-solvent accelerated the transesterification reaction of rubber seed oil with an excellent biodiesel yield.
{"title":"The optimization of tetrahydrofuran as a co-solvent on biodiesel production from rubber seeds using response surface methodology","authors":"Iwan Ridwan, Herawati Budiastuti, Retno Indarti, Ninik Lintang Edi Wahyuni, Hasna Mutiara Safitri, Rama Luthfi Ramadhan","doi":"10.1016/j.mset.2022.11.002","DOIUrl":"https://doi.org/10.1016/j.mset.2022.11.002","url":null,"abstract":"<div><p>The present work aims to investigate the impact of tetrahydrofuran as a co-solvent on biodiesel production from rubber seeds to accelerate the transesterification reaction with a high biodiesel yield. We extracted the oil from rubber seeds before being reacted with methanol to synthesize biodiesel. It reveals that the composition of rubber seed oil was palmitic acid of 9.71 %, stearic acid of 13.09 %, oleic acid of 19.23 %, linoleic acid of 37.49 %, and linolenic acid of 20.47 %. The esterification process was examined to diminish the FFA content from 5.00 % to 1.99 %. The transesterification process was then examined to convert the triglycerides of rubber seed oil into biodiesel. The process variables in the transesterification were defined by Box Behnken Design, and the optimum condition was evaluated by response surface methodology. We found that the optimum condition was at temperature of 52 °C, reaction time of 30 min, and mass ratio of tetrahydrofuran to methanol of 1.4:1 to achieve a biodiesel yield of 97 %. The result suggests that the addition of tetrahydrofuran as a co-solvent accelerated the transesterification reaction of rubber seed oil with an excellent biodiesel yield.</p></div>","PeriodicalId":18283,"journal":{"name":"Materials Science for Energy Technologies","volume":"6 ","pages":"Pages 15-20"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49752152","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-01DOI: 10.1016/j.mset.2022.11.004
Dina S. Ahmed , Mohammed Al-Baidhani , Hadeel Adil , Muna Bufaroosha , Alaa A. Rashad , Khalid Zainulabdeen , Emad Yousif
One of the earliest manufactured and most frequently used resins is phenol formaldehyde (PF) resin. Even with lesser loadings, their characteristics can be enhanced by the addition of nano-ZnO. The novel PF/ZnO Nanocomposites synthesis by ultrasonic process. The optical properties of materials modified with wide-band gap semiconductor described via UV–vis spectroscopy. Diffuse reflectance spectroscopy (DRS) one of the possible tool to measure the reflected light from powders and rough surfaces clearly. Spectra obtained by DRS treated with Kubelka-Munk function in order to describe the energy band gap accurately for modified and pure para hydroxy benzoic acid polymer. The band gap of para hydroxy benzoic acid is about 4.5 eV and in modified samples range from 3.4 to 3.3 eV; the lowest band gap value corresponds to the higher ZnO concentration (0.005gm). The surface morphology characterize by SEM and AFM m where obtain the effected nanostructure as increase on the surface morphology and the roughness which is increase according the aggregation occur. EDX mapping appearance increase the distribution and present of zinc nanostructured in modified polymer. It was discovered that this was because of the ZnO NPs' good dispersion in the polymer matrix and their robust interfacial interaction with the PF matrix.
{"title":"Recent study of PF/ZnO nanocomposites: Synthesis, characterization and optical properties","authors":"Dina S. Ahmed , Mohammed Al-Baidhani , Hadeel Adil , Muna Bufaroosha , Alaa A. Rashad , Khalid Zainulabdeen , Emad Yousif","doi":"10.1016/j.mset.2022.11.004","DOIUrl":"https://doi.org/10.1016/j.mset.2022.11.004","url":null,"abstract":"<div><p>One of the earliest manufactured and most frequently used resins is phenol formaldehyde (PF) resin. Even with lesser loadings, their characteristics can be enhanced by the addition of nano-ZnO. The novel PF/ZnO Nanocomposites synthesis by ultrasonic process. The optical properties of materials modified with wide-band gap semiconductor described via UV–vis spectroscopy. Diffuse reflectance spectroscopy (DRS) one of the possible tool to measure the reflected light from powders and rough surfaces clearly. Spectra obtained by DRS treated with Kubelka-Munk function in order to describe the energy band gap accurately for modified and pure para hydroxy benzoic acid polymer. The band gap of para hydroxy benzoic acid is about 4.5 eV and in modified samples range from 3.4 to 3.3 eV; the lowest band gap value corresponds to the higher ZnO concentration (0.005gm). The surface morphology characterize by SEM and AFM m where obtain the effected nanostructure as increase on the surface morphology and the roughness which is increase according the aggregation occur. EDX mapping appearance increase the distribution and present of zinc nanostructured in modified polymer. It was discovered that this was because of the ZnO NPs' good dispersion in the polymer matrix and their robust interfacial interaction with the PF matrix.</p></div>","PeriodicalId":18283,"journal":{"name":"Materials Science for Energy Technologies","volume":"6 ","pages":"Pages 29-34"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49752360","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Development of individual approaches to the use of the gasoline fraction as a raw material for the process of hydrocatalytic isomerization","authors":"Amanzhan Saginayev , Elena Dosmurzina , Ainagul Apendina , Bibigul Dossanova , Bazarkhan Imangaliyeva","doi":"10.1016/j.mset.2022.12.008","DOIUrl":"https://doi.org/10.1016/j.mset.2022.12.008","url":null,"abstract":"","PeriodicalId":18283,"journal":{"name":"Materials Science for Energy Technologies","volume":"6 ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49765861","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Since a composite electrode made of carbon and transition metal oxides has much potential to be the best electrode type for a future energy storage system, the low-temperature solution growth method was used to make a carbon framework from sweet potato with NiCo2O4 nanoparticles attached to it. This method is easy, cheap, and can be used for large-scale commercial production. FTIR spectra a peak band of Ni-O and Co-O and the bending functional group at wave number 857 cm−1. XRD shows the crystal planes (1 1 1), (2 2 0), (3 3 1), (2 2 2), (4 0 0), (4 2 2), (5 1 1), and (4 4 0) at 2θ = 18.97°, 31.97°, 37.51°, 38.10°, 44.55°, 55.51°, 58.65°, and 64.92°, which indicates the NiCo2O4. The typical broad peaks around 23.3° can be linked to (0 0 2) lattice planes of amorphous carbon. The average size of the grains in the NiCo2O4/C samples was found to be 21.5 ± 0.5 nm. VSM shows that NiCo2O4/C has strong magnet properties. Based on the CV curve formed, it can be seen that NiCo2O4/C-2.8 has a balanced cathodic and anodic curve and also a higher current density than the others. It shows that NiCo2O4/C-2.8 has a higher ability to move electrons. The addition of the number of variations in the carbon mixture in NiCo2O4 shows the specific capacitance. It shows that carbon can prevent the movement of electrons in NiCo2O4, causing a decrease in performance. The right amount of carbon can increase the electron transfer ability.
{"title":"Sweet potato‑derived carbon nanosheets incorporate NiCo2O4 nanocomposite as electrode materials for supercapacitors","authors":"Muhammadin Hamid , Martha Rianna , Maria Derani Ester Vania , Iga Dwi Yanti , Fadhilah Aulia Annisa Manurung , Richi Afriandani , Amru Daulay","doi":"10.1016/j.mset.2023.03.006","DOIUrl":"10.1016/j.mset.2023.03.006","url":null,"abstract":"<div><p>Since a composite electrode made of carbon and transition metal oxides has much potential to be the best electrode type for a future energy storage system, the low-temperature solution growth method was used to make a carbon framework from sweet potato with NiCo<sub>2</sub>O<sub>4</sub> nanoparticles attached to it. This method is easy, cheap, and can be used for large-scale commercial production. FTIR spectra a peak band of Ni-O and Co-O and the bending functional group at wave number 857 cm<sup>−1</sup>. XRD shows the crystal planes (1<!--> <!-->1<!--> <!-->1), (2<!--> <!-->2<!--> <!-->0), (3<!--> <!-->3<!--> <!-->1), (2<!--> <!-->2<!--> <!-->2), (4<!--> <!-->0<!--> <!-->0), (4<!--> <!-->2<!--> <!-->2), (5<!--> <!-->1<!--> <!-->1), and (4<!--> <!-->4<!--> <!-->0) at 2θ = 18.97°, 31.97°, 37.51°, 38.10°, 44.55°, 55.51°, 58.65°, and 64.92°, which indicates the NiCo<sub>2</sub>O<sub>4</sub>. The typical broad peaks around 23.3° can be linked to (0<!--> <!-->0<!--> <!-->2) lattice planes of amorphous carbon. The average size of the grains in the NiCo<sub>2</sub>O<sub>4</sub>/C samples was found to be 21.5 ± 0.5 nm. VSM shows that NiCo<sub>2</sub>O<sub>4</sub>/C has strong magnet properties. Based on the CV curve formed, it can be seen that NiCo<sub>2</sub>O<sub>4</sub>/C-2.8 has a balanced cathodic and anodic curve and also a higher current density than the others. It shows that NiCo<sub>2</sub>O<sub>4</sub>/C-2.8 has a higher ability to move electrons. The addition of the number of variations in the carbon mixture in NiCo<sub>2</sub>O<sub>4</sub> shows the specific capacitance. It shows that carbon can prevent the movement of electrons in NiCo<sub>2</sub>O<sub>4</sub>, causing a decrease in performance. The right amount of carbon can increase the electron transfer ability.</p></div>","PeriodicalId":18283,"journal":{"name":"Materials Science for Energy Technologies","volume":"6 ","pages":"Pages 382-387"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48791955","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}