首页 > 最新文献

Microbiome最新文献

英文 中文
Maternal gastrointestinal microbiome shapes gut microbial function and resistome of newborns in a cow-to-calf model. 在母牛到小牛模型中,母体胃肠道微生物组影响新生儿的肠道微生物功能和抗性组。
IF 13.8 1区 生物学 Q1 MICROBIOLOGY Pub Date : 2024-10-22 DOI: 10.1186/s40168-024-01943-5
Yimin Zhuang, Shuai Liu, Duo Gao, Yiming Xu, Wen Jiang, Guobin Hou, Sumin Li, Xinjie Zhao, Tianyu Chen, Shangru Li, Siyuan Zhang, Yanting Huang, Jingjun Wang, Jianxin Xiao, Mengmeng Li, Wei Wang, Shengli Li, Zhijun Cao

Background: The maternal gut microbiome is the direct and important source of early colonization and development of the neonatal gut microbiome. However, differences in unique and shared features between mothers with different physiological phenotypes and their newborns still lack exhaustive investigation. Here, using a cow-to-calf model, a comprehensive investigation was conducted to elucidate the pattern and characterization of microbial transfer from the maternal source to the offspring.

Results: The microbiota in the rumen and feces of dairy cows were divided into two clusters via enterotype analysis. The cows from the enterotype distinguished by Prevotella in the rumen had better production performance, whereas no difference was observed in the cows classified by feces enterotype. Furthermore, through a pairwise combination of fecal and ruminal enterotypes, we screened a group of dairy cows with excellent phenotypes. The gastrointestinal microbiomes of cows with different phenotypes and their offspring differed significantly. The rumen was a more important microbial source for meconium than feces. Transmission of beneficial bacteria from mother to offspring was observed. Additionally, the meconium inherits advantageous metabolic functions of the rumen. The resistome features of the rumen, feces, and meconium were consistent, and resistome abundance from cows to calves showed an expanding trend. The interaction between antibiotic-resistance genes and mobile genetic elements from the rumen to meconium was the most remarkable. The diversity of core metabolites from cows to calves was stable and not affected by differences in phenotypes. However, the abundance of specific metabolites varied greatly.

Conclusions: Our study demonstrates the microbial taxa, metabolic function, and resistome characteristics of maternal and neonatal microbiomes, and reveals the potential vertical transmission of the microbiome from a cow-to-calf model. These findings provide new insights into the transgenerational transmission pattern of the microbiome. Video Abstract.

背景:母体肠道微生物组是新生儿肠道微生物组早期定植和发育的直接和重要来源。然而,对不同生理表型的母亲及其新生儿之间的独特和共同特征的差异仍缺乏详尽的研究。在此,我们利用母牛到小牛的模型进行了全面调查,以阐明微生物从母源向子代转移的模式和特征:结果:通过肠型分析,奶牛瘤胃和粪便中的微生物群被分为两组。根据瘤胃中的普雷沃特氏菌区分的肠型奶牛生产性能更好,而根据粪便肠型划分的奶牛则无差异。此外,通过粪便肠型和瘤胃肠型的配对组合,我们筛选出了一组表型优异的奶牛。不同表型奶牛及其后代的胃肠道微生物组存在显著差异。与粪便相比,瘤胃是胎粪更重要的微生物来源。观察到有益菌从母体传播给后代。此外,胎粪还继承了瘤胃的优势代谢功能。瘤胃、粪便和胎粪的耐药性组特征是一致的,从奶牛到犊牛的耐药性组丰度呈扩大趋势。从瘤胃到胎粪,抗生素耐药性基因与移动遗传因子之间的相互作用最为显著。从奶牛到犊牛,核心代谢物的多样性是稳定的,不受表型差异的影响。然而,特定代谢物的丰度差异很大:我们的研究展示了母体和新生儿微生物组的微生物类群、代谢功能和抗性组特征,并揭示了微生物组从母牛到小牛模型的潜在垂直传播。这些发现为微生物组的跨代传播模式提供了新的见解。视频摘要。
{"title":"Maternal gastrointestinal microbiome shapes gut microbial function and resistome of newborns in a cow-to-calf model.","authors":"Yimin Zhuang, Shuai Liu, Duo Gao, Yiming Xu, Wen Jiang, Guobin Hou, Sumin Li, Xinjie Zhao, Tianyu Chen, Shangru Li, Siyuan Zhang, Yanting Huang, Jingjun Wang, Jianxin Xiao, Mengmeng Li, Wei Wang, Shengli Li, Zhijun Cao","doi":"10.1186/s40168-024-01943-5","DOIUrl":"https://doi.org/10.1186/s40168-024-01943-5","url":null,"abstract":"<p><strong>Background: </strong>The maternal gut microbiome is the direct and important source of early colonization and development of the neonatal gut microbiome. However, differences in unique and shared features between mothers with different physiological phenotypes and their newborns still lack exhaustive investigation. Here, using a cow-to-calf model, a comprehensive investigation was conducted to elucidate the pattern and characterization of microbial transfer from the maternal source to the offspring.</p><p><strong>Results: </strong>The microbiota in the rumen and feces of dairy cows were divided into two clusters via enterotype analysis. The cows from the enterotype distinguished by Prevotella in the rumen had better production performance, whereas no difference was observed in the cows classified by feces enterotype. Furthermore, through a pairwise combination of fecal and ruminal enterotypes, we screened a group of dairy cows with excellent phenotypes. The gastrointestinal microbiomes of cows with different phenotypes and their offspring differed significantly. The rumen was a more important microbial source for meconium than feces. Transmission of beneficial bacteria from mother to offspring was observed. Additionally, the meconium inherits advantageous metabolic functions of the rumen. The resistome features of the rumen, feces, and meconium were consistent, and resistome abundance from cows to calves showed an expanding trend. The interaction between antibiotic-resistance genes and mobile genetic elements from the rumen to meconium was the most remarkable. The diversity of core metabolites from cows to calves was stable and not affected by differences in phenotypes. However, the abundance of specific metabolites varied greatly.</p><p><strong>Conclusions: </strong>Our study demonstrates the microbial taxa, metabolic function, and resistome characteristics of maternal and neonatal microbiomes, and reveals the potential vertical transmission of the microbiome from a cow-to-calf model. These findings provide new insights into the transgenerational transmission pattern of the microbiome. Video Abstract.</p>","PeriodicalId":18447,"journal":{"name":"Microbiome","volume":"12 1","pages":"216"},"PeriodicalIF":13.8,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11495063/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142503481","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Staphylococcus aureus-antagonizing human nasal commensal Staphylococcus lugdunensis depends on siderophore piracy. 可拮抗金黄色葡萄球菌的人类鼻腔共生葡萄球菌卢格敦金黄色葡萄球菌依赖于嗜苷酸盐海盗。
IF 13.8 1区 生物学 Q1 MICROBIOLOGY Pub Date : 2024-10-22 DOI: 10.1186/s40168-024-01913-x
Ralf Rosenstein, Benjamin O Torres Salazar, Claudia Sauer, Simon Heilbronner, Bernhard Krismer, Andreas Peschel

Background: Bacterial pathogens such as Staphylococcus aureus colonize body surfaces of part of the human population, which represents a critical risk factor for skin disorders and invasive infections. However, such pathogens do not belong to the human core microbiomes. Beneficial commensal bacteria can often prevent the invasion and persistence of such pathogens by using molecular strategies that are only superficially understood. We recently reported that the commensal bacterium Staphylococcus lugdunensis produces the novel antibiotic lugdunin, which eradicates S. aureus from the nasal microbiomes of hospitalized patients. However, it has remained unclear if S. lugdunensis may affect S. aureus carriage in the general population and which external factors might promote S. lugdunensis carriage to enhance its S. aureus-eliminating capacity.

Results: We could cultivate S. lugdunensis from the noses of 6.3% of healthy human volunteers. In addition, S. lugdunensis DNA could be identified in metagenomes of many culture-negative nasal samples indicating that cultivation success depends on a specific bacterial threshold density. Healthy S. lugdunensis carriers had a 5.2-fold lower propensity to be colonized by S. aureus indicating that lugdunin can eliminate S. aureus also in healthy humans. S. lugdunensis-positive microbiomes were dominated by either Staphylococcus epidermidis, Corynebacterium species, or Dolosigranulum pigrum. These and further bacterial commensals, whose abundance was positively associated with S. lugdunensis, promoted S. lugdunensis growth in co-culture. Such mutualistic interactions depended on the production of iron-scavenging siderophores by supportive commensals and on the capacity of S. lugdunensis to import siderophores. Video Abstract CONCLUSIONS: These findings underscore the importance of microbiome homeostasis for eliminating pathogen colonization. Elucidating mechanisms that drive microbiome interactions will become crucial for microbiome-precision editing approaches.

背景:金黄色葡萄球菌等细菌病原体定植于部分人群的体表,是导致皮肤病和侵入性感染的重要风险因素。然而,这类病原体并不属于人类核心微生物组。有益的共生细菌通常可以利用分子策略阻止这类病原体的入侵和持续存在,但人们对这些策略的了解还很肤浅。我们最近报告说,共生细菌卢格杜恩葡萄球菌能产生新型抗生素卢格杜宁,它能根除住院患者鼻腔微生物组中的金黄色葡萄球菌。然而,目前仍不清楚卢格杜菌是否会影响普通人群中的金黄色葡萄球菌携带,以及哪些外部因素可能会促进卢格杜菌的携带,从而增强其消灭金黄色葡萄球菌的能力:结果:我们可以从 6.3% 的健康志愿者鼻腔中培养出卢格登氏菌。此外,在许多培养阴性的鼻腔样本的元基因组中可以鉴定出 S. lugdunensis DNA,这表明培养成功与否取决于特定的细菌阈值密度。健康的 S. lugdunensis 携带者被金黄色葡萄球菌定植的可能性降低了 5.2 倍,这表明 lugdunin 也能消灭健康人体内的金黄色葡萄球菌。卢格杜氏菌阳性微生物组主要由表皮葡萄球菌、棒状杆菌或猪多糖所组成。这些细菌和其他细菌共生体(其丰度与 S. lugdunensis 呈正相关)在共培养中促进了 S. lugdunensis 的生长。这种互利的相互作用取决于支持性共生菌产生的铁清除嗜苷酸盐以及卢格氏菌输入嗜苷酸盐的能力。视频摘要 结论:这些发现强调了微生物组平衡对消除病原体定植的重要性。阐明驱动微生物组相互作用的机制将成为微生物组精确编辑方法的关键。
{"title":"The Staphylococcus aureus-antagonizing human nasal commensal Staphylococcus lugdunensis depends on siderophore piracy.","authors":"Ralf Rosenstein, Benjamin O Torres Salazar, Claudia Sauer, Simon Heilbronner, Bernhard Krismer, Andreas Peschel","doi":"10.1186/s40168-024-01913-x","DOIUrl":"https://doi.org/10.1186/s40168-024-01913-x","url":null,"abstract":"<p><strong>Background: </strong>Bacterial pathogens such as Staphylococcus aureus colonize body surfaces of part of the human population, which represents a critical risk factor for skin disorders and invasive infections. However, such pathogens do not belong to the human core microbiomes. Beneficial commensal bacteria can often prevent the invasion and persistence of such pathogens by using molecular strategies that are only superficially understood. We recently reported that the commensal bacterium Staphylococcus lugdunensis produces the novel antibiotic lugdunin, which eradicates S. aureus from the nasal microbiomes of hospitalized patients. However, it has remained unclear if S. lugdunensis may affect S. aureus carriage in the general population and which external factors might promote S. lugdunensis carriage to enhance its S. aureus-eliminating capacity.</p><p><strong>Results: </strong>We could cultivate S. lugdunensis from the noses of 6.3% of healthy human volunteers. In addition, S. lugdunensis DNA could be identified in metagenomes of many culture-negative nasal samples indicating that cultivation success depends on a specific bacterial threshold density. Healthy S. lugdunensis carriers had a 5.2-fold lower propensity to be colonized by S. aureus indicating that lugdunin can eliminate S. aureus also in healthy humans. S. lugdunensis-positive microbiomes were dominated by either Staphylococcus epidermidis, Corynebacterium species, or Dolosigranulum pigrum. These and further bacterial commensals, whose abundance was positively associated with S. lugdunensis, promoted S. lugdunensis growth in co-culture. Such mutualistic interactions depended on the production of iron-scavenging siderophores by supportive commensals and on the capacity of S. lugdunensis to import siderophores. Video Abstract CONCLUSIONS: These findings underscore the importance of microbiome homeostasis for eliminating pathogen colonization. Elucidating mechanisms that drive microbiome interactions will become crucial for microbiome-precision editing approaches.</p>","PeriodicalId":18447,"journal":{"name":"Microbiome","volume":"12 1","pages":"213"},"PeriodicalIF":13.8,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11495082/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142503494","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Volatile-mediated interspecific plant interaction promotes root colonization by beneficial bacteria via induced shifts in root exudation. 挥发性物质介导的植物种间相互作用通过诱导根部渗出的变化,促进有益细菌在根部定殖。
IF 13.8 1区 生物学 Q1 MICROBIOLOGY Pub Date : 2024-10-21 DOI: 10.1186/s40168-024-01914-w
Xingang Zhou, Jingyu Zhang, Jibo Shi, Muhammad Khashi U Rahman, Hongwei Liu, Zhong Wei, Fengzhi Wu, Francisco Dini-Andreote

Background: Volatile organic compounds (VOCs) released by plants can act as signaling molecules mediating ecological interactions. Therefore, the study of VOCs mediated intra- and interspecific interactions with downstream plant physiological responses is critical to advance our understanding of mechanisms underlying information exchange in plants. Here, we investigated how plant-emitted VOCs affect the performance of an interspecific neighboring plant via induced shifts in root exudate chemistry with implications for root-associated microbiota recruitment.

Results: First, we showed that VOCs emitted by potato-onion plants stimulate the growth of adjacent tomato plants. Then, we demonstrated that this positive effect on tomato biomass was attributed to shifts in the tomato rhizosphere microbiota. Specifically, we found potato-onion VOCs to indirectly affect the recruitment of specific bacteria (e.g., Pseudomonas and Bacillus spp.) in the tomato rhizosphere. Second, we identified and validated the compound dipropyl disulfide as the active molecule within the blend of potato-onion VOCs mediating this interspecific plant communication. Third, we showed that the effect on the tomato rhizosphere microbiota occurs via induced changes in root exudates of tomato plants caused by exposure to dipropyl disulfide. Last, Pseudomonas and Bacillus spp. bacteria enriched in the tomato rhizosphere were shown to have plant growth-promoting activities.

Conclusions: Potato-onion VOCs-specifically dipropyl disulfide-can induce shifts in the root exudate of adjacent tomato plants, which results in the recruitment of plant-beneficial bacteria in the rhizosphere. Taken together, this study elucidated a new mechanism of interspecific plant interaction mediated by VOCs resulting in alterations in the rhizosphere microbiota with beneficial outcomes for plant performance. Video Abstract.

背景:植物释放的挥发性有机化合物(VOCs)可作为介导生态相互作用的信号分子。因此,研究挥发性有机化合物介导的种内和种间相互作用以及下游植物生理反应,对于加深我们对植物信息交流机制的理解至关重要。在这里,我们研究了植物释放的挥发性有机化合物如何通过诱导根部渗出物化学变化影响种间相邻植物的表现,并对根相关微生物群的招募产生影响:结果:首先,我们发现马铃薯-洋葱植物释放的挥发性有机化合物会刺激相邻番茄植物的生长。然后,我们证明这种对番茄生物量的积极影响归因于番茄根瘤微生物群的变化。具体来说,我们发现马铃薯挥发性有机化合物会间接影响番茄根圈中特定细菌(如假单胞菌和芽孢杆菌属)的繁殖。其次,我们确定并验证了二丙基二硫化合物是马铃薯-洋葱挥发性有机化合物混合物中介导这种植物种间交流的活性分子。第三,我们发现,暴露于二丙基二硫化物会诱导番茄植株根部渗出物发生变化,从而对番茄根瘤微生物群产生影响。最后,番茄根圈中富集的假单胞菌和芽孢杆菌具有促进植物生长的活性:结论:马铃薯离子挥发性有机化合物(特别是二丙基二硫化物)可诱导相邻番茄植株根部渗出液的变化,从而导致根圈中有益于植物的细菌大量繁殖。综上所述,这项研究阐明了一种由挥发性有机化合物介导的植物种间相互作用的新机制,它导致根圈微生物群的改变,从而对植物的表现产生有益的结果。视频摘要。
{"title":"Volatile-mediated interspecific plant interaction promotes root colonization by beneficial bacteria via induced shifts in root exudation.","authors":"Xingang Zhou, Jingyu Zhang, Jibo Shi, Muhammad Khashi U Rahman, Hongwei Liu, Zhong Wei, Fengzhi Wu, Francisco Dini-Andreote","doi":"10.1186/s40168-024-01914-w","DOIUrl":"10.1186/s40168-024-01914-w","url":null,"abstract":"<p><strong>Background: </strong>Volatile organic compounds (VOCs) released by plants can act as signaling molecules mediating ecological interactions. Therefore, the study of VOCs mediated intra- and interspecific interactions with downstream plant physiological responses is critical to advance our understanding of mechanisms underlying information exchange in plants. Here, we investigated how plant-emitted VOCs affect the performance of an interspecific neighboring plant via induced shifts in root exudate chemistry with implications for root-associated microbiota recruitment.</p><p><strong>Results: </strong>First, we showed that VOCs emitted by potato-onion plants stimulate the growth of adjacent tomato plants. Then, we demonstrated that this positive effect on tomato biomass was attributed to shifts in the tomato rhizosphere microbiota. Specifically, we found potato-onion VOCs to indirectly affect the recruitment of specific bacteria (e.g., Pseudomonas and Bacillus spp.) in the tomato rhizosphere. Second, we identified and validated the compound dipropyl disulfide as the active molecule within the blend of potato-onion VOCs mediating this interspecific plant communication. Third, we showed that the effect on the tomato rhizosphere microbiota occurs via induced changes in root exudates of tomato plants caused by exposure to dipropyl disulfide. Last, Pseudomonas and Bacillus spp. bacteria enriched in the tomato rhizosphere were shown to have plant growth-promoting activities.</p><p><strong>Conclusions: </strong>Potato-onion VOCs-specifically dipropyl disulfide-can induce shifts in the root exudate of adjacent tomato plants, which results in the recruitment of plant-beneficial bacteria in the rhizosphere. Taken together, this study elucidated a new mechanism of interspecific plant interaction mediated by VOCs resulting in alterations in the rhizosphere microbiota with beneficial outcomes for plant performance. Video Abstract.</p>","PeriodicalId":18447,"journal":{"name":"Microbiome","volume":"12 1","pages":"207"},"PeriodicalIF":13.8,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11492557/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142469621","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Host-microbe interaction-mediated resistance to DSS-induced inflammatory enteritis in sheep. 宿主-微生物相互作用介导的绵羊对 DSS 诱导的炎症性肠炎的抵抗力。
IF 13.8 1区 生物学 Q1 MICROBIOLOGY Pub Date : 2024-10-21 DOI: 10.1186/s40168-024-01932-8
Shuo Yan, Ruilin Du, Wenna Yao, Huimin Zhang, Yue Xue, Teligun, Yongfa Li, Hanggai Bao, Yulong Zhao, Shuo Cao, Guifang Cao, Xihe Li, Siqin Bao, Yongli Song

Background: The disease resistance phenotype is closely related to immunomodulatory function and immune tolerance and has far-reaching implications in animal husbandry and human health. Microbes play an important role in the initiation, prevention, and treatment of diseases, but the mechanisms of host-microbiota interactions in disease-resistant phenotypes are poorly understood. In this study, we hope to uncover and explain the role of microbes in intestinal diseases and their mechanisms of action to identify new potential treatments.

Methods: First, we established the colitis model of DSS in two breeds of sheep and then collected the samples for multi-omics testing including metagenes, metabolome, and transcriptome. Next, we made the fecal bacteria liquid from the four groups of sheep feces collected from H-CON, H-DSS, E-CON, and E-DSS to transplant the fecal bacteria into mice. H-CON feces were transplanted into mice named HH group and H-DSS feces were transplanted into mice named HD group and Roseburia bacteria treatment named HDR groups. E-CON feces were transplanted into mice named EH group and E-DSS feces were transplanted into mice in the ED group and Roseburia bacteria treatment named EDR groups. After successful modeling, samples were taken for multi-omics testing. Finally, colitis mice in HD group and ED group were administrated with Roseburia bacteria, and the treatment effect was evaluated by H&E, PAS, immunohistochemistry, and other experimental methods.

Results: The difference in disease resistance of sheep to DSS-induced colitis disease is mainly due to the increase in the abundance of Roseburia bacteria and the increase of bile acid secretion in the intestinal tract of Hu sheep in addition to the accumulation of potentially harmful bacteria in the intestine when the disease occurs, which makes the disease resistance of Hu sheep stronger under the same disease conditions. However, the enrichment of harmful microorganisms in East Friesian sheep activated the TNFα signalling pathway, which aggravated the intestinal injury, and then the treatment of FMT mice by culturing Roseburia bacteria found that Roseburia bacteria had a good curative effect on colitis.

Conclusion: Our study showed that in H-DSS-treated sheep, the intestinal barrier is stabilized with an increase in the abundance of beneficial microorganisms. Our data also suggest that Roseburia bacteria have a protective effect on the intestinal barrier of Hu sheep. Accumulating evidence suggests that host-microbiota interactions are associated with IBD disease progression. Video Abstract.

背景:抗病表型与免疫调节功能和免疫耐受密切相关,对畜牧业和人类健康具有深远影响。微生物在疾病的诱发、预防和治疗中发挥着重要作用,但宿主与微生物群在抗病表型中的相互作用机制却鲜为人知。在这项研究中,我们希望揭示和解释微生物在肠道疾病中的作用及其作用机制,从而找出新的潜在治疗方法:首先,我们在两个品种的绵羊中建立了 DSS 结肠炎模型,然后采集样本进行多组学检测,包括元基因组、代谢组和转录组。接着,我们将收集到的 H-CON、H-DSS、E-CON 和 E-DSS 四组绵羊粪便制成粪便菌液,将粪便菌移植到小鼠体内。H-CON粪便移植到小鼠体内命名为HH组,H-DSS粪便移植到小鼠体内命名为HD组,Roseburia细菌处理命名为HDR组。E-CON 粪便移植到 EH 组小鼠体内,E-DSS 粪便移植到 ED 组小鼠体内,Roseburia 细菌处理命名为 EDR 组。建模成功后,取样进行多组学检测。最后,给HD组和ED组的结肠炎小鼠注射罗斯布氏菌,并通过H&E、PAS、免疫组化等实验方法评价治疗效果:结果:绵羊对DSS诱导的结肠炎疾病的抗病力差异主要是由于胡羊肠道中罗斯布氏菌的丰度增加,胆汁酸分泌增加,此外,发病时肠道中潜在的有害细菌也会积累,这使得胡羊在相同的发病条件下抗病力更强。然而,东弗里斯兰羊体内有害微生物的富集激活了TNFα信号通路,加重了肠道损伤,再通过培养罗斯堡菌治疗FMT小鼠发现,罗斯堡菌对结肠炎有很好的治疗效果:我们的研究表明,经 H-DSS 处理的绵羊肠道屏障得到稳定,有益微生物数量增加。我们的数据还表明,Roseburia 菌对胡羊的肠道屏障具有保护作用。越来越多的证据表明,宿主与微生物群之间的相互作用与 IBD 疾病的进展有关。视频摘要。
{"title":"Host-microbe interaction-mediated resistance to DSS-induced inflammatory enteritis in sheep.","authors":"Shuo Yan, Ruilin Du, Wenna Yao, Huimin Zhang, Yue Xue, Teligun, Yongfa Li, Hanggai Bao, Yulong Zhao, Shuo Cao, Guifang Cao, Xihe Li, Siqin Bao, Yongli Song","doi":"10.1186/s40168-024-01932-8","DOIUrl":"10.1186/s40168-024-01932-8","url":null,"abstract":"<p><strong>Background: </strong>The disease resistance phenotype is closely related to immunomodulatory function and immune tolerance and has far-reaching implications in animal husbandry and human health. Microbes play an important role in the initiation, prevention, and treatment of diseases, but the mechanisms of host-microbiota interactions in disease-resistant phenotypes are poorly understood. In this study, we hope to uncover and explain the role of microbes in intestinal diseases and their mechanisms of action to identify new potential treatments.</p><p><strong>Methods: </strong>First, we established the colitis model of DSS in two breeds of sheep and then collected the samples for multi-omics testing including metagenes, metabolome, and transcriptome. Next, we made the fecal bacteria liquid from the four groups of sheep feces collected from H-CON, H-DSS, E-CON, and E-DSS to transplant the fecal bacteria into mice. H-CON feces were transplanted into mice named HH group and H-DSS feces were transplanted into mice named HD group and Roseburia bacteria treatment named HDR groups. E-CON feces were transplanted into mice named EH group and E-DSS feces were transplanted into mice in the ED group and Roseburia bacteria treatment named EDR groups. After successful modeling, samples were taken for multi-omics testing. Finally, colitis mice in HD group and ED group were administrated with Roseburia bacteria, and the treatment effect was evaluated by H&E, PAS, immunohistochemistry, and other experimental methods.</p><p><strong>Results: </strong>The difference in disease resistance of sheep to DSS-induced colitis disease is mainly due to the increase in the abundance of Roseburia bacteria and the increase of bile acid secretion in the intestinal tract of Hu sheep in addition to the accumulation of potentially harmful bacteria in the intestine when the disease occurs, which makes the disease resistance of Hu sheep stronger under the same disease conditions. However, the enrichment of harmful microorganisms in East Friesian sheep activated the TNFα signalling pathway, which aggravated the intestinal injury, and then the treatment of FMT mice by culturing Roseburia bacteria found that Roseburia bacteria had a good curative effect on colitis.</p><p><strong>Conclusion: </strong>Our study showed that in H-DSS-treated sheep, the intestinal barrier is stabilized with an increase in the abundance of beneficial microorganisms. Our data also suggest that Roseburia bacteria have a protective effect on the intestinal barrier of Hu sheep. Accumulating evidence suggests that host-microbiota interactions are associated with IBD disease progression. Video Abstract.</p>","PeriodicalId":18447,"journal":{"name":"Microbiome","volume":"12 1","pages":"208"},"PeriodicalIF":13.8,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11492479/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142469533","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Xylanase enhances gut microbiota-derived butyrate to exert immune-protective effects in a histone deacetylase-dependent manner. 木聚糖酶以组蛋白去乙酰化酶依赖的方式增强肠道微生物群衍生的丁酸盐,从而发挥免疫保护作用。
IF 13.8 1区 生物学 Q1 MICROBIOLOGY Pub Date : 2024-10-21 DOI: 10.1186/s40168-024-01934-6
Tong Wang, Nannan Zhou, Feifei Ding, Zhenzhen Hao, Jorge Galindo-Villegas, Zhenyu Du, Xiaoyun Su, Meiling Zhang

Background: Commensal bacteria in the intestine release enzymes to degrade and ferment dietary components, producing beneficial metabolites. However, the regulatory effects of microbial-derived enzymes on the intestinal microbiota composition and the influence on host health remain elusive. Xylanase can degrade xylan into oligosaccharides, showing wide application in feed industry.

Results: To validate the immune-protective effects of xylanase, Nile tilapia was used as the model and fed with xylanase. The results showed that dietary xylanase improved the survival rate of Nile tilapia when they were challenged with Aeromonas hydrophila. The transcriptome analysis showed significant enrichment of genes related to interleukin-17d (il-17d) signaling pathway in the xylanase treatment group. High-throughput sequencing revealed that dietary xylanase altered the composition of the intestinal microbiota and directly promoted the proliferation of Allobaculum stercoricanis which could produce butyrate in vitro. Consequently, dietary xylanase supplementation increased the butyrate level in fish gut. Further experiment verified that butyrate supplementation enhanced the expression of il-17d and regenerating islet-derived 3 gamma (reg3g) in the gut. The knockdown experiment of il-17d confirmed that il-17d is necessary for butyrate to protect Nile tilapia from pathogen resistance. Flow cytometry analysis indicated that butyrate increased the abundance of IL-17D+ intestinal epithelial cells in fish. Mechanistically, butyrate functions as an HDAC3 inhibitor, enhancing il-17d expression and playing a crucial role in pathogen resistance.

Conclusion: Dietary xylanase significantly altered the composition of intestinal microbiota and increased the content of butyrate in the intestine. Butyrate activated the transcription of il-17d in intestinal epithelial cells by inhibiting histone deacetylase 3, thereby protecting the Nile tilapia from pathogen infection. This study elucidated how microbial-derived xylanase regulates host immune function, providing a theoretical basis for the development and application of functional enzymes. Video Abstract.

背景:肠道中的共生细菌会释放酶来降解和发酵食物成分,产生有益的代谢物。然而,微生物衍生酶对肠道微生物群组成的调控作用以及对宿主健康的影响仍然难以捉摸。木聚糖酶可将木聚糖降解为低聚糖,在饲料行业有广泛应用:结果:为了验证木聚糖酶的免疫保护作用,以尼罗罗非鱼为模型,用木聚糖酶饲喂。结果表明,当尼罗罗非鱼受到嗜水气单胞菌挑战时,日粮中的木聚糖酶可提高其存活率。转录组分析表明,在木聚糖酶处理组中,与白细胞介素-17d(il-17d)信号通路相关的基因显著富集。高通量测序显示,膳食木聚糖酶改变了肠道微生物群的组成,并直接促进了可在体外产生丁酸的Allobaculum stercoricanis的增殖。因此,膳食中添加木聚糖酶可提高鱼类肠道中的丁酸盐含量。进一步的实验证实,补充丁酸盐可提高肠道中 il-17d 和再生胰岛衍生 3 γ(reg3g)的表达。il-17d的敲除实验证实,il-17d是丁酸盐保护尼罗罗非鱼抵抗病原体的必要条件。流式细胞术分析表明,丁酸盐增加了鱼体内IL-17D+肠上皮细胞的丰度。从机理上讲,丁酸盐是一种 HDAC3 抑制剂,可提高 IL-17d 的表达,在抗病原体中发挥重要作用:结论:膳食木聚糖酶显著改变了肠道微生物群的组成,增加了肠道中丁酸盐的含量。丁酸盐通过抑制组蛋白去乙酰化酶 3 激活肠上皮细胞中 il-17d 的转录,从而保护尼罗罗非鱼免受病原体感染。这项研究阐明了微生物衍生的木聚糖酶如何调节宿主免疫功能,为功能酶的开发和应用提供了理论依据。视频摘要。
{"title":"Xylanase enhances gut microbiota-derived butyrate to exert immune-protective effects in a histone deacetylase-dependent manner.","authors":"Tong Wang, Nannan Zhou, Feifei Ding, Zhenzhen Hao, Jorge Galindo-Villegas, Zhenyu Du, Xiaoyun Su, Meiling Zhang","doi":"10.1186/s40168-024-01934-6","DOIUrl":"10.1186/s40168-024-01934-6","url":null,"abstract":"<p><strong>Background: </strong>Commensal bacteria in the intestine release enzymes to degrade and ferment dietary components, producing beneficial metabolites. However, the regulatory effects of microbial-derived enzymes on the intestinal microbiota composition and the influence on host health remain elusive. Xylanase can degrade xylan into oligosaccharides, showing wide application in feed industry.</p><p><strong>Results: </strong>To validate the immune-protective effects of xylanase, Nile tilapia was used as the model and fed with xylanase. The results showed that dietary xylanase improved the survival rate of Nile tilapia when they were challenged with Aeromonas hydrophila. The transcriptome analysis showed significant enrichment of genes related to interleukin-17d (il-17d) signaling pathway in the xylanase treatment group. High-throughput sequencing revealed that dietary xylanase altered the composition of the intestinal microbiota and directly promoted the proliferation of Allobaculum stercoricanis which could produce butyrate in vitro. Consequently, dietary xylanase supplementation increased the butyrate level in fish gut. Further experiment verified that butyrate supplementation enhanced the expression of il-17d and regenerating islet-derived 3 gamma (reg3g) in the gut. The knockdown experiment of il-17d confirmed that il-17d is necessary for butyrate to protect Nile tilapia from pathogen resistance. Flow cytometry analysis indicated that butyrate increased the abundance of IL-17D<sup>+</sup> intestinal epithelial cells in fish. Mechanistically, butyrate functions as an HDAC3 inhibitor, enhancing il-17d expression and playing a crucial role in pathogen resistance.</p><p><strong>Conclusion: </strong>Dietary xylanase significantly altered the composition of intestinal microbiota and increased the content of butyrate in the intestine. Butyrate activated the transcription of il-17d in intestinal epithelial cells by inhibiting histone deacetylase 3, thereby protecting the Nile tilapia from pathogen infection. This study elucidated how microbial-derived xylanase regulates host immune function, providing a theoretical basis for the development and application of functional enzymes. Video Abstract.</p>","PeriodicalId":18447,"journal":{"name":"Microbiome","volume":"12 1","pages":"212"},"PeriodicalIF":13.8,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11492574/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142469623","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Balancing the scales: assessing the impact of irrigation and pathogen burden on potato blackleg disease and soil microbial communities. 平衡天平:评估灌溉和病原体负担对马铃薯黑胫病和土壤微生物群落的影响。
IF 13.8 1区 生物学 Q1 MICROBIOLOGY Pub Date : 2024-10-21 DOI: 10.1186/s40168-024-01918-6
Ciara Keating, Elizabeth Kilbride, Mark A Stalham, Charlotte Nellist, Joel Milner, Sonia Humphris, Ian Toth, Barbara K Mable, Umer Zeeshan Ijaz

Background: Understanding the interaction between environmental conditions, crop yields, and soil health is crucial for sustainable agriculture in a changing climate. Management practices to limit disease are a balancing act. For example, in potato production, dry conditions favour common scab (Streptomyces spp.) and wet conditions favour blackleg disease (Pectobacterium spp.). The exact mechanisms involved and how these link to changes in the soil microbiome are unclear. Our objectives were to test how irrigation management and bacterial pathogen load in potato seed stocks impact: (i) crop yields; (ii) disease development (blackleg or common scab); and (iii) soil microbial community dynamics.

Methods: We used stocks of seed potatoes with varying natural levels of Pectobacterium (Jelly [high load], Jelly [low load] and Estima [Zero - no Pectobacterium]). Stocks were grown under four irrigation regimes that differed in the timing and level of watering. The soil microbial communities were profiled using amplicon sequencing at 50% plant emergence and at harvest. Generalised linear latent variable models and an annotation-free mathematical framework approach (ensemble quotient analysis) were then used to show the interacting microbes with irrigation regime and Pectobacterium pathogen levels.

Results: Irrigation increased blackleg symptoms in the plots planted with stocks with low and high levels of Pectobacterium (22-34%) but not in the zero stock (2-6%). However, withholding irrigation increased common scab symptoms (2-5%) and reduced crop yields. Irrigation did not impact the composition of the soil microbiome, but planting stock with a high Pectobacterium burden resulted in an increased abundance of Planctomycetota, Anaerolinea and Acidobacteria species within the microbiome. Ensemble quotient analysis highlighted the Anaerolinea taxa were highly associated with high levels of Pectobacterium in the seed stock and blackleg symptoms in the field.

Conclusions: We conclude that planting seed stocks with a high Pectobacterium burden alters the abundance of specific microbial species within the soil microbiome and suggest that managing pathogen load in seed stocks could substantially affect soil communities, affecting crop health and productivity. Video Abstract.

背景:了解环境条件、作物产量和土壤健康之间的相互作用,对于在不断变化的气候条件下实现可持续农业至关重要。限制病害的管理措施是一种平衡行为。例如,在马铃薯生产中,干燥的条件有利于普通疮痂病(链霉菌属),而潮湿的条件则有利于黑胫病(果胶杆菌属)。其中涉及的确切机制以及这些机制如何与土壤微生物组的变化联系起来尚不清楚。我们的目标是测试马铃薯种群的灌溉管理和细菌病原体负荷如何影响:(i) 作物产量;(ii) 病害发展(黑腿病或普通疮痂病);以及 (iii) 土壤微生物群落动态:我们使用了果胶细菌天然含量不同的马铃薯种薯(Jelly [高负载]、Jelly [低负载] 和 Estima [零-无果胶细菌])。种薯在四种不同的灌溉制度下生长,灌溉的时间和程度各不相同。在 50%植株出苗时和收获时,使用扩增子测序分析土壤微生物群落。然后使用广义线性潜变量模型和无注释数学框架方法(集合商分析)来显示微生物与灌溉制度和果胶杆菌病原体水平之间的相互作用:结果:灌溉增加了种植果胶杆菌含量低和高的种群(22%-34%)的地块的黑胫病症状,但没有增加零种群(2%-6%)的地块的黑胫病症状。然而,停止灌溉会增加常见的疮痂病症状(2-5%)并降低作物产量。灌溉并不影响土壤微生物组的组成,但种植果胶杆菌含量高的种群会导致微生物组中的扁孢菌属、厌氧菌属和酸性菌属物种数量增加。集合商数分析表明,Anaerolinea类群与种群中果胶细菌含量高和田间黑腿症状高度相关:我们得出的结论是,种植果胶杆菌含量高的种群会改变土壤微生物组中特定微生物物种的丰度,并表明管理种群中的病原体负荷会对土壤群落产生重大影响,从而影响作物的健康和产量。视频摘要。
{"title":"Balancing the scales: assessing the impact of irrigation and pathogen burden on potato blackleg disease and soil microbial communities.","authors":"Ciara Keating, Elizabeth Kilbride, Mark A Stalham, Charlotte Nellist, Joel Milner, Sonia Humphris, Ian Toth, Barbara K Mable, Umer Zeeshan Ijaz","doi":"10.1186/s40168-024-01918-6","DOIUrl":"10.1186/s40168-024-01918-6","url":null,"abstract":"<p><strong>Background: </strong>Understanding the interaction between environmental conditions, crop yields, and soil health is crucial for sustainable agriculture in a changing climate. Management practices to limit disease are a balancing act. For example, in potato production, dry conditions favour common scab (Streptomyces spp.) and wet conditions favour blackleg disease (Pectobacterium spp.). The exact mechanisms involved and how these link to changes in the soil microbiome are unclear. Our objectives were to test how irrigation management and bacterial pathogen load in potato seed stocks impact: (i) crop yields; (ii) disease development (blackleg or common scab); and (iii) soil microbial community dynamics.</p><p><strong>Methods: </strong>We used stocks of seed potatoes with varying natural levels of Pectobacterium (Jelly [high load], Jelly [low load] and Estima [Zero - no Pectobacterium]). Stocks were grown under four irrigation regimes that differed in the timing and level of watering. The soil microbial communities were profiled using amplicon sequencing at 50% plant emergence and at harvest. Generalised linear latent variable models and an annotation-free mathematical framework approach (ensemble quotient analysis) were then used to show the interacting microbes with irrigation regime and Pectobacterium pathogen levels.</p><p><strong>Results: </strong>Irrigation increased blackleg symptoms in the plots planted with stocks with low and high levels of Pectobacterium (22-34%) but not in the zero stock (2-6%). However, withholding irrigation increased common scab symptoms (2-5%) and reduced crop yields. Irrigation did not impact the composition of the soil microbiome, but planting stock with a high Pectobacterium burden resulted in an increased abundance of Planctomycetota, Anaerolinea and Acidobacteria species within the microbiome. Ensemble quotient analysis highlighted the Anaerolinea taxa were highly associated with high levels of Pectobacterium in the seed stock and blackleg symptoms in the field.</p><p><strong>Conclusions: </strong>We conclude that planting seed stocks with a high Pectobacterium burden alters the abundance of specific microbial species within the soil microbiome and suggest that managing pathogen load in seed stocks could substantially affect soil communities, affecting crop health and productivity. Video Abstract.</p>","PeriodicalId":18447,"journal":{"name":"Microbiome","volume":"12 1","pages":"210"},"PeriodicalIF":13.8,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11492761/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142469530","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Next-generation IgA-SEQ allows for high-throughput, anaerobic, and metagenomic assessment of IgA-coated bacteria. 下一代 IgA-SEQ 可对 IgA 包被细菌进行高通量、厌氧和元基因组评估。
IF 13.8 1区 生物学 Q1 MICROBIOLOGY Pub Date : 2024-10-21 DOI: 10.1186/s40168-024-01923-9
Merel van Gogh, Jonas M Louwers, Anna Celli, Sanne Gräve, Marco C Viveen, Sofie Bosch, Nanne K H de Boer, Rik J Verheijden, Karijn P M Suijkerbuijk, Eelco C Brand, Janetta Top, Bas Oldenburg, Marcel R de Zoete

Background: The intestinal microbiota plays a significant role in maintaining systemic and intestinal homeostasis, but can also influence diseases such as inflammatory bowel disease (IBD) and cancer. Certain bacterial species within the intestinal tract can chronically activate the immune system, leading to low-grade intestinal inflammation. As a result, plasma cells produce high levels of secretory antigen-specific immunoglobulin A (IgA), which coats the immunostimulatory bacteria. This IgA immune response against intestinal bacteria may be associated with the maintenance of homeostasis and health, as well as disease. Unraveling this dichotomy and identifying the immunostimulatory bacteria is crucial for understanding the relationship between the intestinal microbiota and the immune system, and their role in health and disease. IgA-SEQ technology has successfully identified immunostimulatory, IgA-coated bacteria from fecal material. However, the original technology is time-consuming and has limited downstream applications. In this study, we aimed to develop a next-generation, high-throughput, magnet-based sorting approach (ng-IgA-SEQ) to overcome the limitations of the original IgA-SEQ protocol.

Results: We show, in various settings of complexity ranging from simple bacterial mixtures to human fecal samples, that our magnetic 96-well plate-based ng-IgA-SEQ protocol is highly efficient at sorting and identifying IgA-coated bacteria in a high-throughput and time efficient manner. Furthermore, we performed a comparative analysis between different IgA-SEQ protocols, highlighting that the original FACS-based IgA-SEQ approach overlooks certain nuances of IgA-coated bacteria, due to the low yield of sorted bacteria. Additionally, magnetic-based ng-IgA-SEQ allows for novel downstream applications. Firstly, as a proof-of-concept, we performed metagenomic shotgun sequencing on 10 human fecal samples to identify IgA-coated bacterial strains and associated pathways and CAZymes. Secondly, we successfully isolated and cultured IgA-coated bacteria by performing the isolation protocol under anaerobic conditions.

Conclusions: Our magnetic 96-well plate-based high-throughput next-generation IgA-SEQ technology efficiently identifies a great number of IgA-coated bacteria from fecal samples. This paves the way for analyzing large cohorts as well as novel downstream applications, including shotgun metagenomic sequencing, culturomics, and various functional assays. These downstream applications are essential to unravel the role of immunostimulatory bacteria in health and disease. Video Abstract.

背景:肠道微生物群在维持全身和肠道平衡方面发挥着重要作用,但也会影响炎症性肠病(IBD)和癌症等疾病。肠道内的某些细菌可长期激活免疫系统,导致低度肠道炎症。因此,浆细胞会产生大量分泌性抗原特异性免疫球蛋白 A(IgA),包裹住免疫刺激细菌。这种针对肠道细菌的 IgA 免疫反应可能与维持平衡和健康以及疾病有关。要了解肠道微生物群与免疫系统之间的关系以及它们在健康和疾病中的作用,揭示这种二分法并确定免疫刺激细菌至关重要。IgA-SEQ 技术已成功地从粪便材料中鉴定出了具有免疫刺激作用的 IgA 包被细菌。然而,原始技术耗时长,下游应用有限。在本研究中,我们旨在开发一种下一代、高通量、基于磁铁的分选方法(ng-IgA-SEQ),以克服原始 IgA-SEQ 方案的局限性:结果:我们在从简单的细菌混合物到人类粪便样本的各种复杂环境中表明,我们基于磁性 96 孔板的 ng-IgA-SEQ 方案能以高通量和省时的方式高效分拣和鉴定 IgA 包被细菌。此外,我们还对不同的 IgA-SEQ 方案进行了比较分析,结果表明,最初基于 FACS 的 IgA-SEQ 方法由于分选细菌的产量较低而忽略了 IgA 包被细菌的某些细微差别。此外,基于磁性的 ng-IgA-SEQ 还可用于新型下游应用。首先,作为概念验证,我们对 10 份人类粪便样本进行了元基因组枪式测序,以确定 IgA 包被细菌菌株及相关途径和 CAZymes。其次,我们通过在厌氧条件下执行分离方案,成功分离并培养了IgA包被菌:结论:我们基于磁性 96 孔板的高通量新一代 IgA-SEQ 技术能从粪便样本中有效鉴定出大量 IgA 包被菌。这为分析大型群体以及新型下游应用(包括散弹枪元基因组测序、培养组学和各种功能测定)铺平了道路。这些下游应用对于揭示免疫刺激细菌在健康和疾病中的作用至关重要。视频摘要。
{"title":"Next-generation IgA-SEQ allows for high-throughput, anaerobic, and metagenomic assessment of IgA-coated bacteria.","authors":"Merel van Gogh, Jonas M Louwers, Anna Celli, Sanne Gräve, Marco C Viveen, Sofie Bosch, Nanne K H de Boer, Rik J Verheijden, Karijn P M Suijkerbuijk, Eelco C Brand, Janetta Top, Bas Oldenburg, Marcel R de Zoete","doi":"10.1186/s40168-024-01923-9","DOIUrl":"10.1186/s40168-024-01923-9","url":null,"abstract":"<p><strong>Background: </strong>The intestinal microbiota plays a significant role in maintaining systemic and intestinal homeostasis, but can also influence diseases such as inflammatory bowel disease (IBD) and cancer. Certain bacterial species within the intestinal tract can chronically activate the immune system, leading to low-grade intestinal inflammation. As a result, plasma cells produce high levels of secretory antigen-specific immunoglobulin A (IgA), which coats the immunostimulatory bacteria. This IgA immune response against intestinal bacteria may be associated with the maintenance of homeostasis and health, as well as disease. Unraveling this dichotomy and identifying the immunostimulatory bacteria is crucial for understanding the relationship between the intestinal microbiota and the immune system, and their role in health and disease. IgA-SEQ technology has successfully identified immunostimulatory, IgA-coated bacteria from fecal material. However, the original technology is time-consuming and has limited downstream applications. In this study, we aimed to develop a next-generation, high-throughput, magnet-based sorting approach (ng-IgA-SEQ) to overcome the limitations of the original IgA-SEQ protocol.</p><p><strong>Results: </strong>We show, in various settings of complexity ranging from simple bacterial mixtures to human fecal samples, that our magnetic 96-well plate-based ng-IgA-SEQ protocol is highly efficient at sorting and identifying IgA-coated bacteria in a high-throughput and time efficient manner. Furthermore, we performed a comparative analysis between different IgA-SEQ protocols, highlighting that the original FACS-based IgA-SEQ approach overlooks certain nuances of IgA-coated bacteria, due to the low yield of sorted bacteria. Additionally, magnetic-based ng-IgA-SEQ allows for novel downstream applications. Firstly, as a proof-of-concept, we performed metagenomic shotgun sequencing on 10 human fecal samples to identify IgA-coated bacterial strains and associated pathways and CAZymes. Secondly, we successfully isolated and cultured IgA-coated bacteria by performing the isolation protocol under anaerobic conditions.</p><p><strong>Conclusions: </strong>Our magnetic 96-well plate-based high-throughput next-generation IgA-SEQ technology efficiently identifies a great number of IgA-coated bacteria from fecal samples. This paves the way for analyzing large cohorts as well as novel downstream applications, including shotgun metagenomic sequencing, culturomics, and various functional assays. These downstream applications are essential to unravel the role of immunostimulatory bacteria in health and disease. Video Abstract.</p>","PeriodicalId":18447,"journal":{"name":"Microbiome","volume":"12 1","pages":"211"},"PeriodicalIF":13.8,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11492651/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142469617","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Seasonal variations of microbial communities and viral diversity in fishery-enhanced marine ranching sediments: insights into metabolic potentials and ecological interactions. 渔业强化海洋牧场沉积物中微生物群落和病毒多样性的季节性变化:代谢潜力和生态相互作用的启示。
IF 13.8 1区 生物学 Q1 MICROBIOLOGY Pub Date : 2024-10-21 DOI: 10.1186/s40168-024-01922-w
Cheng-Zhuang Chen, Ping Li, Ling Liu, Yong-Jun Sun, Wen-Ming Ju, Zhi-Hua Li

Background: The ecosystems of marine ranching have enhanced marine biodiversity and ecological balance and have promoted the natural recovery and enhancement of fishery resources. The microbial communities of these ecosystems, including bacteria, fungi, protists, and viruses, are the drivers of biogeochemical cycles. Although seasonal changes in microbial communities are critical for ecosystem functioning, the current understanding of microbial-driven metabolic properties and their viral communities in marine sediments remains limited. Here, we employed amplicon (16S and 18S) and metagenomic approaches aiming to reveal the seasonal patterns of microbial communities, bacterial-eukaryotic interactions, whole metabolic potential, and their coupling mechanisms with carbon (C), nitrogen (N), and sulfur (S) cycling in marine ranching sediments. Additionally, the characterization and diversity of viral communities in different seasons were explored in marine ranching sediments.

Results: The current study demonstrated that seasonal variations dramatically affected the diversity of microbial communities in marine ranching sediments and the bacterial-eukaryotic interkingdom co-occurrence networks. Metabolic reconstruction of the 113 medium to high-quality metagenome-assembled genomes (MAGs) was conducted, and a total of 8 MAGs involved in key metabolic genes and pathways (methane oxidation - denitrification - S oxidation), suggesting a possible coupling effect between the C, N, and S cycles. In total, 338 viral operational taxonomic units (vOTUs) were identified, all possessing specific ecological characteristics in different seasons and primarily belonging to Caudoviricetes, revealing their widespread distribution and variety in marine sediment ecosystems. In addition, predicted virus-host linkages showed that high host specificity was observed, with few viruses associated with specific hosts.

Conclusions: This finding deepens our knowledge of element cycling and viral diversity in fisheries enrichment ecosystems, providing insights into microbial-virus interactions in marine sediments and their effects on biogeochemical cycling. These findings have potential applications in marine ranching management and ecological conservation. Video Abstract.

背景:海洋牧场生态系统提高了海洋生物多样性和生态平衡,促进了渔业资源的自然恢复和增殖。这些生态系统中的微生物群落,包括细菌、真菌、原生生物和病毒,是生物地球化学循环的驱动力。虽然微生物群落的季节性变化对生态系统的功能至关重要,但目前对海洋沉积物中微生物驱动的代谢特性及其病毒群落的了解仍然有限。在此,我们采用了扩增子(16S 和 18S)和元基因组方法,旨在揭示海洋牧场沉积物中微生物群落的季节性模式、细菌与真核生物的相互作用、整体代谢潜力及其与碳(C)、氮(N)和硫(S)循环的耦合机制。此外,还探讨了不同季节海洋牧场沉积物中病毒群落的特征和多样性:目前的研究表明,季节变化极大地影响了海洋牧场沉积物中微生物群落的多样性以及细菌-真核生物界间共生网络。对113个中高质量元基因组(MAGs)进行了代谢重建,共有8个MAGs涉及关键代谢基因和途径(甲烷氧化-反硝化-S氧化),表明C、N、S循环之间可能存在耦合效应。总共确定了 338 个病毒操作分类单元(vOTUs),它们在不同季节都具有特定的生态特征,主要属于尾状病毒科(Caudoviricetes),揭示了它们在海洋沉积物生态系统中的广泛分布和多样性。此外,预测的病毒-宿主联系表明,宿主具有高度特异性,很少有病毒与特定宿主相关联:结论:这一发现加深了我们对渔业增殖生态系统中元素循环和病毒多样性的认识,为了解海洋沉积物中微生物与病毒的相互作用及其对生物地球化学循环的影响提供了见解。这些发现有可能应用于海洋牧场管理和生态保护。视频摘要。
{"title":"Seasonal variations of microbial communities and viral diversity in fishery-enhanced marine ranching sediments: insights into metabolic potentials and ecological interactions.","authors":"Cheng-Zhuang Chen, Ping Li, Ling Liu, Yong-Jun Sun, Wen-Ming Ju, Zhi-Hua Li","doi":"10.1186/s40168-024-01922-w","DOIUrl":"10.1186/s40168-024-01922-w","url":null,"abstract":"<p><strong>Background: </strong>The ecosystems of marine ranching have enhanced marine biodiversity and ecological balance and have promoted the natural recovery and enhancement of fishery resources. The microbial communities of these ecosystems, including bacteria, fungi, protists, and viruses, are the drivers of biogeochemical cycles. Although seasonal changes in microbial communities are critical for ecosystem functioning, the current understanding of microbial-driven metabolic properties and their viral communities in marine sediments remains limited. Here, we employed amplicon (16S and 18S) and metagenomic approaches aiming to reveal the seasonal patterns of microbial communities, bacterial-eukaryotic interactions, whole metabolic potential, and their coupling mechanisms with carbon (C), nitrogen (N), and sulfur (S) cycling in marine ranching sediments. Additionally, the characterization and diversity of viral communities in different seasons were explored in marine ranching sediments.</p><p><strong>Results: </strong>The current study demonstrated that seasonal variations dramatically affected the diversity of microbial communities in marine ranching sediments and the bacterial-eukaryotic interkingdom co-occurrence networks. Metabolic reconstruction of the 113 medium to high-quality metagenome-assembled genomes (MAGs) was conducted, and a total of 8 MAGs involved in key metabolic genes and pathways (methane oxidation - denitrification - S oxidation), suggesting a possible coupling effect between the C, N, and S cycles. In total, 338 viral operational taxonomic units (vOTUs) were identified, all possessing specific ecological characteristics in different seasons and primarily belonging to Caudoviricetes, revealing their widespread distribution and variety in marine sediment ecosystems. In addition, predicted virus-host linkages showed that high host specificity was observed, with few viruses associated with specific hosts.</p><p><strong>Conclusions: </strong>This finding deepens our knowledge of element cycling and viral diversity in fisheries enrichment ecosystems, providing insights into microbial-virus interactions in marine sediments and their effects on biogeochemical cycling. These findings have potential applications in marine ranching management and ecological conservation. Video Abstract.</p>","PeriodicalId":18447,"journal":{"name":"Microbiome","volume":"12 1","pages":"209"},"PeriodicalIF":13.8,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11492486/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142469618","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Upper respiratory microbial communities of healthy populations are shaped by niche and age. 健康人群的上呼吸道微生物群落由生态位和年龄决定。
IF 13.8 1区 生物学 Q1 MICROBIOLOGY Pub Date : 2024-10-18 DOI: 10.1186/s40168-024-01940-8
Susan Zelasko, Mary Hannah Swaney, Shelby Sandstrom, Timothy C Davenport, Christine M Seroogy, James E Gern, Lindsay R Kalan, Cameron R Currie

Background: Alterations in upper respiratory microbiomes have been implicated in shaping host health trajectories, including by limiting mucosal pathogen colonization. However, limited comparative studies of respiratory microbiome development and functioning across age groups have been performed. Herein, we perform shotgun metagenomic sequencing paired with pathogen inhibition assays to elucidate differences in nasal and oral microbiome composition and intermicrobial interactions across healthy 24-month-old infant (n = 229) and adult (n = 100) populations.

Results: We find that beta diversity of nasal and oral microbiomes varies with age, with nasal microbiomes showing greater population-level variation compared to oral microbiomes. Infant microbiome alpha diversity was significantly lower across nasal samples and higher in oral samples, relative to adults. Accordingly, we demonstrate significant differences in genus- and species-level composition of microbiomes between sites and age groups. Antimicrobial resistome patterns likewise varied across body sites, with oral microbiomes showing higher resistance gene abundance compared to nasal microbiomes. Biosynthetic gene clusters encoding specialized metabolite production were found in higher abundance across infant oral microbiomes, relative to adults. Investigation of pathogen inhibition revealed greater inhibition of gram-negative and gram-positive bacteria by oral commensals, while nasal isolates had higher antifungal activity.

Conclusions: In summary, we identify significant differences in the microbial communities inhabiting nasal and oral cavities of healthy infants relative to adults. These findings inform our understanding of the interactions impacting respiratory microbiome composition and functions related to colonization resistance, with important implications for host health across the lifespan. Video Abstract.

背景:上呼吸道微生物组的变化与宿主健康轨迹的形成有关,包括通过限制粘膜病原体定植。然而,关于不同年龄组呼吸道微生物组发育和功能的比较研究还很有限。在此,我们进行了霰弹枪元基因组测序,并配以病原体抑制试验,以阐明健康的 24 个月大婴儿(n = 229)和成人(n = 100)人群的鼻腔和口腔微生物组组成及微生物间相互作用的差异:结果:我们发现鼻腔和口腔微生物组的β多样性随年龄而变化,与口腔微生物组相比,鼻腔微生物组显示出更大的群体水平变化。与成人相比,鼻腔样本中婴儿微生物组的α多样性明显较低,而口腔样本中的α多样性较高。因此,我们证明了不同部位和年龄组的微生物组在属种和物种组成上存在显著差异。抗微生物耐药性基因组模式在不同身体部位同样存在差异,与鼻腔微生物组相比,口腔微生物组显示出更高的耐药性基因丰度。与成人相比,婴儿口腔微生物组中编码特殊代谢物生产的生物合成基因簇的丰度更高。对病原体抑制作用的调查显示,口腔共生菌对革兰氏阴性菌和革兰氏阳性菌的抑制作用更强,而鼻腔分离菌的抗真菌活性更高:总之,我们发现健康婴儿的鼻腔和口腔中栖息的微生物群落与成人有显著差异。这些发现有助于我们了解影响呼吸道微生物群组成的相互作用以及与抗定植有关的功能,对宿主一生的健康具有重要意义。视频摘要。
{"title":"Upper respiratory microbial communities of healthy populations are shaped by niche and age.","authors":"Susan Zelasko, Mary Hannah Swaney, Shelby Sandstrom, Timothy C Davenport, Christine M Seroogy, James E Gern, Lindsay R Kalan, Cameron R Currie","doi":"10.1186/s40168-024-01940-8","DOIUrl":"10.1186/s40168-024-01940-8","url":null,"abstract":"<p><strong>Background: </strong>Alterations in upper respiratory microbiomes have been implicated in shaping host health trajectories, including by limiting mucosal pathogen colonization. However, limited comparative studies of respiratory microbiome development and functioning across age groups have been performed. Herein, we perform shotgun metagenomic sequencing paired with pathogen inhibition assays to elucidate differences in nasal and oral microbiome composition and intermicrobial interactions across healthy 24-month-old infant (n = 229) and adult (n = 100) populations.</p><p><strong>Results: </strong>We find that beta diversity of nasal and oral microbiomes varies with age, with nasal microbiomes showing greater population-level variation compared to oral microbiomes. Infant microbiome alpha diversity was significantly lower across nasal samples and higher in oral samples, relative to adults. Accordingly, we demonstrate significant differences in genus- and species-level composition of microbiomes between sites and age groups. Antimicrobial resistome patterns likewise varied across body sites, with oral microbiomes showing higher resistance gene abundance compared to nasal microbiomes. Biosynthetic gene clusters encoding specialized metabolite production were found in higher abundance across infant oral microbiomes, relative to adults. Investigation of pathogen inhibition revealed greater inhibition of gram-negative and gram-positive bacteria by oral commensals, while nasal isolates had higher antifungal activity.</p><p><strong>Conclusions: </strong>In summary, we identify significant differences in the microbial communities inhabiting nasal and oral cavities of healthy infants relative to adults. These findings inform our understanding of the interactions impacting respiratory microbiome composition and functions related to colonization resistance, with important implications for host health across the lifespan. Video Abstract.</p>","PeriodicalId":18447,"journal":{"name":"Microbiome","volume":"12 1","pages":"206"},"PeriodicalIF":13.8,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11490146/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142469620","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Widespread production of plant growth-promoting hormones among marine bacteria and their impacts on the growth of a marine diatom. 海洋细菌广泛产生植物生长促进激素及其对海洋硅藻生长的影响。
IF 13.8 1区 生物学 Q1 MICROBIOLOGY Pub Date : 2024-10-17 DOI: 10.1186/s40168-024-01899-6
Abeeha Khalil, Anna R Bramucci, Amaranta Focardi, Nine Le Reun, Nathan L R Willams, Unnikrishnan Kuzhiumparambil, Jean-Baptiste Raina, Justin R Seymour

Background: Reciprocal exchanges of metabolites between phytoplankton and bacteria influence the fitness of these microorganisms which ultimately shapes the productivity of marine ecosystems. Recent evidence suggests that plant growth-promoting hormones may be key metabolites within mutualistic phytoplankton-bacteria partnerships, but very little is known about the diversity of plant growth-promoting hormones produced by marine bacteria and their specific effects on phytoplankton growth. Here, we aimed to investigate the capacity of marine bacteria to produce 7 plant growth-promoting hormones and the effects of these hormones on Actinocyclus sp. growth.

Results: We examined the plant growth-promoting hormone synthesis capabilities of 14 bacterial strains that enhance the growth of the common diatom Actinocyclus. Plant growth-promoting hormone biosynthesis was ubiquitous among the bacteria tested. Indeed all 14 strains displayed the genomic potential to synthesise multiple hormones, and mass-spectrometry confirmed that each strain produced at least 6 out of the 7 tested plant growth-promoting hormones. Some of the plant growth-promoting hormones identified here, such as brassinolide and trans-zeatin, have never been reported in marine microorganisms. Importantly, all strains produced the hormone indole-3 acetic acid (IAA) in high concentrations and released it into their surroundings. Furthermore, indole-3 acetic acid extracellular concentrations were positively correlated with the ability of each strain to promote Actinocyclus growth. When inoculated with axenic Actinocyclus cultures, only indole-3 acetic acid and gibberellic acid enhanced the growth of the diatom, with cultures exposed to indole-3 acetic acid exhibiting a two-fold increase in cell numbers.

Conclusion: Our results reveal that marine bacteria produce a much broader range of plant growth-promoting hormones than previously suspected and that some of these compounds enhance the growth of a marine diatom. These findings suggest plant growth-promoting hormones play a large role in microbial communication and broaden our knowledge of their fuctions in the marine environment. Video Abstract.

背景:浮游植物和细菌之间代谢产物的相互交换影响着这些微生物的适应性,最终决定了海洋生态系统的生产力。最近的证据表明,促进植物生长的激素可能是浮游植物-细菌互助合作关系中的关键代谢物,但人们对海洋细菌产生的促进植物生长的激素的多样性及其对浮游植物生长的具体影响知之甚少。在此,我们旨在研究海洋细菌产生 7 种植物生长促进激素的能力以及这些激素对放线菌生长的影响:结果:我们研究了 14 种能促进常见硅藻 Actinocyclus 生长的细菌菌株的植物生长促进激素合成能力。在所测试的细菌中,植物生长促进激素的生物合成无处不在。事实上,所有 14 株菌株都具有合成多种激素的基因组潜能,质谱分析证实,在 7 种测试的植物生长促进激素中,每种菌株至少能产生 6 种。其中一些植物生长促进激素,如黄铜内酯和反式玉米素,从未在海洋微生物中报道过。重要的是,所有菌株都能产生高浓度的吲哚-3-乙酸(IAA),并将其释放到周围环境中。此外,吲哚-3 乙酸的胞外浓度与每种菌株促进放线菌生长的能力呈正相关。当接种到腋生放线菌培养物中时,只有吲哚-3-乙酸和赤霉素能促进硅藻的生长,接触吲哚-3-乙酸的培养物细胞数量增加了两倍:我们的研究结果表明,海洋细菌产生的植物生长促进激素的种类比以前怀疑的要多得多,其中一些化合物能促进海洋硅藻的生长。这些发现表明,植物生长促进激素在微生物交流中发挥着重要作用,并拓宽了我们对其在海洋环境中作用的认识。视频摘要。
{"title":"Widespread production of plant growth-promoting hormones among marine bacteria and their impacts on the growth of a marine diatom.","authors":"Abeeha Khalil, Anna R Bramucci, Amaranta Focardi, Nine Le Reun, Nathan L R Willams, Unnikrishnan Kuzhiumparambil, Jean-Baptiste Raina, Justin R Seymour","doi":"10.1186/s40168-024-01899-6","DOIUrl":"https://doi.org/10.1186/s40168-024-01899-6","url":null,"abstract":"<p><strong>Background: </strong>Reciprocal exchanges of metabolites between phytoplankton and bacteria influence the fitness of these microorganisms which ultimately shapes the productivity of marine ecosystems. Recent evidence suggests that plant growth-promoting hormones may be key metabolites within mutualistic phytoplankton-bacteria partnerships, but very little is known about the diversity of plant growth-promoting hormones produced by marine bacteria and their specific effects on phytoplankton growth. Here, we aimed to investigate the capacity of marine bacteria to produce 7 plant growth-promoting hormones and the effects of these hormones on Actinocyclus sp. growth.</p><p><strong>Results: </strong>We examined the plant growth-promoting hormone synthesis capabilities of 14 bacterial strains that enhance the growth of the common diatom Actinocyclus. Plant growth-promoting hormone biosynthesis was ubiquitous among the bacteria tested. Indeed all 14 strains displayed the genomic potential to synthesise multiple hormones, and mass-spectrometry confirmed that each strain produced at least 6 out of the 7 tested plant growth-promoting hormones. Some of the plant growth-promoting hormones identified here, such as brassinolide and trans-zeatin, have never been reported in marine microorganisms. Importantly, all strains produced the hormone indole-3 acetic acid (IAA) in high concentrations and released it into their surroundings. Furthermore, indole-3 acetic acid extracellular concentrations were positively correlated with the ability of each strain to promote Actinocyclus growth. When inoculated with axenic Actinocyclus cultures, only indole-3 acetic acid and gibberellic acid enhanced the growth of the diatom, with cultures exposed to indole-3 acetic acid exhibiting a two-fold increase in cell numbers.</p><p><strong>Conclusion: </strong>Our results reveal that marine bacteria produce a much broader range of plant growth-promoting hormones than previously suspected and that some of these compounds enhance the growth of a marine diatom. These findings suggest plant growth-promoting hormones play a large role in microbial communication and broaden our knowledge of their fuctions in the marine environment. Video Abstract.</p>","PeriodicalId":18447,"journal":{"name":"Microbiome","volume":"12 1","pages":"205"},"PeriodicalIF":13.8,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11487934/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142469622","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Microbiome
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1