首页 > 最新文献

Mechanics of Composite Materials最新文献

英文 中文
Modeling the Yield Surface of a Composite Medium Made from Rigid-Plastic Materials Using Piecewise Quadratic Yield Criteria the Case of a Symmetric Plane Reinforcement 2. The Case of a Symmetric Plane Reinforcement 使用片断二次屈服准则建立刚塑复合材料屈服面模型 - 对称平面加固情况 2.对称平面加固情况
IF 1.7 4区 材料科学 Q4 MATERIALS SCIENCE, COMPOSITES Pub Date : 2024-01-08 DOI: 10.1007/s11029-023-10159-x
P. Yankovskii

A special case of the structural model of a hybrid composite multidirectional-reinforced in the plane was considered, which makes it possible to calculate the yield curve of a composite in the space of principal averageв stresses in a plane stress state (PSS). The composite contains an even number of reinforcing fiber families, which are divided into pairs of families. In each pair of the families, the fibers are made of the same material and are laid symmetrically with respect to the directions of principal stresses in the composite. The constituents of the reinforced composite are isotropic and have different tensile–compressive yield strengths. The mechanical behavior of composition constituents was described by the associated flow rule of an ideal rigid-plastic body with piecewise quadratic and piecewise linear yield curves in the space of principal stresses. The influence of approximation parameters of yield curves of composition constituents in the principal stresses and reinforcement parameters on the shape and dimensions of the yield curves of compositions was studied. It was demonstrated that the plastic flow in a fibrous medium is associated with the calculated yield curves of compositions.

研究考虑了平面多向增强混合复合材料结构模型的一个特例,从而可以计算平面应力状态(PSS)下复合材料在主平均в应力空间中的屈服曲线。复合材料包含偶数个增强纤维族,这些纤维族又被分成若干对。在每对族中,纤维由相同的材料制成,并相对于复合材料中的主应力方向对称铺设。增强复合材料的成分各向同性,具有不同的拉伸-压缩屈服强度。组成成分的机械行为由理想刚塑体的相关流动规则来描述,在主应力空间中具有片断二次屈服曲线和片断线性屈服曲线。研究了主应力中成分屈服曲线的近似参数和加固参数对成分屈服曲线形状和尺寸的影响。结果表明,纤维介质中的塑性流动与计算出的成分屈服曲线有关。
{"title":"Modeling the Yield Surface of a Composite Medium Made from Rigid-Plastic Materials Using Piecewise Quadratic Yield Criteria the Case of a Symmetric Plane Reinforcement 2. The Case of a Symmetric Plane Reinforcement","authors":"P. Yankovskii","doi":"10.1007/s11029-023-10159-x","DOIUrl":"https://doi.org/10.1007/s11029-023-10159-x","url":null,"abstract":"<p>A special case of the structural model of a hybrid composite multidirectional-reinforced in the plane was considered, which makes it possible to calculate the yield curve of a composite in the space of principal averageв stresses in a plane stress state (PSS). The composite contains an even number of reinforcing fiber families, which are divided into pairs of families. In each pair of the families, the fibers are made of the same material and are laid symmetrically with respect to the directions of principal stresses in the composite. The constituents of the reinforced composite are isotropic and have different tensile–compressive yield strengths. The mechanical behavior of composition constituents was described by the associated flow rule of an ideal rigid-plastic body with piecewise quadratic and piecewise linear yield curves in the space of principal stresses. The influence of approximation parameters of yield curves of composition constituents in the principal stresses and reinforcement parameters on the shape and dimensions of the yield curves of compositions was studied. It was demonstrated that the plastic flow in a fibrous medium is associated with the calculated yield curves of compositions.</p>","PeriodicalId":18308,"journal":{"name":"Mechanics of Composite Materials","volume":"22 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139397218","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evaluation and Optimization of the Replacement of Fine Aggregate by Waste Tire Rubber in Geopolymer Mortar with Metakaolin 在含偏高岭土的土工聚合物砂浆中用废轮胎橡胶替代细骨料的评估与优化
IF 1.7 4区 材料科学 Q4 MATERIALS SCIENCE, COMPOSITES Pub Date : 2024-01-08 DOI: 10.1007/s11029-023-10168-w
R. A. dos Reis Ferreira, L. S. Gratão, L. A. de Castro Motta

The rapid growth in population, consumption, and economy have led to an increase in the extraction of natural resources, directly influencing the environment by generating waste and CO2 emissions, particularly in the civil construction industry. The study aimed to evaluate the use of coarse and fragmented tire rubber waste, without chemical treatment, as a replacement for fine aggregate in geopolymeric mortar specimens. The central composite design, coupled with the response surface methodology, was used to determine the optimized values for compressive strength, water absorption, void index, and specific gravity. X-ray diffraction and scanning electron microscopy were used to characterize the geopolymeric mortar specimens. The optimized parameters for the best results were 1% replacement of fine aggregate with tire rubber waste, 0% coarse rubber, and approximately a 6-day curing time. This combination resulted in optimal values of 17.75 MPa for compressive strength, 10.48% for water absorption, 18.58% for void index, and 1.77 g/cm3 for specific gravity. The experimental validation of the models had an error of less than 10%.

人口、消费和经济的快速增长导致自然资源开采量的增加,通过产生废物和二氧化碳排放直接影响环境,尤其是在民用建筑行业。本研究旨在评估在土工聚合物砂浆试样中使用未经化学处理的粗碎轮胎橡胶废料替代细骨料的情况。研究采用了中心复合设计和响应面方法,以确定抗压强度、吸水率、空隙指数和比重的优化值。利用 X 射线衍射和扫描电子显微镜对土工聚合物砂浆试样进行了表征。最佳结果的优化参数是用轮胎橡胶废料替代 1%的细骨料、0% 的粗橡胶和大约 6 天的固化时间。这一组合的最佳值为:抗压强度 17.75 兆帕、吸水率 10.48%、空隙指数 18.58%、比重 1.77 克/立方厘米。模型的实验验证误差小于 10%。
{"title":"Evaluation and Optimization of the Replacement of Fine Aggregate by Waste Tire Rubber in Geopolymer Mortar with Metakaolin","authors":"R. A. dos Reis Ferreira, L. S. Gratão, L. A. de Castro Motta","doi":"10.1007/s11029-023-10168-w","DOIUrl":"https://doi.org/10.1007/s11029-023-10168-w","url":null,"abstract":"<p>The rapid growth in population, consumption, and economy have led to an increase in the extraction of natural resources, directly influencing the environment by generating waste and CO<sub>2</sub> emissions, particularly in the civil construction industry. The study aimed to evaluate the use of coarse and fragmented tire rubber waste, without chemical treatment, as a replacement for fine aggregate in geopolymeric mortar specimens. The central composite design, coupled with the response surface methodology, was used to determine the optimized values for compressive strength, water absorption, void index, and specific gravity. X-ray diffraction and scanning electron microscopy were used to characterize the geopolymeric mortar specimens. The optimized parameters for the best results were 1% replacement of fine aggregate with tire rubber waste, 0% coarse rubber, and approximately a 6-day curing time. This combination resulted in optimal values of 17.75 MPa for compressive strength, 10.48% for water absorption, 18.58% for void index, and 1.77 g/cm<sup>3</sup> for specific gravity. The experimental validation of the models had an error of less than 10%.</p>","PeriodicalId":18308,"journal":{"name":"Mechanics of Composite Materials","volume":"6 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139396933","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Progress in Friction Stir Welding of Polymer and Aluminum Alloys 聚合物和铝合金摩擦搅拌焊接的进展
IF 1.7 4区 材料科学 Q4 MATERIALS SCIENCE, COMPOSITES Pub Date : 2024-01-08 DOI: 10.1007/s11029-023-10158-y
S. A. Kasgari, M. R. M. Aliha, S. J. Sadjadi, T. Sadowski, F. Berto

The heterogeneous structure of polymer and aluminum alloy is an effective way to meet the dual technical indicators of structural performance and lightweight design. Friction stir welding (FSW) is a solid-phase welding technology characterized by low temperature and large plastic deformation. It is basically not affected by the crystal structure and physical-chemical properties of materials and can realize polymer and aluminum alloy-specific materials quality connection. This paper presents a comprehensive review of the current advancements in FSW between polymers and aluminum alloys with a focus on optimizing welding parameters, joint formation, defect identification, and mitigation. The results showed that the most important details are that high rotation speed combined with low welding speed that is beneficial to increase welding heat input, improve joint forming and mechanical properties, and form aluminum riveting structure. Welding defects are the main reason for the low FSW performance of polymer and aluminum alloy heterogeneous structures. To improve the forming and load-bearing capacity of heterogeneous structures, welding tool structure design, surface pretreatment, and welding structure optimization can be utilized.

聚合物和铝合金的异质结构是满足结构性能和轻量化设计双重技术指标的有效途径。搅拌摩擦焊(FSW)是一种固相焊接技术,具有温度低、塑性变形大的特点。它基本不受材料晶体结构和物理化学性能的影响,可实现聚合物和铝合金专用材料的优质连接。本文全面综述了聚合物与铝合金之间 FSW 的当前进展,重点关注焊接参数优化、接头形成、缺陷识别和缓解。结果表明,最重要的细节是高转速与低焊接速度相结合,这有利于增加焊接热输入、改善接头成形和机械性能,并形成铝铆接结构。焊接缺陷是聚合物和铝合金异质结构 FSW 性能低下的主要原因。为提高异质结构的成形和承载能力,可利用焊接工具结构设计、表面预处理和焊接结构优化等方法。
{"title":"Progress in Friction Stir Welding of Polymer and Aluminum Alloys","authors":"S. A. Kasgari, M. R. M. Aliha, S. J. Sadjadi, T. Sadowski, F. Berto","doi":"10.1007/s11029-023-10158-y","DOIUrl":"https://doi.org/10.1007/s11029-023-10158-y","url":null,"abstract":"<p>The heterogeneous structure of polymer and aluminum alloy is an effective way to meet the dual technical indicators of structural performance and lightweight design. Friction stir welding (FSW) is a solid-phase welding technology characterized by low temperature and large plastic deformation. It is basically not affected by the crystal structure and physical-chemical properties of materials and can realize polymer and aluminum alloy-specific materials quality connection. This paper presents a comprehensive review of the current advancements in FSW between polymers and aluminum alloys with a focus on optimizing welding parameters, joint formation, defect identification, and mitigation. The results showed that the most important details are that high rotation speed combined with low welding speed that is beneficial to increase welding heat input, improve joint forming and mechanical properties, and form aluminum riveting structure. Welding defects are the main reason for the low FSW performance of polymer and aluminum alloy heterogeneous structures. To improve the forming and load-bearing capacity of heterogeneous structures, welding tool structure design, surface pretreatment, and welding structure optimization can be utilized.</p>","PeriodicalId":18308,"journal":{"name":"Mechanics of Composite Materials","volume":"81 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139398657","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Longitudinal Wave Propagation in Axially Graded Raylegh–Bishop Nanorods 轴向梯度雷勒-毕肖普纳米棒中的纵波传播
IF 1.7 4区 材料科学 Q4 MATERIALS SCIENCE, COMPOSITES Pub Date : 2024-01-06 DOI: 10.1007/s11029-023-10160-4
M. Arda, J. Majak, M. Mehrparvar

Longitudinal wave propagation in axially graded nanotubes was explored. The effect of shear deformation and lateral inertia on nanorods was considered using the nonlocal Raylegh–Bishop rod theory. As a novel approach, a nonlocal parameter was assumed in the graded formulation. The higher order Haar wavelet method was utilized for solving the governing equation of motion. The effects of material grading power-law index and nonlocal parameters on the longitudinal wave response of axially graded nanorods were investigated. Phase and group velocity variations of the axially graded nanorod were obtained. The present study may be useful in the modeling of advanced functional composite nanowires.

研究探讨了纵波在轴向分级纳米管中的传播。使用非局部雷勒-毕晓普杆理论考虑了剪切变形和横向惯性对纳米棒的影响。作为一种新方法,在分级公式中假设了一个非局部参数。利用高阶哈小波法求解支配运动方程。研究了材料分级幂律指数和非局部参数对轴向分级纳米棒纵波响应的影响。得到了轴向分级纳米棒的相位和群速度变化。本研究可能有助于先进功能复合纳米线的建模。
{"title":"Longitudinal Wave Propagation in Axially Graded Raylegh–Bishop Nanorods","authors":"M. Arda, J. Majak, M. Mehrparvar","doi":"10.1007/s11029-023-10160-4","DOIUrl":"https://doi.org/10.1007/s11029-023-10160-4","url":null,"abstract":"<p>Longitudinal wave propagation in axially graded nanotubes was explored. The effect of shear deformation and lateral inertia on nanorods was considered using the nonlocal Raylegh–Bishop rod theory. As a novel approach, a nonlocal parameter was assumed in the graded formulation. The higher order Haar wavelet method was utilized for solving the governing equation of motion. The effects of material grading power-law index and nonlocal parameters on the longitudinal wave response of axially graded nanorods were investigated. Phase and group velocity variations of the axially graded nanorod were obtained. The present study may be useful in the modeling of advanced functional composite nanowires.</p>","PeriodicalId":18308,"journal":{"name":"Mechanics of Composite Materials","volume":"18 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139376322","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
High Strain Rate Mechanical Behavior of Polyamide 66 and Polyamide 66-Glass Fiber Reinforced 聚酰胺 66 和聚酰胺 66-玻璃纤维增强型的高应变速率机械特性
IF 1.7 4区 材料科学 Q4 MATERIALS SCIENCE, COMPOSITES Pub Date : 2024-01-06 DOI: 10.1007/s11029-023-10167-x
T. Gómez-del Río, A. Ruiz

The effect of glass fiber-reinforcement polymer Polyamide 66 on the uniaxial compressive mechanical response was measured over a wide strain-rate range from quasi-static tests with strain rate of 5×10–3 s–1 to impact tests with strain rate of 2×103 s–1. Dynamic compressive load was applied using a split Hopkinson pressure bar, whereas an electromechanical testing machine was used to carry out quasi-static experiments in displacement control to determine strain-rate sensitivity. The results demonstrate that strain rate significantly influences yield stress, post-yield behavior, and ductility of the two polymers under study. The yield stress experimental data are consistent with thermally activated processes.

从应变速率为 5×10-3 s-1 的准静态试验到应变速率为 2×103 s-1 的冲击试验,在很宽的应变速率范围内测量了玻璃纤维增强聚合物聚酰胺 66 对单轴压缩机械响应的影响。使用分体式霍普金森压力棒施加动态压缩载荷,同时使用机电试验机在位移控制下进行准静态试验,以确定应变速率敏感性。结果表明,应变率对所研究的两种聚合物的屈服应力、屈服后行为和延展性有很大影响。屈服应力实验数据与热激活过程一致。
{"title":"High Strain Rate Mechanical Behavior of Polyamide 66 and Polyamide 66-Glass Fiber Reinforced","authors":"T. Gómez-del Río, A. Ruiz","doi":"10.1007/s11029-023-10167-x","DOIUrl":"https://doi.org/10.1007/s11029-023-10167-x","url":null,"abstract":"<p>The effect of glass fiber-reinforcement polymer Polyamide 66 on the uniaxial compressive mechanical response was measured over a wide strain-rate range from quasi-static tests with strain rate of 5×10<sup>–3</sup> s<sup>–1</sup> to impact tests with strain rate of 2×10<sup>3</sup> s<sup>–1</sup>. Dynamic compressive load was applied using a split Hopkinson pressure bar, whereas an electromechanical testing machine was used to carry out quasi-static experiments in displacement control to determine strain-rate sensitivity. The results demonstrate that strain rate significantly influences yield stress, post-yield behavior, and ductility of the two polymers under study. The yield stress experimental data are consistent with thermally activated processes.</p>","PeriodicalId":18308,"journal":{"name":"Mechanics of Composite Materials","volume":"44 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139376407","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of Impact Energy on the Residual Strength of Type III Cylinders 冲击能对 III 型圆柱体残余强度的影响
IF 1.7 4区 材料科学 Q4 MATERIALS SCIENCE, COMPOSITES Pub Date : 2024-01-06 DOI: 10.1007/s11029-023-10170-2
Y. Zhou, B. Han, Y. Liu, X. Song, T. Xie, F. Geng, P. Liu

An effective numerical analysis process was carried out to simulate an impact event based on the Hashin failure criterion and the Camanho degradation rule. The middle and shoulder of a cylinder were impacted by the edge of square-shaped impactors, and the remaining burst pressure was predicted. The accuracy of the numerical analysis was verified by results of two experiments that proved that the numerical analysis was reliable. The impact damage at different impact energies (20-200 J) was evaluated. According to the analysis carried out, the impact damage of gas cylinders intensified with increasing impact energy, and there existed a critical value of this energy. The damaged area of gas cylinders under the same impact energy first decreases and then increases from the inner to outer layer, and the maximum increase in the residual bursting pressure could reach 9.6%.

根据 Hashin 失效准则和 Camanho 退化规则,对冲击事件进行了有效的数值分析模拟。圆柱体的中部和肩部受到方形冲击器边缘的冲击,并预测了剩余爆破压力。两个实验结果验证了数值分析的准确性,证明数值分析是可靠的。对不同冲击能量(20-200 J)下的冲击破坏进行了评估。分析结果表明,气瓶的撞击破坏随着撞击能量的增加而加剧,并存在一个临界值。在相同的冲击能量下,气瓶的损坏面积从内层到外层先减小后增大,残余爆破压力的最大增幅可达 9.6%。
{"title":"Effect of Impact Energy on the Residual Strength of Type III Cylinders","authors":"Y. Zhou, B. Han, Y. Liu, X. Song, T. Xie, F. Geng, P. Liu","doi":"10.1007/s11029-023-10170-2","DOIUrl":"https://doi.org/10.1007/s11029-023-10170-2","url":null,"abstract":"<p>An effective numerical analysis process was carried out to simulate an impact event based on the Hashin failure criterion and the Camanho degradation rule. The middle and shoulder of a cylinder were impacted by the edge of square-shaped impactors, and the remaining burst pressure was predicted. The accuracy of the numerical analysis was verified by results of two experiments that proved that the numerical analysis was reliable. The impact damage at different impact energies (20-200 J) was evaluated. According to the analysis carried out, the impact damage of gas cylinders intensified with increasing impact energy, and there existed a critical value of this energy. The damaged area of gas cylinders under the same impact energy first decreases and then increases from the inner to outer layer, and the maximum increase in the residual bursting pressure could reach 9.6%.</p>","PeriodicalId":18308,"journal":{"name":"Mechanics of Composite Materials","volume":"21 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139376352","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An Analysis of Tensile and Compressive Properties of Carbon Fiber High-Entropy Alloy Composite Laminates 碳纤维高熵合金复合材料层压板的拉伸和压缩性能分析
IF 1.7 4区 材料科学 Q4 MATERIALS SCIENCE, COMPOSITES Pub Date : 2024-01-05 DOI: 10.1007/s11029-023-10162-2

Tensile tests were carried out on carbon fiber high-entropy alloy, carbon fiber aluminum alloy, carbon fiber titanium alloy, and carbon fiber-reinforced composite laminates. Their mechanical properties were investigated at the tensile strain rates of 3·10–3, 1·10–3, and 1·10–4 s–1. Compression tests on carbon fiber high entropy alloy (HEA) and carbon fiber-reinforced composite laminates were carried out at the strain rates of 3·10–3 and 1·10–3 s–1, respectively. Results showed that the carbon fiber high-entropy alloy composite laminate was more elastic than the carbon fiber-reinforced composite laminate at the strain rates of 3·10–3, 1·10–1, and 1·10–4 s–1. Their strength increased by 27, 16, and 10%, and the breaking strength by 18, 12, and 14%, respectively. Compared with the carbon fiber-reinforced composite laminate, the compressive strength of the carbon fiber HEA composite laminate increased by 44 and 29% at the compressive strain rates of 3·10–3 and 1·10–3s–1, respectively.

对碳纤维高熵合金、碳纤维铝合金、碳纤维钛合金和碳纤维增强复合材料层压板进行了拉伸试验。在拉伸应变速率为 3-10-3、1-10-3 和 1-10-4 s-1 时,对它们的机械性能进行了研究。在应变速率分别为 3-10-3 和 1-10-3 s-1 时,对碳纤维高熵合金(HEA)和碳纤维增强复合材料层压板进行了压缩试验。结果表明,在应变速率为 3-10-3、1-10-1 和 1-10-4 s-1 时,碳纤维高熵合金复合材料层压板比碳纤维增强复合材料层压板更具弹性。它们的强度分别提高了 27%、16% 和 10%,断裂强度分别提高了 18%、12% 和 14%。与碳纤维增强复合材料层压板相比,在压缩应变率为 3-10-3 和 1-10-3s-1 时,碳纤维 HEA 复合材料层压板的抗压强度分别提高了 44% 和 29%。
{"title":"An Analysis of Tensile and Compressive Properties of Carbon Fiber High-Entropy Alloy Composite Laminates","authors":"","doi":"10.1007/s11029-023-10162-2","DOIUrl":"https://doi.org/10.1007/s11029-023-10162-2","url":null,"abstract":"<p>Tensile tests were carried out on carbon fiber high-entropy alloy, carbon fiber aluminum alloy, carbon fiber titanium alloy, and carbon fiber-reinforced composite laminates. Their mechanical properties were investigated at the tensile strain rates of 3·10<sup>–3</sup>, 1·10<sup>–3</sup>, and 1·10<sup>–4</sup> s<sup>–1</sup>. Compression tests on carbon fiber high entropy alloy (HEA) and carbon fiber-reinforced composite laminates were carried out at the strain rates of 3·10<sup>–3</sup> and 1·10<sup>–3</sup> s<sup>–1</sup>, respectively. Results showed that the carbon fiber high-entropy alloy composite laminate was more elastic than the carbon fiber-reinforced composite laminate at the strain rates of 3·10<sup>–3</sup>, 1·10<sup>–1</sup>, and 1·10<sup>–4</sup> s<sup>–1</sup>. Their strength increased by 27, 16, and 10%, and the breaking strength by 18, 12, and 14%, respectively. Compared with the carbon fiber-reinforced composite laminate, the compressive strength of the carbon fiber HEA composite laminate increased by 44 and 29% at the compressive strain rates of 3·10<sup>–3</sup> and 1·10<sup>–3</sup>s<sup>–1</sup>, respectively.</p>","PeriodicalId":18308,"journal":{"name":"Mechanics of Composite Materials","volume":"160 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139102850","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Method for Predicting the Impact Limit Speed of Composite Laminates Under Different Ambient Temperatures Based on the Three-Dimensional Hashin Criterion 基于三维哈辛准则的不同环境温度下复合材料层压板冲击极限速度预测方法
IF 1.7 4区 材料科学 Q4 MATERIALS SCIENCE, COMPOSITES Pub Date : 2024-01-05 DOI: 10.1007/s11029-023-10161-3
R. Z. Yang, Z. R. Wu, H. Lei, Y. S. Mao, Y. Pan, Y. R. Yang, L. Fang

A dynamic constitutive model of fiber-reinforced resin matrix composites considering temperature effect was proposed. It was used to predict the impact limit speed of composite laminates. High-speed bullet impact tests of fiber-reinforced resin matrix composite laminates were carried out at 25, 160, and 200°C, and the impact limit speed Vc was calculated using the test results. The test results showed that Vc of carbon-fiber-reinforced resin matrix composite laminates decreased with increasing ambient temperature. On this basis, a dynamic failure model of fiber-reinforced resin matrix composites was established considering the influence of ambient temperature. A VUMAT user subroutine was also developed to embed the failure model into the finite-element analysis software package. Then, the high-speed impacts of composite laminates at different temperatures were simulated numerically. The magnitude of Vc was predicted by the bisection method. A comparison of simulation results with test data showed that the error was smaller than 5%.

提出了一种考虑温度效应的纤维增强树脂基复合材料动态结构模型。该模型用于预测复合材料层压板的冲击极限速度。在 25、160 和 200°C 下对纤维增强树脂基复合材料层压板进行了高速子弹冲击试验,并利用试验结果计算了冲击极限速度 Vc。试验结果表明,碳纤维增强树脂基复合材料层压板的 Vc 随环境温度的升高而降低。在此基础上,考虑到环境温度的影响,建立了纤维增强树脂基复合材料的动态失效模型。此外,还开发了一个 VUMAT 用户子程序,用于将失效模型嵌入到有限元分析软件包中。然后,对复合材料层压板在不同温度下的高速冲击进行了数值模拟。Vc 的大小是通过二分法预测的。模拟结果与测试数据的比较表明,误差小于 5%。
{"title":"A Method for Predicting the Impact Limit Speed of Composite Laminates Under Different Ambient Temperatures Based on the Three-Dimensional Hashin Criterion","authors":"R. Z. Yang, Z. R. Wu, H. Lei, Y. S. Mao, Y. Pan, Y. R. Yang, L. Fang","doi":"10.1007/s11029-023-10161-3","DOIUrl":"https://doi.org/10.1007/s11029-023-10161-3","url":null,"abstract":"<p>A dynamic constitutive model of fiber-reinforced resin matrix composites considering temperature effect was proposed. It was used to predict the impact limit speed of composite laminates. High-speed bullet impact tests of fiber-reinforced resin matrix composite laminates were carried out at 25, 160, and 200°C, and the impact limit speed V<sub>c</sub> was calculated using the test results. The test results showed that V<sub>c</sub> of carbon-fiber-reinforced resin matrix composite laminates decreased with increasing ambient temperature. On this basis, a dynamic failure model of fiber-reinforced resin matrix composites was established considering the influence of ambient temperature. A VUMAT user subroutine was also developed to embed the failure model into the finite-element analysis software package. Then, the high-speed impacts of composite laminates at different temperatures were simulated numerically. The magnitude of V<sub>c</sub> was predicted by the bisection method. A comparison of simulation results with test data showed that the error was smaller than 5%.</p>","PeriodicalId":18308,"journal":{"name":"Mechanics of Composite Materials","volume":"124 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139102982","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Hybrid Parameter Homogenization Workflow for Assessing the Mechanical Behavior of a Steel Fiber-Reinforced Concrete 用于评估钢纤维加固混凝土力学性能的混合参数均质化工作流程
IF 1.7 4区 材料科学 Q4 MATERIALS SCIENCE, COMPOSITES Pub Date : 2024-01-04 DOI: 10.1007/s11029-023-10163-1
M. Congro, F. L. G. Pereira, L. M. S. Souza, D. Roehl

A novel generic workflow to predict homogenized material parameters of tensile behavior of a steel fiber-reinforced concrete (SFRC) using artificial neural networks (ANNs) was proposed. The neural network estimated the homogenized parameters of composite materials linked to finite-element (FE) models. An advantage of this approach is its flexibility in obtaining model parameters, which often have no physical interpretation. Moreover, the joint application of ANNs to estimate the model parameters and FE simulations to obtain the global mechanical behavior of SFRC is an innovation. An experimental database was constructed from the tests available in the literature and provided the ANN input data: the water-cement ratio, the fiber volume fraction, and the diameter and length of steel fibers. The outputs were Young’s modulus, the tensile strength, and the fracture energy of the composite. Three different networks were trained for each output dataset. The ANN configuration consisted of an input layer with four nodes and an output layer with one node. Blind tests with five experimental test sets checked the solution accuracy, presenting relative errors lower than 10%. Finally, a FE model of a direct tensile test was built, adopting the parameters obtained through the workflow. The load–displacement curve of the numerical solution showed a good agreement with the experimental curve, and peak–load errors were smaller than 5%.

提出了一种新的通用工作流程,利用人工神经网络(ANN)预测钢纤维增强混凝土(SFRC)拉伸行为的均质材料参数。神经网络估算了与有限元(FE)模型相关联的复合材料的均质化参数。这种方法的优点是可以灵活地获取模型参数,而这些参数往往没有物理解释。此外,联合应用 ANN 估算模型参数和 FE 模拟来获得 SFRC 的整体力学行为也是一种创新。根据文献中的测试结果构建了一个实验数据库,并提供了 ANN 输入数据:水灰比、纤维体积分数以及钢纤维的直径和长度。输出为复合材料的杨氏模量、拉伸强度和断裂能。每个输出数据集都训练了三个不同的网络。ANN 配置包括一个有四个节点的输入层和一个有一个节点的输出层。利用五个实验测试集进行的盲测检验了解决方案的准确性,结果显示相对误差低于 10%。最后,采用工作流程中获得的参数,建立了直接拉伸试验的有限元模型。数值解法的载荷-位移曲线与实验曲线显示出良好的一致性,峰值载荷误差小于 5%。
{"title":"A Hybrid Parameter Homogenization Workflow for Assessing the Mechanical Behavior of a Steel Fiber-Reinforced Concrete","authors":"M. Congro, F. L. G. Pereira, L. M. S. Souza, D. Roehl","doi":"10.1007/s11029-023-10163-1","DOIUrl":"https://doi.org/10.1007/s11029-023-10163-1","url":null,"abstract":"<p>A novel generic workflow to predict homogenized material parameters of tensile behavior of a steel fiber-reinforced concrete (SFRC) using artificial neural networks (ANNs) was proposed. The neural network estimated the homogenized parameters of composite materials linked to finite-element (FE) models. An advantage of this approach is its flexibility in obtaining model parameters, which often have no physical interpretation. Moreover, the joint application of ANNs to estimate the model parameters and FE simulations to obtain the global mechanical behavior of SFRC is an innovation. An experimental database was constructed from the tests available in the literature and provided the ANN input data: the water-cement ratio, the fiber volume fraction, and the diameter and length of steel fibers. The outputs were Young’s modulus, the tensile strength, and the fracture energy of the composite. Three different networks were trained for each output dataset. The ANN configuration consisted of an input layer with four nodes and an output layer with one node. Blind tests with five experimental test sets checked the solution accuracy, presenting relative errors lower than 10%. Finally, a FE model of a direct tensile test was built, adopting the parameters obtained through the workflow. The load–displacement curve of the numerical solution showed a good agreement with the experimental curve, and peak–load errors were smaller than 5%.</p>","PeriodicalId":18308,"journal":{"name":"Mechanics of Composite Materials","volume":"52 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139102934","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Some Conferences and Congresses (Composites & Advanced Materials) 一些会议和大会(复合材料和先进材料)
IF 1.7 4区 材料科学 Q4 MATERIALS SCIENCE, COMPOSITES Pub Date : 2024-01-03 DOI: 10.1007/s11029-023-10169-9
{"title":"Some Conferences and Congresses (Composites & Advanced Materials)","authors":"","doi":"10.1007/s11029-023-10169-9","DOIUrl":"https://doi.org/10.1007/s11029-023-10169-9","url":null,"abstract":"","PeriodicalId":18308,"journal":{"name":"Mechanics of Composite Materials","volume":"21 6","pages":"1-2"},"PeriodicalIF":1.7,"publicationDate":"2024-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139114645","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Mechanics of Composite Materials
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1