首页 > 最新文献

Materials Today Chemistry最新文献

英文 中文
Nitrogen-induced TiO2 electric field polarization for efficient photodegradation of high-concentration ethyl acetate: Mechanisms and reaction pathways 氮引发的二氧化钛电场极化对高浓度乙酸乙酯的高效光降解:机理与反应途径
IF 7.3 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-09-05 DOI: 10.1016/j.mtchem.2024.102292
Jianghua Huang, Jiafeng Wei, Fengyuan Tian, Fukun Bi, Renzhi Rao, Yuxin Wang, Hengcong Tao, Ning Liu, Xiaodong Zhang
Volatile organic compounds (VOCs) posed a significant threat to the sustainability of ecosystems and human health, and photocatalytic oxidation technology emerged as one of the promising strategies. In this work, N-doped TiO composites were prepared by ball milling utilized melamine as a precursor for the photodegradation of high-concentration ethyl acetate under visible light. The electric field polarization effect of TiO facilitated the exposure of active sites, promoting separation and migration of photogenerated carriers. DFT calculations further demonstrated that N–TiO possessed better electron transition capabilities and stronger pollutant adsorption abilities. Notably, the optimized N–TiO (9-N-P25) exhibited an ethyl acetate removal rate of up to 98.8 % (2000 ppm) under visible light irradiation, and the speed constant k values (0.09488 min) was 2.66 folds higher than that of pure TiO (0.03571 min). The ·O and ·OH free radicals played major roles in the photodegradation process, and the interaction mechanism between free radicals and pollutant molecules was analyzed through in-situ infrared. Additionally, the mechanism of photocatalytic degradation of ethyl acetate by N–TiO was further elucidated. This work provided new insights into the semiconductor photodegradation of high-concentration VOCs, offering novel pathways for removing VOCs in the atmospheric environment.
挥发性有机化合物(VOCs)对生态系统的可持续性和人类健康构成了重大威胁,而光催化氧化技术则成为一种前景广阔的策略。本研究利用三聚氰胺作为前驱体,通过球磨法制备了掺杂 N 的 TiO 复合材料,用于在可见光下光降解高浓度醋酸乙酯。TiO 的电场极化效应促进了活性位点的暴露,促进了光生载流子的分离和迁移。DFT 计算进一步证明,N-TiO 具有更好的电子转换能力和更强的污染物吸附能力。值得注意的是,优化的 N-TiO (9-N-P25) 在可见光照射下的乙酸乙酯去除率高达 98.8 %(2000 ppm),速度常数 k 值(0.09488 分钟)比纯 TiO(0.03571 分钟)高出 2.66 倍。-O和-OH自由基在光降解过程中发挥了重要作用,并通过原位红外分析了自由基与污染物分子的相互作用机理。此外,还进一步阐明了 N-TiO 光催化降解醋酸乙酯的机理。这项工作为半导体光降解高浓度挥发性有机化合物提供了新的见解,为去除大气环境中的挥发性有机化合物提供了新的途径。
{"title":"Nitrogen-induced TiO2 electric field polarization for efficient photodegradation of high-concentration ethyl acetate: Mechanisms and reaction pathways","authors":"Jianghua Huang, Jiafeng Wei, Fengyuan Tian, Fukun Bi, Renzhi Rao, Yuxin Wang, Hengcong Tao, Ning Liu, Xiaodong Zhang","doi":"10.1016/j.mtchem.2024.102292","DOIUrl":"https://doi.org/10.1016/j.mtchem.2024.102292","url":null,"abstract":"Volatile organic compounds (VOCs) posed a significant threat to the sustainability of ecosystems and human health, and photocatalytic oxidation technology emerged as one of the promising strategies. In this work, N-doped TiO composites were prepared by ball milling utilized melamine as a precursor for the photodegradation of high-concentration ethyl acetate under visible light. The electric field polarization effect of TiO facilitated the exposure of active sites, promoting separation and migration of photogenerated carriers. DFT calculations further demonstrated that N–TiO possessed better electron transition capabilities and stronger pollutant adsorption abilities. Notably, the optimized N–TiO (9-N-P25) exhibited an ethyl acetate removal rate of up to 98.8 % (2000 ppm) under visible light irradiation, and the speed constant k values (0.09488 min) was 2.66 folds higher than that of pure TiO (0.03571 min). The ·O and ·OH free radicals played major roles in the photodegradation process, and the interaction mechanism between free radicals and pollutant molecules was analyzed through in-situ infrared. Additionally, the mechanism of photocatalytic degradation of ethyl acetate by N–TiO was further elucidated. This work provided new insights into the semiconductor photodegradation of high-concentration VOCs, offering novel pathways for removing VOCs in the atmospheric environment.","PeriodicalId":18353,"journal":{"name":"Materials Today Chemistry","volume":null,"pages":null},"PeriodicalIF":7.3,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142204452","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A multi-dimensional anti-counterfeiting nanocomposite based on fluorescent CDs and Eu-MOFs with dual function for continuous detection of Cu2+ and Bacillus anthracis 基于荧光 CD 和 Eu-MOFs 的多维防伪纳米复合材料,具有连续检测 Cu2+ 和炭疽杆菌的双重功能
IF 7.3 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-09-04 DOI: 10.1016/j.mtchem.2024.102270
Jian Gou, Yousong Hu, Luxin Xing, Jun Xu, Fengzhi Yue, Lina Zhang, Lei Jia
Traditional luminescent materials for anti-counterfeiting usually adopt encryption of low-level systems with limited security, which seriously hinders their application in preventing counterfeiting and information leakage. Therefore, it is urgent to develop materials for higher-level anti-counterfeiting. In this work, a stimulus-responsive intelligent luminescent material (AC@CDs-Eu-MOFs) was prepared by co-loading green-fluorescence CDs and red-fluorescence Eu-MOFs on Amino clay (AC). 5D security barcodes, which were easy to observe while difficult to clone, were ulteriorly designed based on the nanocomposite owing to the tunable fluorescence by optical stimulation and chemical stimulus. Owing to the large capacity, low cost, and easy authentication, the 5D security barcodes possess enormous potential in optical data storage and multi-dimensional information encryption. In addition, the chemical stimulus-response enables the nanocomposite achievable in detection of Cu and Bacillus anthracis. Particularly, quantitative determination of copper in environmental water samples could be realized with a detection limit as low as 10.67 nM. Therefore, the material shows potential for detection of environmental pollutants besides advanced anti-counterfeiting.
传统的防伪发光材料通常采用低级系统加密,安全性有限,严重阻碍了其在防伪和防信息泄露方面的应用。因此,开发更高级别的防伪材料迫在眉睫。本研究通过在氨基粘土(AC)上共载绿色荧光 CD 和红色荧光 Eu-MOF,制备了一种刺激响应型智能发光材料(AC@CDs-Eu-MOFs)。由于该纳米复合材料在光学刺激和化学刺激下具有可调荧光的特性,因此在此基础上设计出了易于观察而难以克隆的 5D 防伪条形码。由于 5D 安全条形码容量大、成本低、易于验证,因此在光学数据存储和多维信息加密方面具有巨大潜力。此外,化学刺激-响应使纳米复合材料可用于铜和炭疽杆菌的检测。特别是,可以实现对环境水样中铜的定量检测,检测限低至 10.67 nM。因此,该材料除了具有先进的防伪功能外,还具有检测环境污染物的潜力。
{"title":"A multi-dimensional anti-counterfeiting nanocomposite based on fluorescent CDs and Eu-MOFs with dual function for continuous detection of Cu2+ and Bacillus anthracis","authors":"Jian Gou, Yousong Hu, Luxin Xing, Jun Xu, Fengzhi Yue, Lina Zhang, Lei Jia","doi":"10.1016/j.mtchem.2024.102270","DOIUrl":"https://doi.org/10.1016/j.mtchem.2024.102270","url":null,"abstract":"Traditional luminescent materials for anti-counterfeiting usually adopt encryption of low-level systems with limited security, which seriously hinders their application in preventing counterfeiting and information leakage. Therefore, it is urgent to develop materials for higher-level anti-counterfeiting. In this work, a stimulus-responsive intelligent luminescent material (AC@CDs-Eu-MOFs) was prepared by co-loading green-fluorescence CDs and red-fluorescence Eu-MOFs on Amino clay (AC). 5D security barcodes, which were easy to observe while difficult to clone, were ulteriorly designed based on the nanocomposite owing to the tunable fluorescence by optical stimulation and chemical stimulus. Owing to the large capacity, low cost, and easy authentication, the 5D security barcodes possess enormous potential in optical data storage and multi-dimensional information encryption. In addition, the chemical stimulus-response enables the nanocomposite achievable in detection of Cu and Bacillus anthracis. Particularly, quantitative determination of copper in environmental water samples could be realized with a detection limit as low as 10.67 nM. Therefore, the material shows potential for detection of environmental pollutants besides advanced anti-counterfeiting.","PeriodicalId":18353,"journal":{"name":"Materials Today Chemistry","volume":null,"pages":null},"PeriodicalIF":7.3,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142204455","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A nanohybrid-based smartphone-compatible high performance electrochemical glucose sensor 基于纳米杂化技术的智能手机兼容型高性能电化学葡萄糖传感器
IF 7.3 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-09-04 DOI: 10.1016/j.mtchem.2024.102282
K Theyagarajan, Buddolla Anantha Lakshmi, Chaehyun Kim, Young-Joon Kim
A cost-effective and low-potential smartphone-compatible electrochemical sensor was constructed using a nanohybrid for the sensing of glucose in human and animal serum. The nanohybrid composed of gold nanoparticle (GNP) decorated cobalt hexacyanoferrate (CHCF) modified ZIF-67 (cobalt metal organic framework, CMOF) was synthesized and characterized by FTIR, XRD, and SEM with EDX analysis. The electrochemical characteristics of the nanohybrid were investigated by depositing the nanohybrid over a conventional glassy carbon electrode (GCE) and performing cyclic voltammetry, which revealed a stable redox peak with a formal potential of +0.23 V, corresponding to Co redox couple in GNP–CHCF–CMOF. Thus, developed sensor was utilized for the electrochemical glucose detection, which showed exceptional electrocatalytic activity over a linear detection range from 8.33 to 3793 μM with a low detection limit of 0.96 μM at a low potential of +0.35 V. Furthermore, the GNP–CHCF–CMOF/GCE sensor was employed for the detection of glucose spiked in human and rabbit serum samples, which showed excellent recoveries. A portable measurement device was fabricated which showed the real-time monitoring of glucose in a smartphone. This novel approach paves the way for the design and fabrication of cost-effective, low-potential sensors, which would reduce overall costs and enhance the performance of sensing devices.
利用纳米杂化技术构建了一种成本低、电位低、与智能手机兼容的电化学传感器,用于检测人和动物血清中的葡萄糖。合成了由金纳米粒子(GNP)装饰的六氰基铁酸钴(CHCF)修饰的 ZIF-67(钴金属有机框架,CMOF)组成的纳米杂化物,并通过傅立叶变换红外光谱(FTIR)、X 射线衍射(XRD)和带有 EDX 分析的扫描电镜对其进行了表征。通过将纳米杂化物沉积在传统的玻璃碳电极(GCE)上并进行循环伏安法测试,研究了纳米杂化物的电化学特性,结果表明在 GNP-CHCF-CMOF 中存在一个形式电位为 +0.23 V 的稳定氧化还原峰,与钴氧化还原对偶相对应。因此,所开发的传感器被用于电化学葡萄糖检测,在 8.33 至 3793 μM 的线性检测范围内显示出卓越的电催化活性,在 +0.35 V 的低电位下,检测限低至 0.96 μM。此外,GNP-CHCF-CMOF/GCE 传感器还被用于检测人和兔子血清样品中的葡萄糖,其回收率极高。研究人员还制作了一种便携式测量装置,可在智能手机中实时监测葡萄糖。这种新方法为设计和制造具有成本效益的低电位传感器铺平了道路,从而降低了总体成本并提高了传感设备的性能。
{"title":"A nanohybrid-based smartphone-compatible high performance electrochemical glucose sensor","authors":"K Theyagarajan, Buddolla Anantha Lakshmi, Chaehyun Kim, Young-Joon Kim","doi":"10.1016/j.mtchem.2024.102282","DOIUrl":"https://doi.org/10.1016/j.mtchem.2024.102282","url":null,"abstract":"A cost-effective and low-potential smartphone-compatible electrochemical sensor was constructed using a nanohybrid for the sensing of glucose in human and animal serum. The nanohybrid composed of gold nanoparticle (GNP) decorated cobalt hexacyanoferrate (CHCF) modified ZIF-67 (cobalt metal organic framework, CMOF) was synthesized and characterized by FTIR, XRD, and SEM with EDX analysis. The electrochemical characteristics of the nanohybrid were investigated by depositing the nanohybrid over a conventional glassy carbon electrode (GCE) and performing cyclic voltammetry, which revealed a stable redox peak with a formal potential of +0.23 V, corresponding to Co redox couple in GNP–CHCF–CMOF. Thus, developed sensor was utilized for the electrochemical glucose detection, which showed exceptional electrocatalytic activity over a linear detection range from 8.33 to 3793 μM with a low detection limit of 0.96 μM at a low potential of +0.35 V. Furthermore, the GNP–CHCF–CMOF/GCE sensor was employed for the detection of glucose spiked in human and rabbit serum samples, which showed excellent recoveries. A portable measurement device was fabricated which showed the real-time monitoring of glucose in a smartphone. This novel approach paves the way for the design and fabrication of cost-effective, low-potential sensors, which would reduce overall costs and enhance the performance of sensing devices.","PeriodicalId":18353,"journal":{"name":"Materials Today Chemistry","volume":null,"pages":null},"PeriodicalIF":7.3,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142204453","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nitrogen and sulfur co-doped MXene@FeCoNiP as an efficient catalyst for enhanced lithium-sulfur batteries 氮和硫共同掺杂的 MXene@FeCoNiP 作为增强型锂硫电池的高效催化剂
IF 7.3 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-09-04 DOI: 10.1016/j.mtchem.2024.102289
Meng Du, Jiakang Shi, Pengbiao Geng, Wenfeng Zhou, Xiaoxing Zhang, Songtao Zhang, Huan Pang
Lithium-sulfur (Li–S) batteries have been regarded as be one of the most promising energy storage systems on account of its high theoretical energy and power density. Nevertheless, it is limited by the severe shuttle effect of lithium polysulfides (LiPS) and retarded sulfur reaction kinetics. Herein, a thermal migration route was used to design nitrogen/sulfur co-doped MXene@FeCoNiP (N,S-MXene@FeCoNiP) composites as a promising catalyst for Li–S batteries. The prepared N,S-MXene@FeCoNiP possessing three-dimensional framework can promote rapid electron/ion transfer during battery cycling. The nitrogen/sulfur co-doping could not only improve electronic conductivity, but also provide more catalytic sites. Moreover, the synergy of highly polar MXene and FeCoNiP as well as N/S co-doping can hinder the shuttling of polysulfides and facilitate the LiPS conversion. Benefiting from these advantages, N,S-MXene@FeCoNiP–S cathode showed high specific capacity, remarkable rate capability and good cycling stability. This work is expected to provide inspiration for the reasonable design of catalysts toward advanced Li–S batteries.
锂硫(Li-S)电池因其理论能量和功率密度高而被视为最有前途的储能系统之一。然而,锂多硫化物(LiPS)的严重穿梭效应和硫反应动力学的迟缓限制了它的发展。本文采用热迁移路线设计了氮/硫共掺杂 MXene@FeCoNiP(N,S-MXene@FeCoNiP)复合材料,作为锂-S 电池的催化剂。所制备的 N,S-MXene@FeCoNiP具有三维框架,可在电池循环过程中促进电子/离子的快速转移。氮/硫的共掺杂不仅能提高电子传导性,还能提供更多的催化位点。此外,高极性 MXene 和 FeCoNiP 以及氮/硫共掺的协同作用可以阻碍多硫化物的穿梭,促进锂离子电池的转化。得益于这些优势,N,S-MXene@FeCoNiP-S 阴极显示出高比容量、显著的速率能力和良好的循环稳定性。这项工作有望为先进锂-S 电池催化剂的合理设计提供启发。
{"title":"Nitrogen and sulfur co-doped MXene@FeCoNiP as an efficient catalyst for enhanced lithium-sulfur batteries","authors":"Meng Du, Jiakang Shi, Pengbiao Geng, Wenfeng Zhou, Xiaoxing Zhang, Songtao Zhang, Huan Pang","doi":"10.1016/j.mtchem.2024.102289","DOIUrl":"https://doi.org/10.1016/j.mtchem.2024.102289","url":null,"abstract":"Lithium-sulfur (Li–S) batteries have been regarded as be one of the most promising energy storage systems on account of its high theoretical energy and power density. Nevertheless, it is limited by the severe shuttle effect of lithium polysulfides (LiPS) and retarded sulfur reaction kinetics. Herein, a thermal migration route was used to design nitrogen/sulfur co-doped MXene@FeCoNiP (N,S-MXene@FeCoNiP) composites as a promising catalyst for Li–S batteries. The prepared N,S-MXene@FeCoNiP possessing three-dimensional framework can promote rapid electron/ion transfer during battery cycling. The nitrogen/sulfur co-doping could not only improve electronic conductivity, but also provide more catalytic sites. Moreover, the synergy of highly polar MXene and FeCoNiP as well as N/S co-doping can hinder the shuttling of polysulfides and facilitate the LiPS conversion. Benefiting from these advantages, N,S-MXene@FeCoNiP–S cathode showed high specific capacity, remarkable rate capability and good cycling stability. This work is expected to provide inspiration for the reasonable design of catalysts toward advanced Li–S batteries.","PeriodicalId":18353,"journal":{"name":"Materials Today Chemistry","volume":null,"pages":null},"PeriodicalIF":7.3,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142204454","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
RGB-tricolor multimodal luminescence of Ce3+ and Mn2+ in Mg2Al4Si5O18 via site occupancy engineering for anticounterfeiting applications 通过位点占位工程实现 Mg2Al4Si5O18 中 Ce3+ 和 Mn2+ 的 RGB 三色多模式发光,用于防伪应用
IF 7.3 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-09-04 DOI: 10.1016/j.mtchem.2024.102287
Rongfu Zhou, Dexiu Hua, Bomei Liu, MingSheng Guo, Quanfeng Li, Jingwei Li, Tingting Deng, Jianbang Zhou
Multimodal luminescent materials have shown important applications in anti-counterfeiting and information encryption, however, mostly difficult to adjust optical properties with the structure, which leads to relatively constant emission position and less selectable excitation wavelength. Herein, Ce and Mn co-doped MgAlSiO phosphors are designed for the applications in RGB-tricolor multimodal anti-counterfeiting. Due to site occupancies, energy transfer and different thermal behaviors of Ce and Mn emissions, the emitting color of MgAlSiO: Ce, Mn is rich and tunable with different excitation wavelengths, doping concentrations and temperatures. The site occupancies of Ce and Mn are clarified with crystal field analysis and in-depth into transitions energies of Ce and Mn. The energy transfer mechanism between Ce and Mn is analyzed via Inokuti-Hirayama model. The difference of thermal stabilities of Ce and Mn emissions is interpreted with construction of vacuum referred binding energy scheme. The as-designed molds of information encryption and decryption with MgAlSiO: Ce, Mn phosphors demonstrate the potential applications in anti-counterfeiting. The work provides an effective way for exploring Ce and Mn doped phosphors with RBG-tricolor multimodal luminescence.
多模态发光材料在防伪和信息加密领域具有重要的应用前景,但其光学性质大多难以随结构调整,导致发射位置相对固定,激发波长可选择性较差。本文设计了掺杂铈和锰的 MgAlSiO 荧光粉,用于 RGB 三色多模态防伪。由于铈和锰的位点占位、能量传递和不同的热行为,MgAlSiO 荧光粉的发光颜色具有丰富的可调性:MgAlSiO:Ce、Mn 的发光颜色丰富,并可在不同的激发波长、掺杂浓度和温度下进行调谐。通过晶场分析澄清了 Ce 和 Mn 的位点占有率,并深入研究了 Ce 和 Mn 的跃迁能量。通过 Inokuti-Hirayama 模型分析了 Ce 和 Mn 之间的能量传递机制。通过构建真空结合能方案,解释了 Ce 和 Mn 辐射热稳定性的差异。用 MgAlSiO:Ce、Mn 荧光粉设计的信息加密和解密模具展示了在防伪领域的潜在应用。这项研究为探索具有 RBG 三色多模式发光的掺铈和锰荧光粉提供了有效途径。
{"title":"RGB-tricolor multimodal luminescence of Ce3+ and Mn2+ in Mg2Al4Si5O18 via site occupancy engineering for anticounterfeiting applications","authors":"Rongfu Zhou, Dexiu Hua, Bomei Liu, MingSheng Guo, Quanfeng Li, Jingwei Li, Tingting Deng, Jianbang Zhou","doi":"10.1016/j.mtchem.2024.102287","DOIUrl":"https://doi.org/10.1016/j.mtchem.2024.102287","url":null,"abstract":"Multimodal luminescent materials have shown important applications in anti-counterfeiting and information encryption, however, mostly difficult to adjust optical properties with the structure, which leads to relatively constant emission position and less selectable excitation wavelength. Herein, Ce and Mn co-doped MgAlSiO phosphors are designed for the applications in RGB-tricolor multimodal anti-counterfeiting. Due to site occupancies, energy transfer and different thermal behaviors of Ce and Mn emissions, the emitting color of MgAlSiO: Ce, Mn is rich and tunable with different excitation wavelengths, doping concentrations and temperatures. The site occupancies of Ce and Mn are clarified with crystal field analysis and in-depth into transitions energies of Ce and Mn. The energy transfer mechanism between Ce and Mn is analyzed via Inokuti-Hirayama model. The difference of thermal stabilities of Ce and Mn emissions is interpreted with construction of vacuum referred binding energy scheme. The as-designed molds of information encryption and decryption with MgAlSiO: Ce, Mn phosphors demonstrate the potential applications in anti-counterfeiting. The work provides an effective way for exploring Ce and Mn doped phosphors with RBG-tricolor multimodal luminescence.","PeriodicalId":18353,"journal":{"name":"Materials Today Chemistry","volume":null,"pages":null},"PeriodicalIF":7.3,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142204462","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Entropy engineering promotes thermoelectric performance while realizing P–N switchable conduction in BiSbSe1.5Te1.5 熵工程提高了热电性能,同时实现了 BiSbSe1.5Te1.5 中的 P-N 开关式传导
IF 7.3 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-09-02 DOI: 10.1016/j.mtchem.2024.102285
Zhen Tian, Quanwei Jiang, Jianbo Li, Huijun Kang, Enyu Guo, Zongning Chen, Tongmin Wang
BiSbSeTe, a typical multi-layered compound, can be utilized to fabricate p-n junctions with the identical chemical composition by regulating the antisite defects and anion vacancies via defect engineering. However, the thermoelectric performance of n-type BiSbSeTe is limited due to poor electrical transport properties. Entropy engineering is a novel strategy for expanding the space of performance optimization in materials science, including the field of thermoelectric. Herein, we realize a largely enhanced thermoelectric performance for n-type BiSbSeTe by employing entropy engineering. Both mass field fluctuations and stress variations field are introduced simultaneously in the lattice, leading to additional phonon scattering. Moreover, nano-laminate structure, nanoscale interstices and holes are formed in the samples. All of these defects and nanoscale structures are especially efficient on trapping phonons. As a result, the optimizing electrical transport properties while maintaining low thermal conductivity are achieved, showcasing a peak of 0.54 at 475 K and a remarkable average of 0.45 between 300 and 550 K for n-type BiSbSeTe.These findings not only provide a way to enhance the thermoelectric performance of n-type BiSbSeTe but also push forward the promise of the applications in fabricating well-matched p-n junctions using thermoelectric materials with the identical chemical composition.
BiSbSeTe 是一种典型的多层化合物,可通过缺陷工程调节反位缺陷和阴离子空位来制造具有相同化学成分的 p-n 结。然而,由于电传输特性较差,n 型 BiSbSeTe 的热电性能受到限制。熵工程是拓展材料科学(包括热电领域)性能优化空间的一种新策略。在此,我们通过熵工程实现了 n 型 BiSbSeTe 热电性能的大幅提升。在晶格中同时引入了质量场波动和应力变化场,从而产生了额外的声子散射。此外,样品中还形成了纳米层状结构、纳米级间隙和孔洞。所有这些缺陷和纳米级结构都能有效地捕获声子。这些发现不仅为提高 n 型 BiSbSeTe 的热电性能提供了一种方法,还推动了利用化学成分相同的热电材料制造匹配良好的 p-n 结的应用前景。
{"title":"Entropy engineering promotes thermoelectric performance while realizing P–N switchable conduction in BiSbSe1.5Te1.5","authors":"Zhen Tian, Quanwei Jiang, Jianbo Li, Huijun Kang, Enyu Guo, Zongning Chen, Tongmin Wang","doi":"10.1016/j.mtchem.2024.102285","DOIUrl":"https://doi.org/10.1016/j.mtchem.2024.102285","url":null,"abstract":"BiSbSeTe, a typical multi-layered compound, can be utilized to fabricate p-n junctions with the identical chemical composition by regulating the antisite defects and anion vacancies via defect engineering. However, the thermoelectric performance of n-type BiSbSeTe is limited due to poor electrical transport properties. Entropy engineering is a novel strategy for expanding the space of performance optimization in materials science, including the field of thermoelectric. Herein, we realize a largely enhanced thermoelectric performance for n-type BiSbSeTe by employing entropy engineering. Both mass field fluctuations and stress variations field are introduced simultaneously in the lattice, leading to additional phonon scattering. Moreover, nano-laminate structure, nanoscale interstices and holes are formed in the samples. All of these defects and nanoscale structures are especially efficient on trapping phonons. As a result, the optimizing electrical transport properties while maintaining low thermal conductivity are achieved, showcasing a peak of 0.54 at 475 K and a remarkable average of 0.45 between 300 and 550 K for n-type BiSbSeTe.These findings not only provide a way to enhance the thermoelectric performance of n-type BiSbSeTe but also push forward the promise of the applications in fabricating well-matched p-n junctions using thermoelectric materials with the identical chemical composition.","PeriodicalId":18353,"journal":{"name":"Materials Today Chemistry","volume":null,"pages":null},"PeriodicalIF":7.3,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142204461","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Green synthesis of NiFe2O4 nanoparticles using Hyphaene thebaica: A facile route towards magnetic and photocatalytic application 使用 Hyphaene thebaica 绿色合成 NiFe2O4 纳米粒子:实现磁性和光催化应用的便捷途径
IF 7.3 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-09-02 DOI: 10.1016/j.mtchem.2024.102286
Abdul Muhaymin, Hamza Elsayed Ahmad Mohamed, Khaoula Hkiri, Ammara Safdar, Lebogang Kotsedi, Malik Maaza
Wastewaters from textile industries contribute to significant volumes of colored and hazardous material pollution. Photocatalytic degradation offers a method to reduce organic pollutants, such as dye-containing effluents effectively. Nickel Ferrite (NiFeO) receives the most attention in spinel ferrites since it has diverse applications in catalysis, sensor technology, spintronics, magnetocaloric refrigeration, high-density data storage devices, etc. We performed the green synthesis of NiFeO nanoparticles by fruit extract of a gingerbread tree (). We characterized it with Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), X-ray diffraction (XRD), Fourier Transform Infrared spectroscopy (FTIR), and Raman spectroscopy. The XRD indicates the inverse-spinel structure of the F3dm space group with crystallite size measured as 30 nm. SEM and TEM revealed the spheroidal structure of NiFeO NPs. The green synthesized NiFeO has tetrahedral and octahedral stretching vibrations of Ni–O and Fe–O, as suggested by FTIR. Doublet-like peak behavior in the Raman spectrum indicated the presence of a mixed spinel structure. We studied magnetic behavior in two different modes, and magnetization measurements showed a soft ferromagnetic behavior with a saturation magnetization of 1.527 emu g. For photocatalytic potential, the degradation efficiency was 97 % after 90 min at adding 1 g/L of NiFeO nano-catalyst, which shows the high catalytic activity of NiFeO NPs under visible light conditions.
纺织工业的废水造成了大量有色和有害物质污染。光催化降解提供了一种有效减少有机污染物(如含染料废水)的方法。镍铁氧体(NiFeO)是尖晶石铁氧体中最受关注的一种,因为它在催化、传感器技术、自旋电子学、磁致冷、高密度数据存储设备等方面有着广泛的应用。我们利用姜饼树()的果实提取物绿色合成了纳米镍铁。我们利用扫描电子显微镜(SEM)、透射电子显微镜(TEM)、X 射线衍射(XRD)、傅立叶变换红外光谱(FTIR)和拉曼光谱对其进行了表征。X 射线衍射显示出 F3dm 空间群的反向尖晶石结构,晶体尺寸为 30 纳米。扫描电镜和透射电镜显示了镍铁氧体 NPs 的球形结构。傅立叶变换红外光谱显示,绿色合成的镍铁氧体具有 Ni-O 和 Fe-O 的四面体和八面体伸缩振动。拉曼光谱中的双峰现象表明存在混合尖晶石结构。我们研究了两种不同模式下的磁性行为,磁化测量结果表明其具有软铁磁性,饱和磁化率为 1.527 emu g。在光催化潜力方面,加入 1 g/L 的 NiFeO 纳米催化剂 90 分钟后,降解效率达到 97%,这表明 NiFeO NPs 在可见光条件下具有很高的催化活性。
{"title":"Green synthesis of NiFe2O4 nanoparticles using Hyphaene thebaica: A facile route towards magnetic and photocatalytic application","authors":"Abdul Muhaymin, Hamza Elsayed Ahmad Mohamed, Khaoula Hkiri, Ammara Safdar, Lebogang Kotsedi, Malik Maaza","doi":"10.1016/j.mtchem.2024.102286","DOIUrl":"https://doi.org/10.1016/j.mtchem.2024.102286","url":null,"abstract":"Wastewaters from textile industries contribute to significant volumes of colored and hazardous material pollution. Photocatalytic degradation offers a method to reduce organic pollutants, such as dye-containing effluents effectively. Nickel Ferrite (NiFeO) receives the most attention in spinel ferrites since it has diverse applications in catalysis, sensor technology, spintronics, magnetocaloric refrigeration, high-density data storage devices, etc. We performed the green synthesis of NiFeO nanoparticles by fruit extract of a gingerbread tree (). We characterized it with Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), X-ray diffraction (XRD), Fourier Transform Infrared spectroscopy (FTIR), and Raman spectroscopy. The XRD indicates the inverse-spinel structure of the F3dm space group with crystallite size measured as 30 nm. SEM and TEM revealed the spheroidal structure of NiFeO NPs. The green synthesized NiFeO has tetrahedral and octahedral stretching vibrations of Ni–O and Fe–O, as suggested by FTIR. Doublet-like peak behavior in the Raman spectrum indicated the presence of a mixed spinel structure. We studied magnetic behavior in two different modes, and magnetization measurements showed a soft ferromagnetic behavior with a saturation magnetization of 1.527 emu g. For photocatalytic potential, the degradation efficiency was 97 % after 90 min at adding 1 g/L of NiFeO nano-catalyst, which shows the high catalytic activity of NiFeO NPs under visible light conditions.","PeriodicalId":18353,"journal":{"name":"Materials Today Chemistry","volume":null,"pages":null},"PeriodicalIF":7.3,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142204460","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hydrogen production via alkaline seawater electrolysis using iron-doped nickel diselenide as an efficient bifunctional electrocatalyst 使用掺铁二硒化镍作为高效双功能电催化剂,通过碱性海水电解制氢
IF 7.3 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-09-01 DOI: 10.1016/j.mtchem.2024.102276
Vipin Yadav, Naduvile Purayil Dileep, Namitha Nair, Pritish Kumar Behura, Manikoth M. Shaijumon
Green hydrogen production via seawater electrolysis is a promising pathway towards sustainable energy future. However, seawater splitting is hindered by the low stability and selectivity of electrocatalysts towards hydrogen evolution reaction (HER), oxygen evolution reaction (OER), and faces severe electrode corrosion. Herein, we report the synthesis of highly active and durable Fe-doped nickel diselenide (Fe–NiSe) nanoparticles supported on nickel foam as bifunctional electrocatalysts for efficient alkaline seawater electrolysis via an electrodeposition method followed by low-temperature annealing. The electrocatalytic properties of as-prepared Fe–NiSe toward HER and OER are investigated in different electrolytes. The optimized electrocatalyst (20-Fe-NiSe) shows very low overpotential of 92 and 96 mV in alkaline (1.0 M KOH) and simulated seawater (1.0 M KOH + 0.5 M NaCl) electrolytes, respectively, to reach the current density of 10 mA cm for HER. For the OER, 20-Fe-NiSe exhibits an overpotential of 333 and 311 mV in alkaline and simulated seawater electrolytes, respectively, to attain a current density of 100 mA cm. Further, full-cell studies are carried out with 20-Fe-NiSe as bifunctional electrocatalysts, which requires cell potential of 1.83 V and 1.81 V to deliver a current density of 100 mA cm in alkaline and simulated seawater electrolytes, respectively. Additionally, the electrode shows tremendous potential for use in alkaline seawater electrolysis with stability over 100 h, at a current density of 100 mA cm, which is achieved at a low cell voltage of 1.87 V. The present work offers a simple, efficient, and cost-effective method for the development of heterogeneous Fe-doped nickel diselenide electrocatalysts for seawater electrocatalysis.
通过海水电解进行绿色制氢是实现未来可持续能源的一条大有可为的途径。然而,海水电解由于电催化剂对氢进化反应(HER)和氧进化反应(OER)的稳定性和选择性较低而受到阻碍,并面临严重的电极腐蚀。在此,我们报告了通过电沉积法和低温退火法合成了高活性和耐久性的铁掺杂二硒化镍(Fe-NiSe)纳米粒子,并将其支撑在泡沫镍上,作为高效碱性海水电解的双功能电催化剂。研究了所制备的 Fe-NiSe 在不同电解质中对 HER 和 OER 的电催化特性。优化后的电催化剂(20-Fe-NiSe)在碱性(1.0 M KOH)和模拟海水(1.0 M KOH + 0.5 M NaCl)电解质中的过电位分别为 92 mV 和 96 mV,对 HER 的电流密度为 10 mA cm。对于 OER,20-Fe-NiSe 在碱性和模拟海水电解质中的过电位分别为 333 和 311 mV,电流密度为 100 mA cm。此外,还利用 20-Fe-NiSe 作为双功能电催化剂进行了全电池研究,在碱性和模拟海水电解质中,电池电位分别为 1.83 V 和 1.81 V,才能产生 100 mA cm 的电流密度。此外,该电极在碱性海水电解中显示出巨大的应用潜力,在 1.87 V 的低电池电压下,电流密度达到 100 mA cm,稳定性超过 100 小时。
{"title":"Hydrogen production via alkaline seawater electrolysis using iron-doped nickel diselenide as an efficient bifunctional electrocatalyst","authors":"Vipin Yadav, Naduvile Purayil Dileep, Namitha Nair, Pritish Kumar Behura, Manikoth M. Shaijumon","doi":"10.1016/j.mtchem.2024.102276","DOIUrl":"https://doi.org/10.1016/j.mtchem.2024.102276","url":null,"abstract":"Green hydrogen production via seawater electrolysis is a promising pathway towards sustainable energy future. However, seawater splitting is hindered by the low stability and selectivity of electrocatalysts towards hydrogen evolution reaction (HER), oxygen evolution reaction (OER), and faces severe electrode corrosion. Herein, we report the synthesis of highly active and durable Fe-doped nickel diselenide (Fe–NiSe) nanoparticles supported on nickel foam as bifunctional electrocatalysts for efficient alkaline seawater electrolysis via an electrodeposition method followed by low-temperature annealing. The electrocatalytic properties of as-prepared Fe–NiSe toward HER and OER are investigated in different electrolytes. The optimized electrocatalyst (20-Fe-NiSe) shows very low overpotential of 92 and 96 mV in alkaline (1.0 M KOH) and simulated seawater (1.0 M KOH + 0.5 M NaCl) electrolytes, respectively, to reach the current density of 10 mA cm for HER. For the OER, 20-Fe-NiSe exhibits an overpotential of 333 and 311 mV in alkaline and simulated seawater electrolytes, respectively, to attain a current density of 100 mA cm. Further, full-cell studies are carried out with 20-Fe-NiSe as bifunctional electrocatalysts, which requires cell potential of 1.83 V and 1.81 V to deliver a current density of 100 mA cm in alkaline and simulated seawater electrolytes, respectively. Additionally, the electrode shows tremendous potential for use in alkaline seawater electrolysis with stability over 100 h, at a current density of 100 mA cm, which is achieved at a low cell voltage of 1.87 V. The present work offers a simple, efficient, and cost-effective method for the development of heterogeneous Fe-doped nickel diselenide electrocatalysts for seawater electrocatalysis.","PeriodicalId":18353,"journal":{"name":"Materials Today Chemistry","volume":null,"pages":null},"PeriodicalIF":7.3,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142204466","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Green-synthesized antibacterial and unidirectional water-permeable polylactic acid/ZnO composite film for enhanced preservation of perishable fruits 绿色合成抗菌单向透水聚乳酸/氧化锌复合膜,用于提高易腐水果的保鲜效果
IF 7.3 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-09-01 DOI: 10.1016/j.mtchem.2024.102284
Xing Guo, Limei Li, Ye Qi, Jianyu Su, Xiaolong Ou, Mengyuan Lv, Ye Jin, Xiaofei Han, Yuanbao Zhang, Hongwei Wu, Rui Chen, Xinyi Wang
Preserving perishable fruits during transportation and storage is a critical challenge in modern logistics and supply chains. This study developed an antibacterial and unidirectional water-permeable tri-layered polylactic acid/ZnO composite film using green biosynthesis and electrospinning technologies to protect highly perishable non-climacteric fruits. The composite film, with encapsulated ZnO nanoparticles, exhibited exceptional antibacterial properties, achieving a 99.999 % inhibition rate against and . Additionally, the film's unidirectional water permeability allowed water droplets to penetrate its surface within 1.10 s, ensuring effective moisture retention. When used to package strawberries, cherries, and grapes, the film significantly reduced decay and moisture loss, keeping strawberries fresh for 8 days and cherries and grapes for 12 days at room temperature. This polylactic acid/ZnO composite film shows great potential for enhancing the preservation of perishable fruits in packaging applications.
在运输和储存过程中保存易腐水果是现代物流和供应链面临的一项严峻挑战。本研究利用绿色生物合成和电纺丝技术开发了一种抗菌、单向透水的三层聚乳酸/氧化锌复合膜,用于保护高度易腐的非桔梗类水果。封装了氧化锌纳米粒子的复合薄膜表现出卓越的抗菌性能,对和的抑制率达到 99.999%。此外,薄膜的单向透水性使水滴能在 1.10 秒内穿透其表面,确保了有效的保湿性。当用来包装草莓、樱桃和葡萄时,这种薄膜大大减少了腐烂和水分流失,在室温下草莓可保鲜 8 天,樱桃和葡萄可保鲜 12 天。这种聚乳酸/氧化锌复合薄膜在提高易腐水果的包装保鲜方面显示出巨大的潜力。
{"title":"Green-synthesized antibacterial and unidirectional water-permeable polylactic acid/ZnO composite film for enhanced preservation of perishable fruits","authors":"Xing Guo, Limei Li, Ye Qi, Jianyu Su, Xiaolong Ou, Mengyuan Lv, Ye Jin, Xiaofei Han, Yuanbao Zhang, Hongwei Wu, Rui Chen, Xinyi Wang","doi":"10.1016/j.mtchem.2024.102284","DOIUrl":"https://doi.org/10.1016/j.mtchem.2024.102284","url":null,"abstract":"Preserving perishable fruits during transportation and storage is a critical challenge in modern logistics and supply chains. This study developed an antibacterial and unidirectional water-permeable tri-layered polylactic acid/ZnO composite film using green biosynthesis and electrospinning technologies to protect highly perishable non-climacteric fruits. The composite film, with encapsulated ZnO nanoparticles, exhibited exceptional antibacterial properties, achieving a 99.999 % inhibition rate against and . Additionally, the film's unidirectional water permeability allowed water droplets to penetrate its surface within 1.10 s, ensuring effective moisture retention. When used to package strawberries, cherries, and grapes, the film significantly reduced decay and moisture loss, keeping strawberries fresh for 8 days and cherries and grapes for 12 days at room temperature. This polylactic acid/ZnO composite film shows great potential for enhancing the preservation of perishable fruits in packaging applications.","PeriodicalId":18353,"journal":{"name":"Materials Today Chemistry","volume":null,"pages":null},"PeriodicalIF":7.3,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142204465","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The highly efficient and stable near-infrared phosphor Ca3MgSnGe3O12: Cr3+ for multifunctional application 用于多功能应用的高效稳定近红外荧光粉 Ca3MgSnGe3O12: Cr3+
IF 7.3 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-09-01 DOI: 10.1016/j.mtchem.2024.102288
Xiuxiu Feng, Zhijun Wang, Zekang Yan, Mengdi Liu, Jie Gong, Ting Zhang, Xiaojie Li, Panlai Li
The investigation of efficient and stable near-infrared (NIR) luminescent materials is crucial for rapidly developing near-infrared spectroscopic techniques. Herein, NIR phosphors CaMgSnGeO: Cr with ultra thermal stability and high internal quantum yield (IQY) are explored. The emission intensity remained at 91.75 %@423 K of room temperature and the IQY/EQE reaches 91.41 %/34.04 % after doping the HBO flux agent for optimization. Moreover, a single luminescence center was identified by cryogenic photo luminescence spectroscopy (PL) from 4 K to 300 K and lifetime decay curve. Importantly, NIR light can easily removes all kinds of background interference that cannot be easily eliminated by visible light, which is not only widely used in night vision and biological tissue penetration, but also has higher application prospects in NIR fingerprint detection. Moreover, it clearly displays high level of fingerprint details under high temperature conditions and after water immersion, thus it is perfectly suited for using in Automatic Fingerprint Identification System (AFIS) systems. Therefore, CaMgSnGeO: Cr NIR pc-LEDs have great potential for latent fingerprint detection at actual crime scenes.
研究高效稳定的近红外(NIR)发光材料对于快速发展近红外光谱技术至关重要。在此,具有超高热稳定性和高内量子产率(IQY)的近红外荧光粉 CaMgSnGeO:Cr具有超热稳定性和高内部量子产率(IQY)。在掺入 HBO 通量剂进行优化后,发射强度保持在 91.75 %@423 K(室温),IQY/EQE 分别达到 91.41 %/34.04 %。此外,通过低温光致发光光谱(PL)和寿命衰减曲线,还确定了从 4 K 到 300 K 的单个发光中心。重要的是,近红外光能轻松消除可见光不易消除的各种背景干扰,不仅广泛应用于夜视和生物组织穿透,在近红外指纹检测方面也有较高的应用前景。此外,它还能在高温条件下和浸水后清晰显示高水平的指纹细节,因此非常适合用于自动指纹识别系统(AFIS)。因此,CaMgSnGeO:Cr 近红外 pc-LED 在实际犯罪现场的潜伏指纹检测中具有巨大潜力。
{"title":"The highly efficient and stable near-infrared phosphor Ca3MgSnGe3O12: Cr3+ for multifunctional application","authors":"Xiuxiu Feng, Zhijun Wang, Zekang Yan, Mengdi Liu, Jie Gong, Ting Zhang, Xiaojie Li, Panlai Li","doi":"10.1016/j.mtchem.2024.102288","DOIUrl":"https://doi.org/10.1016/j.mtchem.2024.102288","url":null,"abstract":"The investigation of efficient and stable near-infrared (NIR) luminescent materials is crucial for rapidly developing near-infrared spectroscopic techniques. Herein, NIR phosphors CaMgSnGeO: Cr with ultra thermal stability and high internal quantum yield (IQY) are explored. The emission intensity remained at 91.75 %@423 K of room temperature and the IQY/EQE reaches 91.41 %/34.04 % after doping the HBO flux agent for optimization. Moreover, a single luminescence center was identified by cryogenic photo luminescence spectroscopy (PL) from 4 K to 300 K and lifetime decay curve. Importantly, NIR light can easily removes all kinds of background interference that cannot be easily eliminated by visible light, which is not only widely used in night vision and biological tissue penetration, but also has higher application prospects in NIR fingerprint detection. Moreover, it clearly displays high level of fingerprint details under high temperature conditions and after water immersion, thus it is perfectly suited for using in Automatic Fingerprint Identification System (AFIS) systems. Therefore, CaMgSnGeO: Cr NIR pc-LEDs have great potential for latent fingerprint detection at actual crime scenes.","PeriodicalId":18353,"journal":{"name":"Materials Today Chemistry","volume":null,"pages":null},"PeriodicalIF":7.3,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142204463","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Materials Today Chemistry
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1