The ability to mix many different metal cations in a single-phase nanoscale oxide is critical for property adjusting and new material discovery. However, synthesizing multicomponent high-entropy oxides (HEOs) consisting of over ten metal cations remains a challenge due to dissimilarity and immiscibility among these elements. Herein, we explore the accommodation ability of AlNi-type and AlTi-type intermetallic phases and find that the AlNi-type phase is powerful to accommodate many different kinds metal elements. By chemically dealloying the Al from the multicomponent AlNi-type intermetallic phase, multicomponent spinel oxides such as 7-component (AlNiCoRuMoCrFe)O, 8-component (AlNiCoRuMoCrFeTi)O, 13-component (AlNiCoCrFeCuMoVTaNbHfZrTi)O, 16-component (AlNiCoCrFeCuMoTaNbHfZrTiRuVPdY)O et al., with nanoporous structure and poor crystallity are obtained. As a case study, we find that when applied in Li-ion battery anode, our 16-component nanoporous HEO exhibits a high capacity of ∼1141.2 mAh g after 290 cycles at 0.1 A g and excellent cycling stability. This study greatly expands the composition space of nanoscale HEOs and provides an interesting route for new materials discovery.
在单相纳米级氧化物中混合多种不同金属阳离子的能力对于调整性质和发现新材料至关重要。然而,由于这些元素之间的不相似性和不互溶性,合成由十多种金属阳离子组成的多组分高熵氧化物(HEOs)仍然是一项挑战。在此,我们探索了 AlNi- 型和 AlTi- 型金属间相的容纳能力,发现 AlNi- 型金属间相具有容纳多种金属元素的强大能力。通过化学脱合金的方法,从多组分 AlNi- 型金属间相中脱出 Al,产生了多组分尖晶石氧化物,如 7 组分(AlNiCoRuMoCrFe)O.、8 组分(AlNiCoRuMoCrFe)O.和 9 组分(AlNiCoRuMoCrFe)O.、8-组分(AlNiCoRuMoCrFeTi)O、13-组分(AlNiCoCrFeCuMoVTaNbHfZrTi)O、16-组分(AlNiCoCrFeCuMoTaNbHfZrTiRuVPdY)O 等多组分尖晶石氧化物。,获得了具有纳米多孔结构和较差结晶度的铝镍钴铬铁铜钴锰铜钽铌锆钛作为一项案例研究,我们发现当应用于锂离子电池阳极时,我们的 16 组分纳米多孔 HEO 在 0.1 A g 条件下循环 290 次后显示出 ∼1141.2 mAh g 的高容量和优异的循环稳定性。这项研究极大地拓展了纳米级 HEO 的组成空间,为新材料的发现提供了一条有趣的途径。
{"title":"Extreme mixing in nanoporous high-entropy oxides for highly durable energy storage","authors":"Naixuan Ci, Kai Liu, Yixuan Hu, Kolan Madhav Reddy, Hua-Jun Qiu","doi":"10.1016/j.mtchem.2024.102229","DOIUrl":"https://doi.org/10.1016/j.mtchem.2024.102229","url":null,"abstract":"The ability to mix many different metal cations in a single-phase nanoscale oxide is critical for property adjusting and new material discovery. However, synthesizing multicomponent high-entropy oxides (HEOs) consisting of over ten metal cations remains a challenge due to dissimilarity and immiscibility among these elements. Herein, we explore the accommodation ability of AlNi-type and AlTi-type intermetallic phases and find that the AlNi-type phase is powerful to accommodate many different kinds metal elements. By chemically dealloying the Al from the multicomponent AlNi-type intermetallic phase, multicomponent spinel oxides such as 7-component (AlNiCoRuMoCrFe)O, 8-component (AlNiCoRuMoCrFeTi)O, 13-component (AlNiCoCrFeCuMoVTaNbHfZrTi)O, 16-component (AlNiCoCrFeCuMoTaNbHfZrTiRuVPdY)O et al., with nanoporous structure and poor crystallity are obtained. As a case study, we find that when applied in Li-ion battery anode, our 16-component nanoporous HEO exhibits a high capacity of ∼1141.2 mAh g after 290 cycles at 0.1 A g and excellent cycling stability. This study greatly expands the composition space of nanoscale HEOs and provides an interesting route for new materials discovery.","PeriodicalId":18353,"journal":{"name":"Materials Today Chemistry","volume":"76 1","pages":""},"PeriodicalIF":7.3,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141880604","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In recent years, conductive hydrogels were widely applied as flexible strain sensor due to its outstanding stretchability, high flexibility and conductivity. However, most conductive hydrogels would reduce the sensitivity and accuracy of hydrogel-based strain sensor for the lack of self-adhesion. Herein, a highly stretchable and excellent adhesive hydrogel based on chitosan network and ionic liquid crosslinking network was prepared. Chitosan (CS) worked as network skeleton, which could enhance the mechanical properties of hydrogel by participating in the construction of double network structure. Furthermore, dimethylaminoethyl methacrylate maleate (DM-M) as cross-linker, the hydrogel was imparted with high ionic conductivity (0.29 S/m) while it also enhanced the mechanical properties of the hydrogel. The ionic bonding conferred high toughness to the hydrogel for avoiding stress concentration during tensile process. Additionally, the hydrogel could form strong adhesion to a variety of substrate surfaces through electrostatic interaction, hydrogen bond and metal complexation. Meanwhile, the hydrogel remained strong adhesion under different pH, solvent and temperature condition. Therefore, the hydrogel with excellent adhesive property, mechanical properties and high electrical conductivity have been designed as flexible strain sensor, which could detect limb movement and physiological signals with real-time feedback electrical signals. Thus, this highly stretchable, tough and adhesive hydrogel based on double network structure would promote the development of flexible electronic device.
{"title":"Ultra-stretchable and adhesive hydrogel based on double network structure as flexible strain sensor for human motion detection","authors":"Mengliang Bi, Zichun Zhao, Zhaohui Jin, Huajing Gao, Jian Sun, Hailun Ren, Zijian Gao","doi":"10.1016/j.mtchem.2024.102223","DOIUrl":"https://doi.org/10.1016/j.mtchem.2024.102223","url":null,"abstract":"In recent years, conductive hydrogels were widely applied as flexible strain sensor due to its outstanding stretchability, high flexibility and conductivity. However, most conductive hydrogels would reduce the sensitivity and accuracy of hydrogel-based strain sensor for the lack of self-adhesion. Herein, a highly stretchable and excellent adhesive hydrogel based on chitosan network and ionic liquid crosslinking network was prepared. Chitosan (CS) worked as network skeleton, which could enhance the mechanical properties of hydrogel by participating in the construction of double network structure. Furthermore, dimethylaminoethyl methacrylate maleate (DM-M) as cross-linker, the hydrogel was imparted with high ionic conductivity (0.29 S/m) while it also enhanced the mechanical properties of the hydrogel. The ionic bonding conferred high toughness to the hydrogel for avoiding stress concentration during tensile process. Additionally, the hydrogel could form strong adhesion to a variety of substrate surfaces through electrostatic interaction, hydrogen bond and metal complexation. Meanwhile, the hydrogel remained strong adhesion under different pH, solvent and temperature condition. Therefore, the hydrogel with excellent adhesive property, mechanical properties and high electrical conductivity have been designed as flexible strain sensor, which could detect limb movement and physiological signals with real-time feedback electrical signals. Thus, this highly stretchable, tough and adhesive hydrogel based on double network structure would promote the development of flexible electronic device.","PeriodicalId":18353,"journal":{"name":"Materials Today Chemistry","volume":"36 1","pages":""},"PeriodicalIF":7.3,"publicationDate":"2024-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141880608","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-27DOI: 10.1016/j.mtchem.2024.102230
Jin Wang, Qixiang Zhou, Zhan Shu, Miao Wang, Yang Wang, Yong Yao
Hypochlorous acid concentration anomaly may cause many serious diseases, so the development method to detect HClO high sensitivity and selectivity is of great significance in clinical diagnosis. Among many methods for detecting HClO, photoelectric chemical sensor has the advantages of high sensitivity and strong anti-interference ability, and has been widely used in the field of detecting HClO. Herein, a simple and specific photoelectrochemical sensor was constructed using A1/B1-type pillar[5]arene functionalized Au NPs and multi-walled carbon nanotube-polythiophene composites for the detection of hypochlorous acid. This approach was based on a sulfhydryl-borate ester modified A1/B1 type pillar[5]arene (BP5) as the main body, hypochlorous acid (HClO) as the guest, multi-walled carbon nanotube (MWNTs) conducting polymers doped with poly(3,4-ethylenedioxythiophene) (PEDOT) as the transport bridge and signal amplifier, as well as spherical gold nanoparticles act as the signal reporter. Specifically, the photoelectrochemical efficiency was further enhanced by the localized surface plasmon resonance effect (LSPR) of gold nanoparticles (Au NPs) and the host-guest complexation between BP5 and HClO. The large specific surface area of MWNTs doped with PEDOT significantly enhanced the electrical conductivity and chemical stability of PEDOT, facilitating accelerated electron transfer and mitigating the recombination of the photogenerated electron-hole pairs. Benefiting from the combination of Au NPs, BP5, MWNTs and PEDOT, the sensor exhibited excellent sensitivity with detection range of 0.5–340 μM and a detection limit of 0.17 μM, and distinguished selectivity against 6 interfering substances. Due to the adsorption and removal effects of pillar[5]arenes on heavy metal ions and pollutants in water, as well as their effective catalytic performance, we anticipate that this composite material also has great potential in photoelectrochemical detection, catalysis, and adsorption.
{"title":"Photoelectrochemical sensor for hypochlorous acid detection based on the MWNTs doped PEDOT loaded with BP5 functionalized gold nanoparticles","authors":"Jin Wang, Qixiang Zhou, Zhan Shu, Miao Wang, Yang Wang, Yong Yao","doi":"10.1016/j.mtchem.2024.102230","DOIUrl":"https://doi.org/10.1016/j.mtchem.2024.102230","url":null,"abstract":"Hypochlorous acid concentration anomaly may cause many serious diseases, so the development method to detect HClO high sensitivity and selectivity is of great significance in clinical diagnosis. Among many methods for detecting HClO, photoelectric chemical sensor has the advantages of high sensitivity and strong anti-interference ability, and has been widely used in the field of detecting HClO. Herein, a simple and specific photoelectrochemical sensor was constructed using A1/B1-type pillar[5]arene functionalized Au NPs and multi-walled carbon nanotube-polythiophene composites for the detection of hypochlorous acid. This approach was based on a sulfhydryl-borate ester modified A1/B1 type pillar[5]arene (BP5) as the main body, hypochlorous acid (HClO) as the guest, multi-walled carbon nanotube (MWNTs) conducting polymers doped with poly(3,4-ethylenedioxythiophene) (PEDOT) as the transport bridge and signal amplifier, as well as spherical gold nanoparticles act as the signal reporter. Specifically, the photoelectrochemical efficiency was further enhanced by the localized surface plasmon resonance effect (LSPR) of gold nanoparticles (Au NPs) and the host-guest complexation between BP5 and HClO. The large specific surface area of MWNTs doped with PEDOT significantly enhanced the electrical conductivity and chemical stability of PEDOT, facilitating accelerated electron transfer and mitigating the recombination of the photogenerated electron-hole pairs. Benefiting from the combination of Au NPs, BP5, MWNTs and PEDOT, the sensor exhibited excellent sensitivity with detection range of 0.5–340 μM and a detection limit of 0.17 μM, and distinguished selectivity against 6 interfering substances. Due to the adsorption and removal effects of pillar[5]arenes on heavy metal ions and pollutants in water, as well as their effective catalytic performance, we anticipate that this composite material also has great potential in photoelectrochemical detection, catalysis, and adsorption.","PeriodicalId":18353,"journal":{"name":"Materials Today Chemistry","volume":"74 1","pages":""},"PeriodicalIF":7.3,"publicationDate":"2024-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141880611","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-27DOI: 10.1016/j.mtchem.2024.102231
Yang Guo, Yixuan Wang, Mengjin Zhang, Shuheng Jiang, Yi Wu, Bo Chen, Run Zhao, Jahangeer Ahmed, Hao Lu, Wei Tian
Enhancing the quality of perovskite layer and refining the interface between the perovskite layer and the hole transport layer (HTL) represent pivotal strategies for optimizing the efficiency and stability of perovskite solar cells (PSCs). We accomplished this by employing a solution isopropanol (IPA), capable of selectively dissolving residual unreacted methylammonium and formamidine salts on the perovskite surface while preserving the integrity of lead iodide. Through control of the immersion time, we facilitated secondary crystal growth on the top of perovskite film. The resultant treated film exhibited a markedly suitable bandgap position and a diminished presence of residual trips. The IPA-treated sample led to a noteworthy photovoltaic conversion efficiency (PCE) of 23.34 %, compared to 21.46 % efficiency for untreated control sample. Furthermore, under sustained illumination at AM 1.5G with 25 % relative humidity, the uncovered IPA-treated sample retained an impressive 92 % of their initial efficiency after 1000 h. Further scrutiny revealed that this solution-based treatment effectively passivated trips, enhanced perovskite film quality, established novel built-in electric fields, and mitigated charge carrier recombination. This work provides a simple perovskite film treatment approach that does not require complex molecular engineering and can be applied not only to PSCs but also to other perovskite optoelectronic devices.
{"title":"Solution-Induced surface modification and secondary grains growth for high-performance and stable perovskite solar cells","authors":"Yang Guo, Yixuan Wang, Mengjin Zhang, Shuheng Jiang, Yi Wu, Bo Chen, Run Zhao, Jahangeer Ahmed, Hao Lu, Wei Tian","doi":"10.1016/j.mtchem.2024.102231","DOIUrl":"https://doi.org/10.1016/j.mtchem.2024.102231","url":null,"abstract":"Enhancing the quality of perovskite layer and refining the interface between the perovskite layer and the hole transport layer (HTL) represent pivotal strategies for optimizing the efficiency and stability of perovskite solar cells (PSCs). We accomplished this by employing a solution isopropanol (IPA), capable of selectively dissolving residual unreacted methylammonium and formamidine salts on the perovskite surface while preserving the integrity of lead iodide. Through control of the immersion time, we facilitated secondary crystal growth on the top of perovskite film. The resultant treated film exhibited a markedly suitable bandgap position and a diminished presence of residual trips. The IPA-treated sample led to a noteworthy photovoltaic conversion efficiency (PCE) of 23.34 %, compared to 21.46 % efficiency for untreated control sample. Furthermore, under sustained illumination at AM 1.5G with 25 % relative humidity, the uncovered IPA-treated sample retained an impressive 92 % of their initial efficiency after 1000 h. Further scrutiny revealed that this solution-based treatment effectively passivated trips, enhanced perovskite film quality, established novel built-in electric fields, and mitigated charge carrier recombination. This work provides a simple perovskite film treatment approach that does not require complex molecular engineering and can be applied not only to PSCs but also to other perovskite optoelectronic devices.","PeriodicalId":18353,"journal":{"name":"Materials Today Chemistry","volume":"21 1","pages":""},"PeriodicalIF":7.3,"publicationDate":"2024-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141880609","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-25DOI: 10.1016/j.mtchem.2024.102221
Jun-Fei Gu, Cheng Chen, Somboon Chaemchuen, Wei Sang, Xing-Chuan Li, Ye Yuan, Zongkui Kou, Francis Verpoort
The dehydrogenation of primary alcohols to carboxylic acids is a crucial process in chemical industries such as fibers and plastics. Carboxylic acids, the resulting products, are not only important chemical raw materials but also fundamental pharmaceutical intermediates. Zn-based catalysts have gained attention as a promising option for this transformation owing to their economic cost and abundant reserves. However, stability issues, including structure collapse and morphological changes, have plagued the reported Zn-based catalysts during this transformation. In response to these challenges, this study focused on the design and development of Zn-based catalysts via controlled incorporation of Zn into nitrogen-doped porous carbon to modulate the numbers of defects and Lewis acid-base site pairs. Through extensive screening of various parameters, the best-performing catalyst, namely Zn@NC-800, exhibited high activity and remarkable stability, surpassing all the reported Zn-based catalysts. Moreover, this catalyst demonstrated great recyclability since it could maintain approximately 90 % yields after 9 cycles. Notably, the product formation rate of this catalyst could reach 3833 μmol·g·h, exceeding that of most reported non-noble metal heterogeneous catalysts. Consequently, this study offers a promising approach for efficiently and stably catalyzing alcohol dehydrogenation reactions using non-noble metals.
{"title":"Controlled incorporation of Zn into nitrogen-doped porous carbon boosts the alcohol dehydrogenation to carboxylic acids","authors":"Jun-Fei Gu, Cheng Chen, Somboon Chaemchuen, Wei Sang, Xing-Chuan Li, Ye Yuan, Zongkui Kou, Francis Verpoort","doi":"10.1016/j.mtchem.2024.102221","DOIUrl":"https://doi.org/10.1016/j.mtchem.2024.102221","url":null,"abstract":"The dehydrogenation of primary alcohols to carboxylic acids is a crucial process in chemical industries such as fibers and plastics. Carboxylic acids, the resulting products, are not only important chemical raw materials but also fundamental pharmaceutical intermediates. Zn-based catalysts have gained attention as a promising option for this transformation owing to their economic cost and abundant reserves. However, stability issues, including structure collapse and morphological changes, have plagued the reported Zn-based catalysts during this transformation. In response to these challenges, this study focused on the design and development of Zn-based catalysts via controlled incorporation of Zn into nitrogen-doped porous carbon to modulate the numbers of defects and Lewis acid-base site pairs. Through extensive screening of various parameters, the best-performing catalyst, namely Zn@NC-800, exhibited high activity and remarkable stability, surpassing all the reported Zn-based catalysts. Moreover, this catalyst demonstrated great recyclability since it could maintain approximately 90 % yields after 9 cycles. Notably, the product formation rate of this catalyst could reach 3833 μmol·g·h, exceeding that of most reported non-noble metal heterogeneous catalysts. Consequently, this study offers a promising approach for efficiently and stably catalyzing alcohol dehydrogenation reactions using non-noble metals.","PeriodicalId":18353,"journal":{"name":"Materials Today Chemistry","volume":"18 1","pages":""},"PeriodicalIF":7.3,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141880536","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-24DOI: 10.1016/j.mtchem.2024.102210
Francesco Ruighi, Alessandro Agostini, Eduardo Fabiano, Samuel Zatta, Mariangela Clemente, Lorenzo Franco, Agostina Lina Capodilupo, Gianluca Accorsi
Six arylamino-dibenzothiophene () derivatives (with D-π-D or D-π pattern) were synthesized in order to investigate how the symmetry and different oxidation states, sulfide (, ), sulfoxide (, ) and sulfone (, ) affect the optical properties of these compounds, respectively. To unravel the complexity of their photophysics, extensive characterization was carried out, including UV–Vis and fluorescence spectroscopy both in different solvents at room temperature and in rigid matrix at 77 K. In addition to the presence of various singlet states, this study has brought to light the existence, in rigid conditions, of radiative triplet states responsible for phosphorescence phenomena. This interesting architecture of triplet states was investigated using the time-resolved EPR (TREPR) technique and further supported by TDDFT calculations. This approach allows us to obtain a complete photophysical view of the generation and decay of excited states and how molecular geometry influences it.
{"title":"Controlling the optical output of arylamino-dibenzothiophene systems by sulphur oxidation state","authors":"Francesco Ruighi, Alessandro Agostini, Eduardo Fabiano, Samuel Zatta, Mariangela Clemente, Lorenzo Franco, Agostina Lina Capodilupo, Gianluca Accorsi","doi":"10.1016/j.mtchem.2024.102210","DOIUrl":"https://doi.org/10.1016/j.mtchem.2024.102210","url":null,"abstract":"Six arylamino-dibenzothiophene () derivatives (with D-π-D or D-π pattern) were synthesized in order to investigate how the symmetry and different oxidation states, sulfide (, ), sulfoxide (, ) and sulfone (, ) affect the optical properties of these compounds, respectively. To unravel the complexity of their photophysics, extensive characterization was carried out, including UV–Vis and fluorescence spectroscopy both in different solvents at room temperature and in rigid matrix at 77 K. In addition to the presence of various singlet states, this study has brought to light the existence, in rigid conditions, of radiative triplet states responsible for phosphorescence phenomena. This interesting architecture of triplet states was investigated using the time-resolved EPR (TREPR) technique and further supported by TDDFT calculations. This approach allows us to obtain a complete photophysical view of the generation and decay of excited states and how molecular geometry influences it.","PeriodicalId":18353,"journal":{"name":"Materials Today Chemistry","volume":"179 1","pages":""},"PeriodicalIF":7.3,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141880612","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-21DOI: 10.1016/j.mtchem.2024.102198
Fei Zhou, Guangjun Liu, Changfu Zhuang, Ying Wang, Di Tian
MOFs have been widely recognized in battery-supercapacitor hybrid devices. Here, the electrochemical performance of Ni MOF as a battery-type material was primarily improved by morphological engineering based on solvent and Co ions. Varying the solvent type, solvent ratio, and Ni/Co ratio, NiCo(1:0.5)MOF HO showed the largest specific capacitance of 1225.56 F g (specific capacity of 551.50 C g) at 0.5 A g, owing to its largest specific surface and good redox activity caused by the difference in the solvent solubility, solvent polarity and coordination ability of metal ions. Furthermore, a solid-state battery-supercapacitor hybrid device was assembled, serving NiCo(1:0.5)MOF HO and active carbon material obtained from bamboo as the positive and negative electrodes, separately. At a power density of 750.00 W kg, this device emerged with a large energy density of 108.96 Wh kg. After 5000 cycles, it can maintain 89.09 % of the initial value. Notably, this device could furnish energy for the LED emitting, reflecting a giant application potential.
MOFs 在电池-超级电容器混合装置中已得到广泛认可。本文主要通过基于溶剂和 Co 离子的形态学工程改善了镍 MOF 作为电池型材料的电化学性能。随着溶剂类型、溶剂比例和镍/钴比例的变化,镍钴(1:0.5)MOF HO 在 0.5 A g 时的比电容最大,达到 1225.56 F g(比容量为 551.50 C g),这是由于溶剂溶解度、溶剂极性和金属离子配位能力的不同导致了其最大的比表面和良好的氧化还原活性。此外,还分别以 NiCo(1:0.5)MOF HO 和从竹子中提取的活性碳材料为正负极,组装了固态电池-超级电容器混合装置。当功率密度为 750.00 W kg 时,该装置的能量密度高达 108.96 Wh kg。在循环使用 5000 次后,它仍能保持初始值的 89.09%。值得注意的是,该装置可为 LED 发光提供能量,具有巨大的应用潜力。
{"title":"Morphology-dependent metal-organic frameworks via solvent and Co ion effect for high performance battery-supercapacitor hybrid device","authors":"Fei Zhou, Guangjun Liu, Changfu Zhuang, Ying Wang, Di Tian","doi":"10.1016/j.mtchem.2024.102198","DOIUrl":"https://doi.org/10.1016/j.mtchem.2024.102198","url":null,"abstract":"MOFs have been widely recognized in battery-supercapacitor hybrid devices. Here, the electrochemical performance of Ni MOF as a battery-type material was primarily improved by morphological engineering based on solvent and Co ions. Varying the solvent type, solvent ratio, and Ni/Co ratio, NiCo(1:0.5)MOF HO showed the largest specific capacitance of 1225.56 F g (specific capacity of 551.50 C g) at 0.5 A g, owing to its largest specific surface and good redox activity caused by the difference in the solvent solubility, solvent polarity and coordination ability of metal ions. Furthermore, a solid-state battery-supercapacitor hybrid device was assembled, serving NiCo(1:0.5)MOF HO and active carbon material obtained from bamboo as the positive and negative electrodes, separately. At a power density of 750.00 W kg, this device emerged with a large energy density of 108.96 Wh kg. After 5000 cycles, it can maintain 89.09 % of the initial value. Notably, this device could furnish energy for the LED emitting, reflecting a giant application potential.","PeriodicalId":18353,"journal":{"name":"Materials Today Chemistry","volume":"6 1","pages":""},"PeriodicalIF":7.3,"publicationDate":"2024-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141880614","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-21DOI: 10.1016/j.mtchem.2024.102207
Peng-Yu Zhu, Tian-Xiao Liang, Muhammad Arslan Hafeez, Muhammad Yasir, Dan-Qing Feng, Chun-Feng Ma, Cheng Zhang, Lin Liu
The issue of biofouling on marine structures carries significant economic and ecological implications, necessitating the development of effective and durable antifouling coatings. Traditional organic antifouling coatings often struggle with mechanical robustness in harsh marine environments, making them fragile and highly susceptible to abrasion. To address these challenges, we propose a novel “bifunctional domain engineering” strategy for designing robust antifouling coatings that combines excellent mechanical strength of a Fe-based amorphous layer and high antifouling efficacy of an incorporated organics. The hard domains consist of Fe-based amorphous micro humps, providing a sturdy framework that enhances the coating's mechanical durability. In contrast, the soft domains comprise epoxy resin infused with CuO and 4,5-Dichloro-2--octyl-4-isothiazolin-3-one (DCOIT), offering a dual-action antifouling function via controllable antifouling agent release. Evaluation of antifouling performance by lab tests against , , and algae and practical marine field tests (for 150 days) demonstrates significant reductions in bacterial and algal adhesion (nearly 100 % resistance) with the bifunctional domain engineered coating (referred to as HSR coating), compared to pure amorphous coating. Mechanical durability tests, including abrasion and erosion experiments, underscore the HSR coating's excellent wear resistance. Importantly, the HSR coating maintains its outstanding antifouling properties even after 1000 abrasion cycles, highlighting its potential for long-term marine applications in harsh conditions. This study lays the groundwork for design of robust antifouling coatings capable of withstanding the harsh operating environments while effectively combating biofouling.
{"title":"A novel strategy for design of mechanically robust antifouling coatings via bifunctional domain engineering","authors":"Peng-Yu Zhu, Tian-Xiao Liang, Muhammad Arslan Hafeez, Muhammad Yasir, Dan-Qing Feng, Chun-Feng Ma, Cheng Zhang, Lin Liu","doi":"10.1016/j.mtchem.2024.102207","DOIUrl":"https://doi.org/10.1016/j.mtchem.2024.102207","url":null,"abstract":"The issue of biofouling on marine structures carries significant economic and ecological implications, necessitating the development of effective and durable antifouling coatings. Traditional organic antifouling coatings often struggle with mechanical robustness in harsh marine environments, making them fragile and highly susceptible to abrasion. To address these challenges, we propose a novel “bifunctional domain engineering” strategy for designing robust antifouling coatings that combines excellent mechanical strength of a Fe-based amorphous layer and high antifouling efficacy of an incorporated organics. The hard domains consist of Fe-based amorphous micro humps, providing a sturdy framework that enhances the coating's mechanical durability. In contrast, the soft domains comprise epoxy resin infused with CuO and 4,5-Dichloro-2--octyl-4-isothiazolin-3-one (DCOIT), offering a dual-action antifouling function via controllable antifouling agent release. Evaluation of antifouling performance by lab tests against , , and algae and practical marine field tests (for 150 days) demonstrates significant reductions in bacterial and algal adhesion (nearly 100 % resistance) with the bifunctional domain engineered coating (referred to as HSR coating), compared to pure amorphous coating. Mechanical durability tests, including abrasion and erosion experiments, underscore the HSR coating's excellent wear resistance. Importantly, the HSR coating maintains its outstanding antifouling properties even after 1000 abrasion cycles, highlighting its potential for long-term marine applications in harsh conditions. This study lays the groundwork for design of robust antifouling coatings capable of withstanding the harsh operating environments while effectively combating biofouling.","PeriodicalId":18353,"journal":{"name":"Materials Today Chemistry","volume":"215 1","pages":""},"PeriodicalIF":7.3,"publicationDate":"2024-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141880613","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The construction of epoxy resin (EP) composites with remarkable flame retardancy, transparency, and mechanical properties was a challenging subject in the industry. A novel P/N/S oligomer flame retardant (PALO) was synthesized of terephthalaldehyde (TPAL), 4-aminothiophenol (PATP), and 9, 10-dihydro-9-oxa-10-phosphaphenanthrene 10-oxide (DOPO), and employed in EP to fabricate a series of EP/PALO composites with different PALO amount. Thermogravimetric analysis (TGA) revealed that PALO exhibited remarkable thermal stability, retaining a substantial char residue of 32.2 wt% at 800 °C. Thanks to the synergy of P, N, and S, EP/PALO composites exhibited excellent flame retardancy properties. The LOI value of the EP/PALO composites saw a rise from 31.0 % to 34.2 % as the PALO content increased from 2.5 to 10 wt%, while UL-94 remained at the V-0 rating. EP/PALO also showed significant heat suppression and smoke suppression effects. The combined effects of the physical barrier from phosphate-containing char in the condensed phase, along with the flame-retardant and dilution effects of phosphorus radicals, nitrogen, and sulfur inert gases in the gas phase, contributed to the significant enhancement in flame retardancy observed in the EP/PALO composites. A notable increase in the tensile strength, flexural strength, and elongation at break of EP was triggered by the incorporation of 2.5 wt% PALO, with enhancements observed by 18.2 %, 16.6 %, and 53.1 %, respectively. Simultaneously, PALO effectively maintained the favorable transparency of EP composites under different addition amounts. Therefore, this study outlined a holistic approach for the development of oligomer flame retardants containing P/N/S and had good application potential for constructing EP composites with superior flame retardancy, transparency, and mechanical properties under different addition amounts.
{"title":"A synthesized P/N/S oligomer flame retardant to construct superior flame-retardant, transparent, and mechanical properties epoxy resin","authors":"Jing Zhou, Yong Guo, Zhongwei Chen, Tingting Chen, Yuan Yu, Qingwu Zhang, Juncheng Jiang","doi":"10.1016/j.mtchem.2024.102201","DOIUrl":"https://doi.org/10.1016/j.mtchem.2024.102201","url":null,"abstract":"The construction of epoxy resin (EP) composites with remarkable flame retardancy, transparency, and mechanical properties was a challenging subject in the industry. A novel P/N/S oligomer flame retardant (PALO) was synthesized of terephthalaldehyde (TPAL), 4-aminothiophenol (PATP), and 9, 10-dihydro-9-oxa-10-phosphaphenanthrene 10-oxide (DOPO), and employed in EP to fabricate a series of EP/PALO composites with different PALO amount. Thermogravimetric analysis (TGA) revealed that PALO exhibited remarkable thermal stability, retaining a substantial char residue of 32.2 wt% at 800 °C. Thanks to the synergy of P, N, and S, EP/PALO composites exhibited excellent flame retardancy properties. The LOI value of the EP/PALO composites saw a rise from 31.0 % to 34.2 % as the PALO content increased from 2.5 to 10 wt%, while UL-94 remained at the V-0 rating. EP/PALO also showed significant heat suppression and smoke suppression effects. The combined effects of the physical barrier from phosphate-containing char in the condensed phase, along with the flame-retardant and dilution effects of phosphorus radicals, nitrogen, and sulfur inert gases in the gas phase, contributed to the significant enhancement in flame retardancy observed in the EP/PALO composites. A notable increase in the tensile strength, flexural strength, and elongation at break of EP was triggered by the incorporation of 2.5 wt% PALO, with enhancements observed by 18.2 %, 16.6 %, and 53.1 %, respectively. Simultaneously, PALO effectively maintained the favorable transparency of EP composites under different addition amounts. Therefore, this study outlined a holistic approach for the development of oligomer flame retardants containing P/N/S and had good application potential for constructing EP composites with superior flame retardancy, transparency, and mechanical properties under different addition amounts.","PeriodicalId":18353,"journal":{"name":"Materials Today Chemistry","volume":"18 1","pages":""},"PeriodicalIF":7.3,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141775149","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-19DOI: 10.1016/j.mtchem.2024.102196
Caicheng Song, Kun Liu, Tianwei Wang, Pin-Yi Zhao, He Huang, Ying Liu, Rongwen Lu, Shufen Zhang
Preparing multi-shelled hollow carbon spheres with highly complex and well-defined structures remains challenging, especially through facile synthesis routes. Herein, we propose a spontaneous template approach to achieve one-step efficient preparation of nitrogenous multi-shelled hollow carbon spheres with onion-like morphology and architecture (NMHCS). This synthetic route is characterized by the interaction of protonated melamine and Aerosol OT (AOT) based on Coulomb force to construct a “anionic-cationic surfactant” and spontaneously form vesicles. The packing parameter of surfactant was regulated by introducing 1,3,5-trimethylbenzene to obtain the multilamellar vesicles templates, which direct the synthesis of target multi-shelled hollow carbon spheres. Impressively, NMHCS with a unique multi-shelled hollow structure, a high surface area of 592 m g, a large pore volume of 0.56 cm g, a hierarchical pore structure, and abundant nitrogen content of 10 wt% has shown great application potential in the field of CO adsorption and lithium-ion batteries.
制备具有高度复杂和明确结构的多壳空心碳球仍然具有挑战性,尤其是通过简便的合成路线。在此,我们提出了一种自发模板方法,可实现一步法高效制备具有洋葱状形态和结构的含氮多壳空心碳球(NMHCS)。该合成路线的特点是质子化三聚氰胺与气溶胶 OT(AOT)基于库仑力相互作用,构建 "阴阳离子表面活性剂 "并自发形成囊泡。通过引入 1,3,5-三甲基苯来调节表面活性剂的堆积参数,得到多胶束囊泡模板,从而指导目标多壳空心碳球的合成。令人印象深刻的是,NMHCS 具有独特的多壳空心结构、592 m g 的高比表面积、0.56 cm g 的大孔体积、分层孔结构以及 10 wt% 的丰富氮含量,在 CO 吸附和锂离子电池领域显示出巨大的应用潜力。
{"title":"Spontaneous template approach towards nitrogenous multi-shelled hollow carbon spheres with unique onion-like architecture","authors":"Caicheng Song, Kun Liu, Tianwei Wang, Pin-Yi Zhao, He Huang, Ying Liu, Rongwen Lu, Shufen Zhang","doi":"10.1016/j.mtchem.2024.102196","DOIUrl":"https://doi.org/10.1016/j.mtchem.2024.102196","url":null,"abstract":"Preparing multi-shelled hollow carbon spheres with highly complex and well-defined structures remains challenging, especially through facile synthesis routes. Herein, we propose a spontaneous template approach to achieve one-step efficient preparation of nitrogenous multi-shelled hollow carbon spheres with onion-like morphology and architecture (NMHCS). This synthetic route is characterized by the interaction of protonated melamine and Aerosol OT (AOT) based on Coulomb force to construct a “anionic-cationic surfactant” and spontaneously form vesicles. The packing parameter of surfactant was regulated by introducing 1,3,5-trimethylbenzene to obtain the multilamellar vesicles templates, which direct the synthesis of target multi-shelled hollow carbon spheres. Impressively, NMHCS with a unique multi-shelled hollow structure, a high surface area of 592 m g, a large pore volume of 0.56 cm g, a hierarchical pore structure, and abundant nitrogen content of 10 wt% has shown great application potential in the field of CO adsorption and lithium-ion batteries.","PeriodicalId":18353,"journal":{"name":"Materials Today Chemistry","volume":"43 1","pages":""},"PeriodicalIF":7.3,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141786048","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}