Pub Date : 2025-03-31eCollection Date: 2025-01-01DOI: 10.15698/mic2025.03.846
Christian Q Scheckhuber, Sutherland K Maciver, Alvaro de Obeso Fernandez Del Valle
Acanthamoeba castellanii is a ubiquitous free-living amoeba that can cause severe infections in humans. Unlike most other organisms, A. castellanii possesses a "complete" mitochondrial respiratory chain, meaning it con-tains several additional enzymes that contribute to its metabolic versa-tility and survival in diverse environments. This review provides a com-prehensive overview of the mitochondrial respiratory chain in A. castellanii, focusing on the key alternative components in-volved in oxidative phosphorylation and their roles in energy metabo-lism, stress response, and adaptation to various conditions. The func-tional characterization of the alternative oxidase (AOX), uncoupling pro-tein (UCP), and alternative NAD(P)H dehydrogenases, highlight their roles in reducing oxidative stress, modulating proton gradients, and adapting to changes in temperature and nutrient availability. These pro-teins and systems serve a role in the survival of A. castel-lanii under stressful conditions such as starvation and cold con-ditions. Further knowledge of the respiratory chain of the amoeba has potential implications for understanding the evolution of mitochondrial respiration and developing new therapies for treating Acanthamoeba infections.
{"title":"Unveiling the molecular architecture of the mitochondrial respiratory chain of <i>Acanthamoeba castellanii</i>.","authors":"Christian Q Scheckhuber, Sutherland K Maciver, Alvaro de Obeso Fernandez Del Valle","doi":"10.15698/mic2025.03.846","DOIUrl":"https://doi.org/10.15698/mic2025.03.846","url":null,"abstract":"<p><p><i>Acanthamoeba castellanii</i> is a ubiquitous free-living amoeba that can cause severe infections in humans. Unlike most other organisms, <i>A. castellanii</i> possesses a \"complete\" mitochondrial respiratory chain, meaning it con-tains several additional enzymes that contribute to its metabolic versa-tility and survival in diverse environments. This review provides a com-prehensive overview of the mitochondrial respiratory chain in <i>A. castellanii</i>, focusing on the key alternative components in-volved in oxidative phosphorylation and their roles in energy metabo-lism, stress response, and adaptation to various conditions. The func-tional characterization of the alternative oxidase (AOX), uncoupling pro-tein (UCP), and alternative NAD(P)H dehydrogenases, highlight their roles in reducing oxidative stress, modulating proton gradients, and adapting to changes in temperature and nutrient availability. These pro-teins and systems serve a role in the survival of <i>A. castel-lanii</i> under stressful conditions such as starvation and cold con-ditions. Further knowledge of the respiratory chain of the amoeba has potential implications for understanding the evolution of mitochondrial respiration and developing new therapies for treating <i>Acanthamoeba</i> infections.</p>","PeriodicalId":18397,"journal":{"name":"Microbial Cell","volume":"12 ","pages":"65-75"},"PeriodicalIF":4.1,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12040293/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143970475","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-03-20eCollection Date: 2025-01-01DOI: 10.15698/mic2025.03.845
Michel Fasnacht, Hena Comic, Isabella Moll
Persister cells are a clinically relevant sub-population of an isogenic bacterial culture that is tolerant to bactericidal antibiotics. With the aim to investigate the ribosomal protein content of persister cells, we employed the bacteriolytic properties of ampicillin to separate persister from sensitive cells. Thereby, we observed processing of several ribosomal proteins. Promisingly, we detected a variant of the large subunit protein uL2 that lacks the last 59 amino acids from its C-terminus (tL2) and which previously has been described as an inhibitor of DNA replication in vitro. Considering the increasing number of moonlighting functions described for ribosomal proteins, we investigated a potential regulatory role of tL2 in persister cells after ampicillin treatment. In contrast to our assumption, our findings show that the generation of tL2 after ampicillin treatment must be attributed to proteolysis upon cell lysis. Ultimately, no tL2 was detected intracellularly of purified persister cells isolated by an improved protocol employing proteinase K treatment. We therefore exclude the possibility of tL2 regulating DNA replication in ampicillin tolerant E. coli cells. Nevertheless, this study clearly highlights the necessity of further purification steps in addition to ampicillin treatment for the study of persister cells and invites for the careful re-examination of previously published results.
{"title":"Ampicillin treatment in persister cell studies may cause non-physiological artifacts.","authors":"Michel Fasnacht, Hena Comic, Isabella Moll","doi":"10.15698/mic2025.03.845","DOIUrl":"https://doi.org/10.15698/mic2025.03.845","url":null,"abstract":"<p><p>Persister cells are a clinically relevant sub-population of an isogenic bacterial culture that is tolerant to bactericidal antibiotics. With the aim to investigate the ribosomal protein content of persister cells, we employed the bacteriolytic properties of ampicillin to separate persister from sensitive cells. Thereby, we observed processing of several ribosomal proteins. Promisingly, we detected a variant of the large subunit protein uL2 that lacks the last 59 amino acids from its C-terminus (tL2) and which previously has been described as an inhibitor of DNA replication <i>in vitro</i>. Considering the increasing number of moonlighting functions described for ribosomal proteins, we investigated a potential regulatory role of tL2 in persister cells after ampicillin treatment. In contrast to our assumption, our findings show that the generation of tL2 after ampicillin treatment must be attributed to proteolysis upon cell lysis. Ultimately, no tL2 was detected intracellularly of purified persister cells isolated by an improved protocol employing proteinase K treatment. We therefore exclude the possibility of tL2 regulating DNA replication in ampicillin tolerant <i>E. coli</i> cells. Nevertheless, this study clearly highlights the necessity of further purification steps in addition to ampicillin treatment for the study of persister cells and invites for the careful re-examination of previously published results.</p>","PeriodicalId":18397,"journal":{"name":"Microbial Cell","volume":"12 ","pages":"53-64"},"PeriodicalIF":4.1,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12039935/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144017846","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cholelithiasis is one of the most common diseases of the biliary system. Neutrophil extracellular traps (NETs) in the liver play an important role in accelerating the formation of gallstones. The upstream mechanism of NETs formation remains unclear. In this study, 16S rRNA sequencing was used to screen the differential gut microbiota in mice with gallstones. Transcriptome sequencing was used to screen the differentially expressed core genes and signalling pathways of Clostridium scindens that acted on human colonic epithelial cells. Western blotting was used to verify the protein expression of TLR2 and the NF-κB pathway. RT-PCR was used to verify the mRNA expression of TLR2, CXCL1 and the NF-κB pathway. ELISA was used to verify CXCL1 expression in the supernatant or portal vein blood of mice. Immunofluorescence was used to detect NETs formation in cocultured neutrophils in vitro or in mouse livers. Clostridium scindens was the key differential strain in the formation of gallstones in mice. After treatment with Clostridium scindens, both in vitro and in vivo, the expression of TLR2 was upregulated, the secretion of CXCL1 was increased by regulating the NF-κB pathway. Finally, the formation of NETs and stones was significantly increased. This study reveals a new mechanism of the gut-liver immune axis in the formation of gallstones. Clostridium scindens acts on colonic epithelial cells through TLR2 to regulate the NF-κB pathway and increase the secretion of CXCL1. CXCL1 enters the liver via the portal vein and increases the formation of NETs in the liver, thereby accelerating gallstone formation.
{"title":"<i>Clostridium scindens</i> promotes gallstone formation by inducing intrahepatic neutrophil extracellular traps through CXCL1 produced by colonic epithelial cells.","authors":"Wenchao Yao, Yuanhang He, Zhihong Xie, Qiang Wang, Yang Chen, Jingjing Yu, Xuxu Liu, Dongbo Xue Xue, Wang Liyi, Chenjun Hao","doi":"10.15698/mic2025.03.844","DOIUrl":"https://doi.org/10.15698/mic2025.03.844","url":null,"abstract":"<p><p>Cholelithiasis is one of the most common diseases of the biliary system. Neutrophil extracellular traps (NETs) in the liver play an important role in accelerating the formation of gallstones. The upstream mechanism of NETs formation remains unclear. In this study, 16S rRNA sequencing was used to screen the differential gut microbiota in mice with gallstones. Transcriptome sequencing was used to screen the differentially expressed core genes and signalling pathways of <i>Clostridium scindens</i> that acted on human colonic epithelial cells. Western blotting was used to verify the protein expression of <i>TLR2</i> and the NF-κB pathway. RT-PCR was used to verify the mRNA expression of <i>TLR2</i>, <i>CXCL1</i> and the NF-κB pathway. ELISA was used to verify <i>CXCL1</i> expression in the supernatant or portal vein blood of mice. Immunofluorescence was used to detect NETs formation in cocultured neutrophils <i>in vitro</i> or in mouse livers. <i>Clostridium scindens</i> was the key differential strain in the formation of gallstones in mice. After treatment with <i>Clostridium scindens</i>, both <i>in vitro</i> and <i>in vivo</i>, the expression of <i>TLR2</i> was upregulated, the secretion of <i>CXCL1</i> was increased by regulating the NF-κB pathway. Finally, the formation of NETs and stones was significantly increased. This study reveals a new mechanism of the gut-liver immune axis in the formation of gallstones. <i>Clostridium scindens</i> acts on colonic epithelial cells through <i>TLR2</i> to regulate the NF-κB pathway and increase the secretion of <i>CXCL1</i>. <i>CXCL1</i> enters the liver via the portal vein and increases the formation of NETs in the liver, thereby accelerating gallstone formation.</p>","PeriodicalId":18397,"journal":{"name":"Microbial Cell","volume":"12 ","pages":"37-52"},"PeriodicalIF":4.1,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12041793/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144003374","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-21eCollection Date: 2025-01-01DOI: 10.15698/mic2025.02.843
Didac Carmona-Gutierrez, Katharina Kainz, Frank Madeo
The publication and scientific implementation of scholarly articles is a collaborative effort that unites readers, authors, editors, and referees. A scientific journal thereby serves as a vital platform, enabling these interactions and fostering a shared commitment to advancing the quality and impact of scientific communication. In this short editorial, we celebrate the milestone of publishing the 500th article in Microbial Cell by highlighting these collective efforts. Importantly, from the outset of the journal more than ten years ago, we have cultivated a handcrafted organ that is produced by scientists for scientists. In that frame, we have followed and advocated a radical open access approach that fuels interaction and visibility of such cooperative endeavors for the public good.
{"title":"It takes four to tango: the cooperative adventure of scientific publishing.","authors":"Didac Carmona-Gutierrez, Katharina Kainz, Frank Madeo","doi":"10.15698/mic2025.02.843","DOIUrl":"10.15698/mic2025.02.843","url":null,"abstract":"<p><p>The publication and scientific implementation of scholarly articles is a collaborative effort that unites readers, authors, editors, and referees. A scientific journal thereby serves as a vital platform, enabling these interactions and fostering a shared commitment to advancing the quality and impact of scientific communication. In this short editorial, we celebrate the milestone of publishing the 500th article in <i>Microbial Cell</i> by highlighting these collective efforts. Importantly, from the outset of the journal more than ten years ago, we have cultivated a handcrafted organ that is produced by scientists for scientists. In that frame, we have followed and advocated a radical open access approach that fuels interaction and visibility of such cooperative endeavors for the public good.</p>","PeriodicalId":18397,"journal":{"name":"Microbial Cell","volume":"12 ","pages":"34-36"},"PeriodicalIF":4.1,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11853157/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143516108","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-20eCollection Date: 2025-01-01DOI: 10.15698/mic2025.02.841
Karen O Osiro, Abel Gil-Ley, Fabiano C Fernandes, Kamila B S de Oliveira, Cesar de la Fuente-Nunez, Octavio L Franco
Molecular de-extinction has emerged as a novel strategy for studying biological molecules throughout evolutionary history. Among the myriad possibilities offered by ancient genomes and proteomes, antimicrobial peptides (AMPs) stand out as particularly promising alternatives to traditional antibiotics. Various strategies, including software tools and advanced deep learning models, have been used to mine these host defense peptides. For example, computational analysis of disulfide bond patterns has led to the identification of six previously uncharacterized β-defensins in extinct and critically endangered species. Additionally, artificial intelligence and machine learning have been utilized to uncover ancient antibiotics, revealing numerous candidates, including mammuthusin, and elephasin, which display inhibitory effects toward pathogens in vitro and in vivo. These innovations promise to discover novel antibiotics and deepen our insight into evolutionary processes.
{"title":"Paving the way for new antimicrobial peptides through molecular de-extinction.","authors":"Karen O Osiro, Abel Gil-Ley, Fabiano C Fernandes, Kamila B S de Oliveira, Cesar de la Fuente-Nunez, Octavio L Franco","doi":"10.15698/mic2025.02.841","DOIUrl":"10.15698/mic2025.02.841","url":null,"abstract":"<p><p>Molecular de-extinction has emerged as a novel strategy for studying biological molecules throughout evolutionary history. Among the myriad possibilities offered by ancient genomes and proteomes, antimicrobial peptides (AMPs) stand out as particularly promising alternatives to traditional antibiotics. Various strategies, including software tools and advanced deep learning models, have been used to mine these host defense peptides. For example, computational analysis of disulfide bond patterns has led to the identification of six previously uncharacterized β-defensins in extinct and critically endangered species. Additionally, artificial intelligence and machine learning have been utilized to uncover ancient antibiotics, revealing numerous candidates, including mammuthusin, and elephasin, which display inhibitory effects toward pathogens <i>in vitro</i> and <i>in vivo</i>. These innovations promise to discover novel antibiotics and deepen our insight into evolutionary processes.</p>","PeriodicalId":18397,"journal":{"name":"Microbial Cell","volume":"12 ","pages":"1-8"},"PeriodicalIF":4.1,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11853161/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143516110","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-20eCollection Date: 2025-01-01DOI: 10.15698/mic2025.02.842
Tjasa Kosir, Hirak Das, Marc Pilegaard Pedersen, Ann-Kathrin Richard, Marco Anteghini, Vitor Martins Dos Santos, Silke Oeljeklaus, Ida J van der Klei, Bettina Warscheid
Peroxisomes are organelles that are crucial for cellular metabolism, but they also play important roles in non-metabolic processes such as signalling, stress response or antiviral defense. To uncover the consequences of peroxisome deficiency, we compared Saccharomyces cerevisiae wild-type with pex3 cells, which lack peroxisomes, employing quantitative proteomics and transcriptomics technologies. Cells were grown on acetate, a carbon source that requires peroxisomal enzymes of the glyoxylate cycle to generate energy and essential carbohydrates, and that does not repress the expression of peroxisomal genes. Our integrative omics analysis reveals that the absence of peroxisomes induces distinct responses at the level of the transcriptome and proteome. Transcripts of genes and corresponding proteins that are associated with peroxisomal β-oxidation were mostly increased in pex3 cells. In contrast, levels of peroxins were regulated at protein but not at transcript level. Membrane-bound peroxins were reduced, whereas the soluble receptors Pex5 and Pex7 were increased in abundance in pex3 cells. Interestingly, we found several non-peroxisomal transcript and proteins regulated in pex3 cells including mitochondrial proteins involved in respiration or import processes, which led to the identification of the mitochondrial pyruvate carrier Mpc1/3 as so far unnoticed transporter present in the peroxisomal membrane. Our results reveal the impact of the absence of peroxisomes in pex3 yeast cells and represent a rich resource of genes/proteins for follow-up studies to obtain a deeper understanding of peroxisome biology in a cellular context.
{"title":"Integrative Omics reveals changes in the cellular landscape of peroxisome-deficient <i>pex3</i> yeast cells.","authors":"Tjasa Kosir, Hirak Das, Marc Pilegaard Pedersen, Ann-Kathrin Richard, Marco Anteghini, Vitor Martins Dos Santos, Silke Oeljeklaus, Ida J van der Klei, Bettina Warscheid","doi":"10.15698/mic2025.02.842","DOIUrl":"10.15698/mic2025.02.842","url":null,"abstract":"<p><p>Peroxisomes are organelles that are crucial for cellular metabolism, but they also play important roles in non-metabolic processes such as signalling, stress response or antiviral defense. To uncover the consequences of peroxisome deficiency, we compared <i>Saccharomyces cerevisiae</i> wild-type with <i>pex3</i> cells, which lack peroxisomes, employing quantitative proteomics and transcriptomics technologies. Cells were grown on acetate, a carbon source that requires peroxisomal enzymes of the glyoxylate cycle to generate energy and essential carbohydrates, and that does not repress the expression of peroxisomal genes. Our integrative omics analysis reveals that the absence of peroxisomes induces distinct responses at the level of the transcriptome and proteome. Transcripts of genes and corresponding proteins that are associated with peroxisomal β-oxidation were mostly increased in <i>pex3</i> cells. In contrast, levels of peroxins were regulated at protein but not at transcript level. Membrane-bound peroxins were reduced, whereas the soluble receptors Pex5 and Pex7 were increased in abundance in <i>pex3</i> cells. Interestingly, we found several non-peroxisomal transcript and proteins regulated in <i>pex3</i> cells including mitochondrial proteins involved in respiration or import processes, which led to the identification of the mitochondrial pyruvate carrier Mpc1/3 as so far unnoticed transporter present in the peroxisomal membrane. Our results reveal the impact of the absence of peroxisomes in <i>pex3</i> yeast cells and represent a rich resource of genes/proteins for follow-up studies to obtain a deeper understanding of peroxisome biology in a cellular context.</p>","PeriodicalId":18397,"journal":{"name":"Microbial Cell","volume":"12 ","pages":"9-33"},"PeriodicalIF":4.1,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11862644/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143516106","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-18eCollection Date: 2024-01-01DOI: 10.15698/mic2024.11.840
Moritz Mayer, Christina Schug, Stefan Geimer, Till Klecker, Benedikt Westermann
Budding yeast Saccharomyces cerevisiae is widely used as a model organism to study the biogenesis and architecture of organellar membranes, which can be visualized by transmission electron microscopy (TEM). Preparation of yeast cells for TEM can be quite challenging and time-consuming. Here, we describe an optimized protocol for conventional fixation of yeast cells with potassium permanganate combined with cell wall permeabilization with sodium metaperiodate and embedding in Epon. We have replaced time-consuming incubation steps by short treatments with microwaves and developed a microwave-assisted permanganate fixation and Epon embedding protocol that reduces the time required for sample preparation to one working day. We expect that these protocols will be useful for routine analysis of membrane ultrastructure in yeast.
酵母芽孢杆菌(Saccharomyces cerevisiae)被广泛用作研究细胞器膜的生物生成和结构的模式生物。制备用于 TEM 的酵母细胞是一项相当具有挑战性且耗时的工作。在此,我们介绍了一种优化方案,即用高锰酸钾对酵母细胞进行常规固定,再用偏碘酸钠对细胞壁进行渗透,然后嵌入 Epon。我们用微波短时间处理取代了耗时的孵育步骤,并开发出一种微波辅助高锰酸盐固定和 Epon 包埋方案,将样品制备所需的时间缩短到一个工作日。我们希望这些方案能用于酵母膜超微结构的常规分析。
{"title":"Microwave-assisted preparation of yeast cells for ultrastructural analysis by electron microscopy.","authors":"Moritz Mayer, Christina Schug, Stefan Geimer, Till Klecker, Benedikt Westermann","doi":"10.15698/mic2024.11.840","DOIUrl":"10.15698/mic2024.11.840","url":null,"abstract":"<p><p>Budding yeast <i>Saccharomyces cerevisiae</i> is widely used as a model organism to study the biogenesis and architecture of organellar membranes, which can be visualized by transmission electron microscopy (TEM). Preparation of yeast cells for TEM can be quite challenging and time-consuming. Here, we describe an optimized protocol for conventional fixation of yeast cells with potassium permanganate combined with cell wall permeabilization with sodium metaperiodate and embedding in Epon. We have replaced time-consuming incubation steps by short treatments with microwaves and developed a microwave-assisted permanganate fixation and Epon embedding protocol that reduces the time required for sample preparation to one working day. We expect that these protocols will be useful for routine analysis of membrane ultrastructure in yeast.</p>","PeriodicalId":18397,"journal":{"name":"Microbial Cell","volume":"11 ","pages":"378-386"},"PeriodicalIF":4.1,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11578117/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142682235","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-11eCollection Date: 2024-01-01DOI: 10.15698/mic2024.11.839
Shweta Sinha, Shifu Aggarwal, Durg Vijai Singh
Staphylococcus aureus, a versatile human pathogen, poses a significant challenge in healthcare settings due to its ability to develop antibiotic resistance and form robust biofilms. Understanding the intricate mechanisms underlying the antibiotic resistance is crucial for effective infection treatment and control. This comprehensive review delves into the multifaceted roles of efflux pumps in S. aureus, with a focus on their contribution to antibiotic resistance and biofilm formation. Efflux pumps, integral components of the bacterial cell membrane, are responsible for expelling a wide range of toxic substances, including antibiotics, from bacterial cells. By actively extruding antibiotics, these pumps reduce intracellular drug concentrations, rendering antibiotics less effective. Moreover, efflux pumps have emerged as significant contributors to both antibiotic resistance and biofilm formation in S. aureus. Biofilms, structured communities of bacterial cells embedded in a protective matrix, enable S. aureus to adhere to surfaces, evade host immune responses, and resist antibiotic therapy. Efflux pumps play a pivotal role in the development and maintenance of S. aureus biofilms. However, the interplay between efflux pumps, antibiotic resistance and biofilm formation remains unexplored in S. aureus. This review aims to elucidate the complex relationship between efflux pumps, antibiotic resistance and biofilm formation in S. aureus with the aim to aid in the development of potential therapeutic targets for combating S. aureus infections, especially those associated with biofilms. The insights provided herein may contribute to the advancement of novel strategies to overcome antibiotic resistance and disrupt biofilm formation in this clinically significant pathogen.
{"title":"Efflux pumps: gatekeepers of antibiotic resistance in <i>Staphylococcus aureus</i> biofilms.","authors":"Shweta Sinha, Shifu Aggarwal, Durg Vijai Singh","doi":"10.15698/mic2024.11.839","DOIUrl":"10.15698/mic2024.11.839","url":null,"abstract":"<p><p><i>Staphylococcus aureus</i>, a versatile human pathogen, poses a significant challenge in healthcare settings due to its ability to develop antibiotic resistance and form robust biofilms. Understanding the intricate mechanisms underlying the antibiotic resistance is crucial for effective infection treatment and control. This comprehensive review delves into the multifaceted roles of efflux pumps in <i>S. aureus</i>, with a focus on their contribution to antibiotic resistance and biofilm formation. Efflux pumps, integral components of the bacterial cell membrane, are responsible for expelling a wide range of toxic substances, including antibiotics, from bacterial cells. By actively extruding antibiotics, these pumps reduce intracellular drug concentrations, rendering antibiotics less effective. Moreover, efflux pumps have emerged as significant contributors to both antibiotic resistance and biofilm formation in <i>S. aureus</i>. Biofilms, structured communities of bacterial cells embedded in a protective matrix, enable <i>S. aureus</i> to adhere to surfaces, evade host immune responses, and resist antibiotic therapy. Efflux pumps play a pivotal role in the development and maintenance of <i>S. aureus</i> biofilms. However, the interplay between efflux pumps, antibiotic resistance and biofilm formation remains unexplored in <i>S. aureus</i>. This review aims to elucidate the complex relationship between efflux pumps, antibiotic resistance and biofilm formation in <i>S. aureus</i> with the aim to aid in the development of potential therapeutic targets for combating <i>S. aureus</i> infections, especially those associated with biofilms. The insights provided herein may contribute to the advancement of novel strategies to overcome antibiotic resistance and disrupt biofilm formation in this clinically significant pathogen.</p>","PeriodicalId":18397,"journal":{"name":"Microbial Cell","volume":"11 ","pages":"368-377"},"PeriodicalIF":4.1,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11576857/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142682233","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Concurrent infections with two or more pathogens with analogous tropism, such as RSV and SARS-CoV-2, may antagonize or facilitate each other, modulating disease outcome. Clinically, discrepancies in the severity of symptoms have been reported in children with RSV/SARS-CoV-2 co-infection. Herein, we propose an in vitro co-infection model to assess how RSV/SARS-CoV-2 co-infection alters cellular homeostasis. To this end, A549-hACE2 expressing cells were either infected with RSV or SARS-CoV-2 alone or co-infected with both viruses. Viral replication was assessed at 72 hours post infection by droplet digital PCR, immunofluorescence, and transmission electron microscopy. Anti-viral/receptor/autophagy gene expression was evaluated by RT-qPCR and confirmed by secretome analyses and intracellular protein production. RSV/SARS-CoV-2 co-infection in A549-hACE2 cells was characterized by: 1) an increase in the replication rate of RSV compared to single infection; 2) an increase in one of the RSV host receptors, ICAM1; 3) an upregulation in the expression/secretion of pro-inflammatory genes; 4) a rise in the number and length of cellular conduits; and 5) augmented autophagosomes formation and/or alteration of the autophagy pathway. These findings suggest that RSV/SARS-CoV-2 co-infection model displays a unique and specific viral and molecular fingerprint and shed light on the viral dynamics during viral infection pathogenesis. This in vitro co-infection model may represent a potential attractive cost-effective approach to mimic both viral dynamics and host cellular responses, providing in future readily measurable targets predictive of co-infection progression.
{"title":"A complex remodeling of cellular homeostasis distinguishes RSV/SARS-CoV-2 co-infected A549-hACE2 expressing cell lines.","authors":"Claudia Vanetti, Irma Saulle, Valentina Artusa, Claudia Moscheni, Gioia Cappelletti, Silvia Zecchini, Sergio Strizzi, Micaela Garziano, Claudio Fenizia, Antonella Tosoni, Martina Broggiato, Pasquale Ogno, Manuela Nebuloni, Mario Clerici, Daria Trabattoni, Fiona Limanaqi, Mara Biasin","doi":"10.15698/mic2024.10.838","DOIUrl":"https://doi.org/10.15698/mic2024.10.838","url":null,"abstract":"<p><p>Concurrent infections with two or more pathogens with analogous tropism, such as RSV and SARS-CoV-2, may antagonize or facilitate each other, modulating disease outcome. Clinically, discrepancies in the severity of symptoms have been reported in children with RSV/SARS-CoV-2 co-infection. Herein, we propose an <i>in vitro</i> co-infection model to assess how RSV/SARS-CoV-2 co-infection alters cellular homeostasis. To this end, A549-hACE2 expressing cells were either infected with RSV or SARS-CoV-2 alone or co-infected with both viruses. Viral replication was assessed at 72 hours post infection by droplet digital PCR, immunofluorescence, and transmission electron microscopy. Anti-viral/receptor/autophagy gene expression was evaluated by RT-qPCR and confirmed by secretome analyses and intracellular protein production. RSV/SARS-CoV-2 co-infection in A549-hACE2 cells was characterized by: 1) an increase in the replication rate of RSV compared to single infection; 2) an increase in one of the RSV host receptors, ICAM1; 3) an upregulation in the expression/secretion of pro-inflammatory genes; 4) a rise in the number and length of cellular conduits; and 5) augmented autophagosomes formation and/or alteration of the autophagy pathway. These findings suggest that RSV/SARS-CoV-2 co-infection model displays a unique and specific viral and molecular fingerprint and shed light on the viral dynamics during viral infection pathogenesis. This in vitro co-infection model may represent a potential attractive cost-effective approach to mimic both viral dynamics and host cellular responses, providing in future readily measurable targets predictive of co-infection progression.</p>","PeriodicalId":18397,"journal":{"name":"Microbial Cell","volume":"11 ","pages":"353-367"},"PeriodicalIF":4.1,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11486504/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142469522","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-04eCollection Date: 2024-01-01DOI: 10.15698/mic2024.10.837
Ronnie L Fulton, Bryce R Sawyer, Diana M Downs
Defining the physiological role of a gene product relies on interpreting phenotypes caused by the lack, or alteration, of the respective gene product. Mutations in critical genes often lead to easily recognized phenotypes that can include changes in cellular growth, metabolism, structure etc. However, mutations in many important genes may fail to generate an obvious defect unless additional perturbations are caused by medium or genetic background. The latter scenario is exemplified by RidA proteins. In vitro RidA proteins deaminate numerous imine/enamines, including those generated by serine/threonine dehydratase IlvA (EC:4.3.1.19) from serine or threonine - 2-aminoacrylate (2AA) and 2-aminocrotonate (2AC), respectively. Despite this demonstrable biochemical activity, a lack of RidA has little to no effect on growth of E. coli or S. enterica without the application of additional metabolic perturbation. A cellular role of RidA is to prevent accumulation of 2AA which, if allowed to persist, can irreversibly damage pyridoxal 5'-phosphate (PLP)-dependent enzymes, causing global metabolic stress. Because the phenotypes caused by a lack of RidA are dependent on the unique structure of each metabolic network, the link between RidA function and 2AA stress is difficult to demonstrate in some organisms. The current study used coculture experiments to exacerbate differences in growth caused by the lack of RidA in S. enterica and E. coli. Results described here solidify the established role of RidA in removing 2AA, while also presenting evidence for a role of RidA in enhancing flux towards isoleucine biosynthesis in E. coli. Overall, these data emphasize that metabolic networks can generate distinct responses to perturbation, even when the individual components are conserved.
确定基因产物的生理作用有赖于解释因缺乏或改变相应基因产物而导致的表型。关键基因的突变通常会导致容易识别的表型,包括细胞生长、新陈代谢、结构等方面的变化。然而,许多重要基因的突变可能不会产生明显的缺陷,除非介质或遗传背景造成额外的干扰。后一种情况以 RidA 蛋白为例。体外 RidA 蛋白对许多亚胺/烯胺进行脱氨基处理,包括由丝氨酸/苏氨酸脱水酶 IlvA(EC:4.3.1.19)从丝氨酸或苏氨酸生成的亚胺/烯胺--2-氨基丙烯酸酯(2AA)和 2-氨基巴豆酸酯(2AC)。尽管 RidA 具有这种明显的生化活性,但在没有额外代谢干扰的情况下,缺乏 RidA 对大肠杆菌或肠道病毒的生长几乎没有影响。RidA 在细胞中的作用是防止 2AA 的积累,如果 2AA 持续存在,就会对依赖于 5'-磷酸吡哆醛(PLP)的酶造成不可逆的损害,从而导致全面的代谢压力。由于缺乏 RidA 所导致的表型取决于每个代谢网络的独特结构,因此很难在某些生物体内证明 RidA 功能与 2AA 压力之间的联系。本研究利用共培养实验来加剧肠杆菌和大肠杆菌因缺乏 RidA 而导致的生长差异。这里描述的结果巩固了 RidA 在去除 2AA 中的既定作用,同时也提出了 RidA 在提高大肠杆菌异亮氨酸生物合成通量中的作用的证据。总之,这些数据强调了代谢网络可以对扰动产生不同的反应,即使单个成分是保守的。
{"title":"RidA proteins contribute to fitness of <i>S. enterica</i> and <i>E.</i> <i>coli</i> by reducing 2AA stress and moderating flux to isoleucine biosynthesis.","authors":"Ronnie L Fulton, Bryce R Sawyer, Diana M Downs","doi":"10.15698/mic2024.10.837","DOIUrl":"10.15698/mic2024.10.837","url":null,"abstract":"<p><p>Defining the physiological role of a gene product relies on interpreting phenotypes caused by the lack, or alteration, of the respective gene product. Mutations in critical genes often lead to easily recognized phenotypes that can include changes in cellular growth, metabolism, structure etc. However, mutations in many important genes may fail to generate an obvious defect unless additional perturbations are caused by medium or genetic background. The latter scenario is exemplified by RidA proteins. <i>In vitro</i> RidA proteins deaminate numerous imine/enamines, including those generated by serine/threonine dehydratase IlvA (EC:4.3.1.19) from serine or threonine - 2-aminoacrylate (2AA) and 2-aminocrotonate (2AC), respectively. Despite this demonstrable biochemical activity, a lack of RidA has little to no effect on growth of <i>E. coli</i> or <i>S. enterica</i> without the application of additional metabolic perturbation. A cellular role of RidA is to prevent accumulation of 2AA which, if allowed to persist, can irreversibly damage pyridoxal 5'-phosphate (PLP)-dependent enzymes, causing global metabolic stress. Because the phenotypes caused by a lack of RidA are dependent on the unique structure of each metabolic network, the link between RidA function and 2AA stress is difficult to demonstrate in some organisms. The current study used coculture experiments to exacerbate differences in growth caused by the lack of RidA in <i>S. enterica</i> and <i>E. coli</i>. Results described here solidify the established role of RidA in removing 2AA, while also presenting evidence for a role of RidA in enhancing flux towards isoleucine biosynthesis in <i>E. coli</i>. Overall, these data emphasize that metabolic networks can generate distinct responses to perturbation, even when the individual components are conserved.</p>","PeriodicalId":18397,"journal":{"name":"Microbial Cell","volume":"11 ","pages":"339-352"},"PeriodicalIF":4.1,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11491847/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142469523","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}