The zinc oxide-silver oxide nanocomposite (ZnO.Ag2O3 particles) was prepared by using an aqueous plant extract of Haplophyllum obtusifolium for the first time. Powder X-ray diffraction (PXRD), Fourier transforms spectroscopy (FTIR), field emission microscopy (FESEM), energy dispersive X-ray analysis (EDX), and transmission electron microscopy (TEM) were applied to analyze the structure, functional groups, morphology, and purity of the prepared nanocomposite. PXRD revealed the formulation of ZnO.Ag2O3 for the particles. The investigation of functional groups has demonstrated the presence of some carbonated impurities along with absorbed water in the composition of the ZnO.Ag2O3 nanocomposite. Morphologically, particles have formed a petal-like shape with different sizes. The EDX analysis also confirmed the composition of the prepared sample and the presence of 4.78% silver in the formula. Additionally, the TEM analysis revealed spherical and rectangular shapes with a particle size of 80.43 ± 46.73 nm. Moreover, the ZnO.Ag2O3 particles were used against cancer cells, which has shown synthesized NCs have a toxic effect against liver cancer cells in a concentration and time-dependent manner.
Chiral iridium (III) complexes are very important for the preparation of circularly polarized organic diodes light-emitting diodes (CP-OLEDs). Three novel iridium (III) complexes, Ir(dnfppy)2(Cl/pyrrole), Ir(dfppy)2(dpp), and Ir(tfmqz)2(sdpp), have been synthesized and characterized, respectively. These iridium (III) complexes emitted deep-blue, blue, and red photoluminescence with high quantum yields (Ir(dnfppy)2(Cl/Pyrrole): λmax = 447 nm, F = 62.4%; Ir(dfppy)2(dpp): λmax = 467 nm, F = 25%; Ir(tfmqz)2(sdpp): λmax = 609 nm, F = 73.7%). Compared with Ir(dnfppy)2(Cl/pyrrole), the HOMO energy levels of Ir(dfppy)2(dpp) and Ir(tfmqz)2(sdpp) were calculated to be −5.71/−5.73 eV, and the LUMO energy levels were increased to be −2.75/−3.36 eV, respectively. The circular dichroism spectra of two pairs of the enantiomers for Ir(dfppy)2(dpp) or Ir(tfmqz)2(sdpp) displayed symmetry with opposite polarization between 300 and 600 nm. The maximum external quantum efficiency (EQEmax) of OLEDs based on Ir(tfmpqz)2(sddp) was 13.8%, showing a relatively low efficiency roll-off with the EQE of 10.7% at 5000 cd/m2.
Silica-aluminium composite powders are important precursors for the preparation of sealant coatings by supersonic flame spraying. Micron-scale silica-aluminium composite powders can be prepared using a planetary ball mill, but powder agglomeration often leads to composite failure. Using relevant modelling software to build the 3D modelling of the ball mill jar, which based on the discrete element method, using the Hertz–Mindlin contact model and after specifying the simulation boundary conditions, the ball mill process was simulated and analysed. Visualise the influence of important process parameters such as frequency, size and diameter of milling balls and ball-to-powder weight ratio, and systematically analyse the microscopic morphology and composite condition of the agglomerated and dispersed powders. The results show that the ball motion during the ball milling process is mainly divided into three representative types: ball–ball impact, ball crushing motion against the jar wall and ball–wall impact. The energy transfer efficiency of the milling balls to the powder system is highest when the ratio of the three types of motion is uniform. SEM images and EDS spectra showed that the aluminium powder was sufficiently crushed, with an average particle size below 1 μm. The aluminium powder was uniformly distributed on the surface of the silicon powder, and the particle size of the composite silicon aggregates was sufficiently reduced.
As a key component of lithium-ion batteries (LIBs), separator plays a crucial role in the performance and safety of LIBs. In this paper, a cellulose-based porous membrane modified by nano CaCO3 is prepared conveniently by electrospinning. The membrane exhibits rich fibrous porous networks and uniform distribution of nanoparticles. Strengthened by CaCO3, the tensile strength of the cellulose porous membrane elevates from 4.7 ± 0.4 MPa to 7.7 ± 0.7 MPa. Besides, the modified membranes possess improved thermal stability and can maintain their original size after treatment at 150°C and 180°C. Also, the electrolyte uptake of cellulose/CaCO3 membrane is 73% higher than that of the pure cellulose membrane. Thus, the ionic conductivity of membrane achieves 1.08 mS cm−1 and the electrochemical window is about 4.8 V, which meets the practical requirements of LIBs. Significantly, with LiFePO4/Li battery this membrane can run for 230 cycles with a capacity retention of 97.4% and a discharge capacity of 149.0 mAh g−1, demonstrating the huge potential for high safety and next-generation LIBs.