Pub Date : 2026-01-21DOI: 10.1186/s40168-025-02288-3
Elena Fernández-Trapote, José F Cobo-Díaz, Márcia Oliveira, Alba Puente, Daniel Berdejo, Héctor Puente, Rebeca Cordero-García, Mercedes López, Miguel Prieto, Héctor Argüello, Avelino Alvarez-Ordóñez
Background: Slaughterhouses and meat cutting plants represent potential hotspots for the spread and transfer of spoilage and pathogenic, including antimicrobial resistant, bacteria to meat and meat products. Here, we characterise the progression of the microbiome and resistome of two pork cuts (loin and sirloin) at different stages of processing, from the slaughter line to the end of shelf-life. To this end, we analysed samples from facility surfaces, carcasses, and meat cuts using whole metagenome sequencing.
Results: The taxonomic and antimicrobial resistance gene (ARG) profiles of carcasses and meat cuts were significantly influenced by the point of sampling and the processing room. The facility surfaces were found to be the main source of some abundant genera, such as Anoxybacillus, Acinetobacter, Pseudomonas, and Brochothrix, in carcasses and meat cuts. A total of 1,291 metagenome-assembled genomes were reconstructed, corresponding to the most prevalent species identified in the taxonomic analysis at the read level. A reduction in bacterial and ARGs richness and diversity was observed for carcasses and meat cuts along the production chain, which suggests that processing procedures are effective in reducing bacterial and ARGs loads. Nonetheless, an increase in the ARGs load was observed at two sampling points: the carcass after evisceration and the sirloin at the end of its shelf-life (in this case linked to the increase of a single gene, tet(L)). The ARGs most frequently detected were those associated with resistance to tetracyclines, aminoglycosides, and lincosamides. Acinetobacter (in processing environments and carcass/meat samples) and Staphylococcus (in carcasses and meat) were identified as the main genera associated with the ARGs found.
Conclusions: Overall, our results provide the most detailed metagenomics-based perspective on the microbial successions of pig carcasses and fresh meat cuts during slaughtering, processing, and commercialisation. The observations made suggest that selection pressures imposed by processing steps and contact with facility surfaces contribute to shaping the microbiome and resistome of the two pork products throughout their production line and shelf-life. Video Abstract.
{"title":"Microbiome and resistome successions in pig carcasses and fresh pork meat throughout slaughtering, processing and shelf-life.","authors":"Elena Fernández-Trapote, José F Cobo-Díaz, Márcia Oliveira, Alba Puente, Daniel Berdejo, Héctor Puente, Rebeca Cordero-García, Mercedes López, Miguel Prieto, Héctor Argüello, Avelino Alvarez-Ordóñez","doi":"10.1186/s40168-025-02288-3","DOIUrl":"10.1186/s40168-025-02288-3","url":null,"abstract":"<p><strong>Background: </strong>Slaughterhouses and meat cutting plants represent potential hotspots for the spread and transfer of spoilage and pathogenic, including antimicrobial resistant, bacteria to meat and meat products. Here, we characterise the progression of the microbiome and resistome of two pork cuts (loin and sirloin) at different stages of processing, from the slaughter line to the end of shelf-life. To this end, we analysed samples from facility surfaces, carcasses, and meat cuts using whole metagenome sequencing.</p><p><strong>Results: </strong>The taxonomic and antimicrobial resistance gene (ARG) profiles of carcasses and meat cuts were significantly influenced by the point of sampling and the processing room. The facility surfaces were found to be the main source of some abundant genera, such as Anoxybacillus, Acinetobacter, Pseudomonas, and Brochothrix, in carcasses and meat cuts. A total of 1,291 metagenome-assembled genomes were reconstructed, corresponding to the most prevalent species identified in the taxonomic analysis at the read level. A reduction in bacterial and ARGs richness and diversity was observed for carcasses and meat cuts along the production chain, which suggests that processing procedures are effective in reducing bacterial and ARGs loads. Nonetheless, an increase in the ARGs load was observed at two sampling points: the carcass after evisceration and the sirloin at the end of its shelf-life (in this case linked to the increase of a single gene, tet(L)). The ARGs most frequently detected were those associated with resistance to tetracyclines, aminoglycosides, and lincosamides. Acinetobacter (in processing environments and carcass/meat samples) and Staphylococcus (in carcasses and meat) were identified as the main genera associated with the ARGs found.</p><p><strong>Conclusions: </strong>Overall, our results provide the most detailed metagenomics-based perspective on the microbial successions of pig carcasses and fresh meat cuts during slaughtering, processing, and commercialisation. The observations made suggest that selection pressures imposed by processing steps and contact with facility surfaces contribute to shaping the microbiome and resistome of the two pork products throughout their production line and shelf-life. Video Abstract.</p>","PeriodicalId":18447,"journal":{"name":"Microbiome","volume":" ","pages":"67"},"PeriodicalIF":12.7,"publicationDate":"2026-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12908266/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146018968","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2026-01-21DOI: 10.1186/s40168-025-02313-5
Lena-Sophie Paul, Michael Weber, Stefanie Wagner, Thilo M Fuchs
Background: Phytate is the primary phosphorus storage molecule of plants and plays a major role in animal nutrition. To enhance phosphate availability and absorption in livestock, and to reduce eutrophication by liquid manure, bacterial phytases are often added to animal feed. The dephosphorylated form of phytate, the polyol myo-inositol (myo-Ins) with multiple functions in eukaryotes, is metabolized by approximately 30% of all bacterial species.
Results: Here, we employed a culturomics approach to identify possible metabolic interactions between phytase-producing and myo-Ins degrading bacteria in intestinal samples from pigs. Selective cultivation revealed an unexpectedly high abundance of myo-Ins degrading bacteria, suggesting substantial phytate dephosphorylation in the pig gut. Phytase activity assays performed on gut isolates showed a high degree of variability, suggesting the presence of a diverse set of phytases yet to be characterized. Furthermore, using supernatants of phytase-positive gut strains cultivated in the presence of phytate, we observed cross-feeding of myo-Ins from phytase producers to phytase-negative strains, including the pathogen Salmonella enterica serovar Typhimurium.
Conclusions: The data demonstrate that a wide range of commensal bacteria can potentially benefit from phytase activity by utilizing myo-Ins, released through phytate hydrolysis, as a growth substrate. Video Abstract.
{"title":"A culturomics approach reveals cross-feeding capacity of intestinal pig bacteria upon release of inositol from phytate.","authors":"Lena-Sophie Paul, Michael Weber, Stefanie Wagner, Thilo M Fuchs","doi":"10.1186/s40168-025-02313-5","DOIUrl":"10.1186/s40168-025-02313-5","url":null,"abstract":"<p><strong>Background: </strong>Phytate is the primary phosphorus storage molecule of plants and plays a major role in animal nutrition. To enhance phosphate availability and absorption in livestock, and to reduce eutrophication by liquid manure, bacterial phytases are often added to animal feed. The dephosphorylated form of phytate, the polyol myo-inositol (myo-Ins) with multiple functions in eukaryotes, is metabolized by approximately 30% of all bacterial species.</p><p><strong>Results: </strong>Here, we employed a culturomics approach to identify possible metabolic interactions between phytase-producing and myo-Ins degrading bacteria in intestinal samples from pigs. Selective cultivation revealed an unexpectedly high abundance of myo-Ins degrading bacteria, suggesting substantial phytate dephosphorylation in the pig gut. Phytase activity assays performed on gut isolates showed a high degree of variability, suggesting the presence of a diverse set of phytases yet to be characterized. Furthermore, using supernatants of phytase-positive gut strains cultivated in the presence of phytate, we observed cross-feeding of myo-Ins from phytase producers to phytase-negative strains, including the pathogen Salmonella enterica serovar Typhimurium.</p><p><strong>Conclusions: </strong>The data demonstrate that a wide range of commensal bacteria can potentially benefit from phytase activity by utilizing myo-Ins, released through phytate hydrolysis, as a growth substrate. Video Abstract.</p>","PeriodicalId":18447,"journal":{"name":"Microbiome","volume":" ","pages":"44"},"PeriodicalIF":12.7,"publicationDate":"2026-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146018950","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2026-01-21DOI: 10.1186/s40168-025-02284-7
Haeun Ko, Chan Johng Kim, Seungyeon Choi, Jaegyun Noh, Seung Won Kim, Juhun Lee, Seohyun Byun, Haena Lee, John Chulhoon Park, Hye Eun Park, Amit Sharma, Minhyuk Park, Junghwan Park, Choong-Gu Lee, Kwang Hyun Cha, Sin-Hyeog Im
Background: The gut microbiota plays an essential role in mucosal immunity, with secretory immunoglobulin A (IgA) acting as a key effector in neutralizing pathogens and maintaining host-microbiota homeostasis. IgA production occurs via T cell-dependent (TD) and -independent pathways, with T follicular helper (Tfh) cells driving high-affinity, antigen-specific IgA responses. However, the specific microbial taxa and metabolites that regulate Tfh-mediated IgA responses under steady-state conditions remain poorly understood. This study investigated how gut microbiota-derived signals shape Tfh responses and IgA production, with implications for enhancing mucosal vaccine efficacy.
Results: We demonstrate that Peyer's patches (PP)-derived Tfh cells exhibit superior IgA-inducing capacity compared to splenic Tfh cells. RNA sequencing revealed distinct transcriptional profiles in PP-Tfh cells, including upregulation of the genes associated with Tfh differentiation and activation (Bcl6, Cd40lg, Maf), T-B cell interactions (Il21, Sh2d1a, Fyn), and migration (Ccr6, Cxcr5). Functionally, PP-Tfh cells formed larger T-B cell contact areas and induced significantly higher IgA secretion in co-culture than their splenic counterparts. Microbiota depletion experiments revealed that eliminating neomycin-depleted bacteria reduced fecal IgA levels and diminished PP-Tfh cell frequencies. Fecal microbiota transplantation from neomycin-treated mice restored both IgA production and Tfh responses in germ-free (GF) mice. Bioinformatic analysis (PICRUSt2 and LEfSe) identified butyrate-producing Lachnospiraceae and Ruminococcaceae as key drivers of the Tfh-IgA axis. Butyrate supplementation enhanced Tfh differentiation and IgA⁺ germinal center B cell development in vitro and increased fecal IgA levels in vivo. Mechanistically, butyrate promoted IgA production via GPR43 signaling, as its effect was lost in co-cultures with Gpr43⁻/⁻ Tfh cells. Moreover, treatment with tributyrin, a butyrate prodrug, enhanced vaccine-induced IgA and protected mice against Salmonella Typhimurium infection, reducing bacterial burden and tissue damage. These findings define a functional microbiota-Tfh-IgA axis sustained by neomycin-depleted, butyrate-producing bacteria.
Conclusions: Our study underscores the crucial role of the gut microbiota, particularly neomycin-depleted butyrate producing taxa, in regulating PP-Tfh cell function and IgA production. Butyrate emerges as a metabolite linking microbial metabolism to Tfh differentiation and IgA class switching. Together, these findings establish a microbiota-metabolite-Tfh cell axis essential for mucosal immune homeostasis and suggest novel strategies for enhancing vaccine efficacy and protection against enteric infections. Video Abstract.
{"title":"Commensal microbe-derived butyrate enhances T follicular helper cell function to boost mucosal vaccine efficacy.","authors":"Haeun Ko, Chan Johng Kim, Seungyeon Choi, Jaegyun Noh, Seung Won Kim, Juhun Lee, Seohyun Byun, Haena Lee, John Chulhoon Park, Hye Eun Park, Amit Sharma, Minhyuk Park, Junghwan Park, Choong-Gu Lee, Kwang Hyun Cha, Sin-Hyeog Im","doi":"10.1186/s40168-025-02284-7","DOIUrl":"10.1186/s40168-025-02284-7","url":null,"abstract":"<p><strong>Background: </strong>The gut microbiota plays an essential role in mucosal immunity, with secretory immunoglobulin A (IgA) acting as a key effector in neutralizing pathogens and maintaining host-microbiota homeostasis. IgA production occurs via T cell-dependent (TD) and -independent pathways, with T follicular helper (Tfh) cells driving high-affinity, antigen-specific IgA responses. However, the specific microbial taxa and metabolites that regulate Tfh-mediated IgA responses under steady-state conditions remain poorly understood. This study investigated how gut microbiota-derived signals shape Tfh responses and IgA production, with implications for enhancing mucosal vaccine efficacy.</p><p><strong>Results: </strong>We demonstrate that Peyer's patches (PP)-derived Tfh cells exhibit superior IgA-inducing capacity compared to splenic Tfh cells. RNA sequencing revealed distinct transcriptional profiles in PP-Tfh cells, including upregulation of the genes associated with Tfh differentiation and activation (Bcl6, Cd40lg, Maf), T-B cell interactions (Il21, Sh2d1a, Fyn), and migration (Ccr6, Cxcr5). Functionally, PP-Tfh cells formed larger T-B cell contact areas and induced significantly higher IgA secretion in co-culture than their splenic counterparts. Microbiota depletion experiments revealed that eliminating neomycin-depleted bacteria reduced fecal IgA levels and diminished PP-Tfh cell frequencies. Fecal microbiota transplantation from neomycin-treated mice restored both IgA production and Tfh responses in germ-free (GF) mice. Bioinformatic analysis (PICRUSt2 and LEfSe) identified butyrate-producing Lachnospiraceae and Ruminococcaceae as key drivers of the Tfh-IgA axis. Butyrate supplementation enhanced Tfh differentiation and IgA⁺ germinal center B cell development in vitro and increased fecal IgA levels in vivo. Mechanistically, butyrate promoted IgA production via GPR43 signaling, as its effect was lost in co-cultures with Gpr43<sup>⁻/⁻</sup> Tfh cells. Moreover, treatment with tributyrin, a butyrate prodrug, enhanced vaccine-induced IgA and protected mice against Salmonella Typhimurium infection, reducing bacterial burden and tissue damage. These findings define a functional microbiota-Tfh-IgA axis sustained by neomycin-depleted, butyrate-producing bacteria.</p><p><strong>Conclusions: </strong>Our study underscores the crucial role of the gut microbiota, particularly neomycin-depleted butyrate producing taxa, in regulating PP-Tfh cell function and IgA production. Butyrate emerges as a metabolite linking microbial metabolism to Tfh differentiation and IgA class switching. Together, these findings establish a microbiota-metabolite-Tfh cell axis essential for mucosal immune homeostasis and suggest novel strategies for enhancing vaccine efficacy and protection against enteric infections. Video Abstract.</p>","PeriodicalId":18447,"journal":{"name":"Microbiome","volume":"14 1","pages":"37"},"PeriodicalIF":12.7,"publicationDate":"2026-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12825270/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146018959","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2026-01-19DOI: 10.1186/s40168-025-02303-7
Russell J S Orr, Ola Brynildsrud, Kari O Bøifot, Jostein Gohli, Gunnar Skogan, Frank J Kelly, Mark T Hernandez, Klas Udekwu, Patrick K H Lee, Christopher E Mason, Marius Dybwad
Background: Aerobiome diversity is extensive; however, species-level community structure remains poorly resolved. Likewise, microbiomes of public transit systems are of public interest due to their importance for health, though few studies have focused on these ecosystems whilst utilising shotgun metagenomics. Aerosol studies have focused predominantly on individual cities, with limited between-city comparisons suggesting specific community structures. Longitudinal studies show aerobiome diversity as dynamic, fluctuating during seasonal and daily cycles, though interannual cycles remains to be considered. Further, a bacterial bias has limited fungal aerobiome studies, with few considering both fractions collectively. As such, the objective of this study was to examine spatial and temporal patterns in the species diversity of public transit aerobiomes, with an emphasis on bacteria and fungi.
Results: Air samples taken over a 3-year period (2017-2019) from six global cities were subjected to shotgun metagenomic sequencing. Improved classification databases, notably for fungi, applying stringent parameters for trimming, exogenous contamination removal and classification yielded high species-level resolution. Microbial diversity varied substantially among cities, while human and environmental factors, recorded in parallel, were of secondary significance. Bacteria dominated the public transit aerobiome with increased presence in cities with higher population densities. All aerobiomes had complex compositions, consisting of hundreds to thousands of species. Interannual variation had limited significance on the public transit aerobiome diversity and community structure.
Conclusions: Cities were the most important factor contributing to diversity and community structure, demonstrating specific bacterial and fungal signatures. Further, possible correlation between geographical distance and genetic signatures of aerobiomes is suggested. Bacteria are the most abundant constituent of public transit aerobiomes, though no single species is globally dominant, conversely indicating a large inter-city variation in community structure. The presence of a ubiquitous global species core is rejected, though an aerobiome sub-core is confirmed. For the first time, local public transit aerobiome cores are presented for each city and related to ecological niches. Further, the importance of a robust bioinformatics analysis pipeline to identify and remove exogenous contaminants for studying low-biomass samples is highlighted. Lastly, a core and sub-core definition of contaminant aerobiome species with taxon tables, to facilitate future environmental studies, is presented. Video Abstract.
{"title":"Spatial and temporal patterns of public transit aerobiomes.","authors":"Russell J S Orr, Ola Brynildsrud, Kari O Bøifot, Jostein Gohli, Gunnar Skogan, Frank J Kelly, Mark T Hernandez, Klas Udekwu, Patrick K H Lee, Christopher E Mason, Marius Dybwad","doi":"10.1186/s40168-025-02303-7","DOIUrl":"10.1186/s40168-025-02303-7","url":null,"abstract":"<p><strong>Background: </strong>Aerobiome diversity is extensive; however, species-level community structure remains poorly resolved. Likewise, microbiomes of public transit systems are of public interest due to their importance for health, though few studies have focused on these ecosystems whilst utilising shotgun metagenomics. Aerosol studies have focused predominantly on individual cities, with limited between-city comparisons suggesting specific community structures. Longitudinal studies show aerobiome diversity as dynamic, fluctuating during seasonal and daily cycles, though interannual cycles remains to be considered. Further, a bacterial bias has limited fungal aerobiome studies, with few considering both fractions collectively. As such, the objective of this study was to examine spatial and temporal patterns in the species diversity of public transit aerobiomes, with an emphasis on bacteria and fungi.</p><p><strong>Results: </strong>Air samples taken over a 3-year period (2017-2019) from six global cities were subjected to shotgun metagenomic sequencing. Improved classification databases, notably for fungi, applying stringent parameters for trimming, exogenous contamination removal and classification yielded high species-level resolution. Microbial diversity varied substantially among cities, while human and environmental factors, recorded in parallel, were of secondary significance. Bacteria dominated the public transit aerobiome with increased presence in cities with higher population densities. All aerobiomes had complex compositions, consisting of hundreds to thousands of species. Interannual variation had limited significance on the public transit aerobiome diversity and community structure.</p><p><strong>Conclusions: </strong>Cities were the most important factor contributing to diversity and community structure, demonstrating specific bacterial and fungal signatures. Further, possible correlation between geographical distance and genetic signatures of aerobiomes is suggested. Bacteria are the most abundant constituent of public transit aerobiomes, though no single species is globally dominant, conversely indicating a large inter-city variation in community structure. The presence of a ubiquitous global species core is rejected, though an aerobiome sub-core is confirmed. For the first time, local public transit aerobiome cores are presented for each city and related to ecological niches. Further, the importance of a robust bioinformatics analysis pipeline to identify and remove exogenous contaminants for studying low-biomass samples is highlighted. Lastly, a core and sub-core definition of contaminant aerobiome species with taxon tables, to facilitate future environmental studies, is presented. Video Abstract.</p>","PeriodicalId":18447,"journal":{"name":"Microbiome","volume":" ","pages":"64"},"PeriodicalIF":12.7,"publicationDate":"2026-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12896060/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146003687","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2026-01-17DOI: 10.1186/s40168-025-02265-w
Juan Castillo-Fernandez, Rachel Gilroy, Roshonda B Jones, Ryan W Honaker, Michaella J Whittle, Phillip Watson, Gregory C A Amos
Background: The canine microbiome is a vastly understudied area relative to the importance of dogs in society, particularly given the potential importance of the microbiome in veterinary medicine. This has led to a large knowledge gap in the basic taxonomy and functions of the canine gut microbiome and an overreliance on human databases for canine-specific research. Using a broad sample set, long read sequencing, short read sequencing, and metagenomic assembly approaches, we have produced the most comprehensive microbiome resource in all companion animal research.
Results: Here, we describe the recovery of 240 core species that account for > 80% of the canine gut microbiome when tested on an independent validation dataset. We uncovered > 900 new canine-specific strains, 89 novel species, and 10 novel genera, providing a dramatic increase in previous knowledge of the canine microbiome and allowing for mapping rates of up to 95%, a 70% increase on historic mapping rates of ~ 25% using publicly available resources. Through detailed annotation of function, we demonstrate the potential importance of the novel species and genera to health and nutrition and provide evidence of new canine-adapted strains of existing genera and species previously unknown to inhabit canines that provide important metabolic function to the canine host. We discovered the canine microbiome has an expansive ability to metabolize carbohydrates, providing insight into how canines process diverse carbohydrates given their known limited host genomic potential. We uncovered a range of species with abilities to produce butyrate, propionate, and vitamins, highlighting the importance of the canine microbiome to host nutrition. We describe two novel Peptacetobacter species that could regulate host bile acid metabolism, an important finding in the context of chronic GI disease in pets. We demonstrated all new species and genera had no known virulence, suggesting they are commensal and, finally, provided a baseline for antimicrobial resistance in the microbiota species of healthy pets.
Conclusions: This work gives entirely new perspectives on the functional capabilities of the canine gut microbiome, suggesting the canine microbiome is distinct, presumably having evolved to its host, diet, and environment over several millennia. Video Abstract.
{"title":"Waltham catalogue for the canine gut microbiome: a complete taxonomic and functional catalogue of the canine gut microbiome through novel metagenomic based genome discovery.","authors":"Juan Castillo-Fernandez, Rachel Gilroy, Roshonda B Jones, Ryan W Honaker, Michaella J Whittle, Phillip Watson, Gregory C A Amos","doi":"10.1186/s40168-025-02265-w","DOIUrl":"10.1186/s40168-025-02265-w","url":null,"abstract":"<p><strong>Background: </strong>The canine microbiome is a vastly understudied area relative to the importance of dogs in society, particularly given the potential importance of the microbiome in veterinary medicine. This has led to a large knowledge gap in the basic taxonomy and functions of the canine gut microbiome and an overreliance on human databases for canine-specific research. Using a broad sample set, long read sequencing, short read sequencing, and metagenomic assembly approaches, we have produced the most comprehensive microbiome resource in all companion animal research.</p><p><strong>Results: </strong>Here, we describe the recovery of 240 core species that account for > 80% of the canine gut microbiome when tested on an independent validation dataset. We uncovered > 900 new canine-specific strains, 89 novel species, and 10 novel genera, providing a dramatic increase in previous knowledge of the canine microbiome and allowing for mapping rates of up to 95%, a 70% increase on historic mapping rates of ~ 25% using publicly available resources. Through detailed annotation of function, we demonstrate the potential importance of the novel species and genera to health and nutrition and provide evidence of new canine-adapted strains of existing genera and species previously unknown to inhabit canines that provide important metabolic function to the canine host. We discovered the canine microbiome has an expansive ability to metabolize carbohydrates, providing insight into how canines process diverse carbohydrates given their known limited host genomic potential. We uncovered a range of species with abilities to produce butyrate, propionate, and vitamins, highlighting the importance of the canine microbiome to host nutrition. We describe two novel Peptacetobacter species that could regulate host bile acid metabolism, an important finding in the context of chronic GI disease in pets. We demonstrated all new species and genera had no known virulence, suggesting they are commensal and, finally, provided a baseline for antimicrobial resistance in the microbiota species of healthy pets.</p><p><strong>Conclusions: </strong>This work gives entirely new perspectives on the functional capabilities of the canine gut microbiome, suggesting the canine microbiome is distinct, presumably having evolved to its host, diet, and environment over several millennia. Video Abstract.</p>","PeriodicalId":18447,"journal":{"name":"Microbiome","volume":"14 1","pages":"25"},"PeriodicalIF":12.7,"publicationDate":"2026-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12811905/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145994398","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2026-01-13DOI: 10.1186/s40168-025-02250-3
Cindy M Liu, Lise Tornvig Erikstrup, Sofie M Edslev, Daniel E Park, Juan E Salazar, Maliha Aziz, Amalie Katrine Rendboe, Tony Pham, Khoa Manh Dinh, Kelsey Roach, Abigail Onos, Edward Sung, Nathan O Weber, Paal Skytt Andersen, Henrik Ullum, Robert Skov, Bruce A Hungate, Marc Stegger, Christian Erikstrup, Lance B Price
Background: The nasal microbiome, a dynamic assemblage of commensals and opportunistic pathogens, is crucial to human health.
Results: Using cross-sectional data from 1,608 adults and longitudinal sampling of 149 individuals over 8-22 months, we identified nine nasal community state types (CSTs), defined by bacterial density and indicator taxa, with varying stability and transition patterns. Core taxa such as Staphylococcus epidermidis and Cutibacterium acnes were highly stable, while opportunistic pathogens like Staphylococcus aureus and Moraxella catarrhalis had shorter residence times. Interactions between Dolosigranulum pigrum and Corynebacterium pseudodiphtheriticum/propinquum were linked to reduced S. aureus colonization. Host factors, including age and biological sex, significantly shaped microbiome dynamics: men exhibited higher bacterial densities and pathogen colonization, while women showed more stable commensal-dominated CSTs. Aging was associated with shifts in CST frequencies, with declining S. aureus and increasing Enterobacterales.
Conclusions: These findings reveal potential strategies by modulating nasal microbiome dynamics to reduce pathogen colonization and improve health. Video Abstract.
{"title":"Composition and dynamics of the adult nasal microbiome.","authors":"Cindy M Liu, Lise Tornvig Erikstrup, Sofie M Edslev, Daniel E Park, Juan E Salazar, Maliha Aziz, Amalie Katrine Rendboe, Tony Pham, Khoa Manh Dinh, Kelsey Roach, Abigail Onos, Edward Sung, Nathan O Weber, Paal Skytt Andersen, Henrik Ullum, Robert Skov, Bruce A Hungate, Marc Stegger, Christian Erikstrup, Lance B Price","doi":"10.1186/s40168-025-02250-3","DOIUrl":"10.1186/s40168-025-02250-3","url":null,"abstract":"<p><strong>Background: </strong>The nasal microbiome, a dynamic assemblage of commensals and opportunistic pathogens, is crucial to human health.</p><p><strong>Results: </strong>Using cross-sectional data from 1,608 adults and longitudinal sampling of 149 individuals over 8-22 months, we identified nine nasal community state types (CSTs), defined by bacterial density and indicator taxa, with varying stability and transition patterns. Core taxa such as Staphylococcus epidermidis and Cutibacterium acnes were highly stable, while opportunistic pathogens like Staphylococcus aureus and Moraxella catarrhalis had shorter residence times. Interactions between Dolosigranulum pigrum and Corynebacterium pseudodiphtheriticum/propinquum were linked to reduced S. aureus colonization. Host factors, including age and biological sex, significantly shaped microbiome dynamics: men exhibited higher bacterial densities and pathogen colonization, while women showed more stable commensal-dominated CSTs. Aging was associated with shifts in CST frequencies, with declining S. aureus and increasing Enterobacterales.</p><p><strong>Conclusions: </strong>These findings reveal potential strategies by modulating nasal microbiome dynamics to reduce pathogen colonization and improve health. Video Abstract.</p>","PeriodicalId":18447,"journal":{"name":"Microbiome","volume":" ","pages":"38"},"PeriodicalIF":12.7,"publicationDate":"2026-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12825229/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145966509","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Background: Chicken coccidiosis caused by Eimeria tenella (E. tenella) poses a major threat to global poultry production, with its tropism for the caecal microenvironment and dynamic interactions with the resident microbiota remaining incompletely understood. The caecal microbiota plays a critical role in host‒parasite interplay, yet the mechanisms through which microbial homeostasis influences E. tenella development and host resistance remain elusive. This study aimed to elucidate the causal relationship between caecal dysbiosis and E. tenella pathogenesis, with a focus on identifying microbiota-derived regulators of parasite development and host immunity.
Results: Antibiotic-induced caecal dysbiosis (ABX) significantly impaired E. tenella macrogametogenesis, demonstrating microbiota-dependent regulation of parasitic development. Faecal microbiota transplantation (FMT) validated this causal link, revealing that microbial reconstitution restored parasite maturation. Notably, Intestinimonas spp. were identified as key inhibitors of E. tenella development through transcriptional regulation of the EtGFAT gene (Eimeria tenella glucosamine: fructose-6-phosphate aminotransferase), a critical mediator of macrogamete formation. Furthermore, the transplantation of Intestinimonas butyriciproducens (I. butyriciproducens) attenuated clinical manifestations of infection while increasing IFN-γ secretion from CD8+ T lymphocytes, thereby enhancing host resistance to E. tenella.
Conclusions: This study revealed that caecal microbiota homeostasis is indispensable for E. tenella developmental progression and highlights Intestinimonas as a pivotal microbial regulator of parasite biology. The dual role of I. butyriciproducens in suppressing parasitic virulence and potentiating adaptive immune responses underscores the therapeutic potential of microbiota-targeted strategies. These findings provide a foundation for the development of novel anticoccidial interventions through targeted manipulation of caecal microbial communities. Video Abstract.
{"title":"Increased caecal Intestinimonas abundance inhibits E. tenella gametogenesis via EtGFAT regulation and alleviates infection through immunity.","authors":"Jun-Yi Li, Hai-Bin Huang, Chun-Wei Shi, Tian-Xu Pan, Ming-Han Li, Nan Wang, Jia-Jin Shan, Yan-Long Jiang, Wen-Tao Yang, Xin Cao, Jian-Zhong Wang, Jia-Yao Guan, Shu-Yuan Yu, Chun-Feng Wang, Gui-Lian Yang","doi":"10.1186/s40168-025-02302-8","DOIUrl":"10.1186/s40168-025-02302-8","url":null,"abstract":"<p><strong>Background: </strong>Chicken coccidiosis caused by Eimeria tenella (E. tenella) poses a major threat to global poultry production, with its tropism for the caecal microenvironment and dynamic interactions with the resident microbiota remaining incompletely understood. The caecal microbiota plays a critical role in host‒parasite interplay, yet the mechanisms through which microbial homeostasis influences E. tenella development and host resistance remain elusive. This study aimed to elucidate the causal relationship between caecal dysbiosis and E. tenella pathogenesis, with a focus on identifying microbiota-derived regulators of parasite development and host immunity.</p><p><strong>Results: </strong>Antibiotic-induced caecal dysbiosis (ABX) significantly impaired E. tenella macrogametogenesis, demonstrating microbiota-dependent regulation of parasitic development. Faecal microbiota transplantation (FMT) validated this causal link, revealing that microbial reconstitution restored parasite maturation. Notably, Intestinimonas spp. were identified as key inhibitors of E. tenella development through transcriptional regulation of the EtGFAT gene (Eimeria tenella glucosamine: fructose-6-phosphate aminotransferase), a critical mediator of macrogamete formation. Furthermore, the transplantation of Intestinimonas butyriciproducens (I. butyriciproducens) attenuated clinical manifestations of infection while increasing IFN-γ secretion from CD8<sup>+</sup> T lymphocytes, thereby enhancing host resistance to E. tenella.</p><p><strong>Conclusions: </strong>This study revealed that caecal microbiota homeostasis is indispensable for E. tenella developmental progression and highlights Intestinimonas as a pivotal microbial regulator of parasite biology. The dual role of I. butyriciproducens in suppressing parasitic virulence and potentiating adaptive immune responses underscores the therapeutic potential of microbiota-targeted strategies. These findings provide a foundation for the development of novel anticoccidial interventions through targeted manipulation of caecal microbial communities. Video Abstract.</p>","PeriodicalId":18447,"journal":{"name":"Microbiome","volume":" ","pages":"62"},"PeriodicalIF":12.7,"publicationDate":"2026-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12888579/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145959508","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2026-01-12DOI: 10.1186/s40168-025-02319-z
Lianbin Xu, Senlin Zhu, Hui-Zeng Sun, Yunan Yan, Xiaowen Wang, Xiuli Li, Dengpan Bu
Background: The presence of intracellular microbiota in epithelial cells of gastrointestinal tracts (GITs) of dairy cows, as well as their associations with rumen development, remains unclear.
Results: Using a single-cell analysis of host-microbiome interactions (SAHMI) within a single-cell atlas derived from ten GITs tissue types collected from new-born (NB) and adult (AD) cows, we found that 20.5% of the single-cell RNA sequencing reads aligned to reference microbial genomes after filtering low-quality single cells and doublets. Comparative analysis revealed that abomasum tissue exhibited the highest proportion of cells detected microbial signals, with Paneth cells possessing the most genes classified as both marker genes and those related to microbial signals. In the NB rumen, Basal cells demonstrated the greatest overlap between differentially expressed genes in AD vs. NB comparison and the microbial signal-related genes. Notably, these microbiota-associated genes, which are mainly linked to Aliiroseovarius crassostreae, Enterobacter sp. T2, and Enzebya pacifica, are implicated in nucleotide excision repair mechanisms, including DNA replication and the cell cycle. Furthermore, bacterial fluorescence in situ hybridization (FISH) analysis indicated that these three microbial species were partially localized within the cytoplasm and nucleus of rumen epithelial cells in NB cattle.
Conclusions: These findings provide substantial evidence supporting the existence of an intracellular microbiome within the GITs of dairy cattle and highlight their potential relationships with rumen development. This research enhances our understanding of the crosstalk between hosts and microbiome during the maturation of ruminants. Video Abstract.
{"title":"Intracellular microbial signals in the gastrointestinal tract of dairy cattle.","authors":"Lianbin Xu, Senlin Zhu, Hui-Zeng Sun, Yunan Yan, Xiaowen Wang, Xiuli Li, Dengpan Bu","doi":"10.1186/s40168-025-02319-z","DOIUrl":"10.1186/s40168-025-02319-z","url":null,"abstract":"<p><strong>Background: </strong>The presence of intracellular microbiota in epithelial cells of gastrointestinal tracts (GITs) of dairy cows, as well as their associations with rumen development, remains unclear.</p><p><strong>Results: </strong>Using a single-cell analysis of host-microbiome interactions (SAHMI) within a single-cell atlas derived from ten GITs tissue types collected from new-born (NB) and adult (AD) cows, we found that 20.5% of the single-cell RNA sequencing reads aligned to reference microbial genomes after filtering low-quality single cells and doublets. Comparative analysis revealed that abomasum tissue exhibited the highest proportion of cells detected microbial signals, with Paneth cells possessing the most genes classified as both marker genes and those related to microbial signals. In the NB rumen, Basal cells demonstrated the greatest overlap between differentially expressed genes in AD vs. NB comparison and the microbial signal-related genes. Notably, these microbiota-associated genes, which are mainly linked to Aliiroseovarius crassostreae, Enterobacter sp. T2, and Enzebya pacifica, are implicated in nucleotide excision repair mechanisms, including DNA replication and the cell cycle. Furthermore, bacterial fluorescence in situ hybridization (FISH) analysis indicated that these three microbial species were partially localized within the cytoplasm and nucleus of rumen epithelial cells in NB cattle.</p><p><strong>Conclusions: </strong>These findings provide substantial evidence supporting the existence of an intracellular microbiome within the GITs of dairy cattle and highlight their potential relationships with rumen development. This research enhances our understanding of the crosstalk between hosts and microbiome during the maturation of ruminants. Video Abstract.</p>","PeriodicalId":18447,"journal":{"name":"Microbiome","volume":" ","pages":"63"},"PeriodicalIF":12.7,"publicationDate":"2026-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12888143/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145959550","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2026-01-10DOI: 10.1186/s40168-025-02307-3
Antonia Weiss, Alan Xavier Elena, Uli Klümper, Kenneth Dumack
Background: Antibiotic resistance genes (ARGs) are proliferating in wastewater microbiomes, yet the biotic forces shaping their diversity remain poorly understood. Here, we integrate 14 months of metagenomic and metatranscriptomic data from a wastewater treatment plant to reveal that viruses and microeukaryotes, long-overlooked trophic actors, may play an important role in shaping bacterial and ARG diversity.
Results: We show that viral and microeukaryotic communities exhibit strong seasonal dynamics that cascade through the microbial food web, significantly structuring prokaryotic communities and subsequently ARG profiles. Crucially, we find that viral and microeukaryotic diversity are positively associated with bacterial diversity, which in turn shapes ARG diversity, underscoring the regulatory potential of ecological interactions.
Conclusions: Our findings challenge the abiotic-centric paradigm and establish the central role of multi-trophic interactions in shaping ARG dynamics in wastewater ecosystems. Video Abstract.
{"title":"Viral and eukaryotic drivers of prokaryotic and antibiotic resistance gene diversity in wastewater microbiomes.","authors":"Antonia Weiss, Alan Xavier Elena, Uli Klümper, Kenneth Dumack","doi":"10.1186/s40168-025-02307-3","DOIUrl":"10.1186/s40168-025-02307-3","url":null,"abstract":"<p><strong>Background: </strong>Antibiotic resistance genes (ARGs) are proliferating in wastewater microbiomes, yet the biotic forces shaping their diversity remain poorly understood. Here, we integrate 14 months of metagenomic and metatranscriptomic data from a wastewater treatment plant to reveal that viruses and microeukaryotes, long-overlooked trophic actors, may play an important role in shaping bacterial and ARG diversity.</p><p><strong>Results: </strong>We show that viral and microeukaryotic communities exhibit strong seasonal dynamics that cascade through the microbial food web, significantly structuring prokaryotic communities and subsequently ARG profiles. Crucially, we find that viral and microeukaryotic diversity are positively associated with bacterial diversity, which in turn shapes ARG diversity, underscoring the regulatory potential of ecological interactions.</p><p><strong>Conclusions: </strong>Our findings challenge the abiotic-centric paradigm and establish the central role of multi-trophic interactions in shaping ARG dynamics in wastewater ecosystems. Video Abstract.</p>","PeriodicalId":18447,"journal":{"name":"Microbiome","volume":" ","pages":"24"},"PeriodicalIF":12.7,"publicationDate":"2026-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12805738/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145944654","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Background: In high-producing dairy systems, the average productive lifespan of cows is around 2.5-4 years. Persistent productivity and longevity are key determinants of dairy cow production performance and herd profitability. Although gastrointestinal microbiota influences dairy cow productivity, the mechanisms by which host-microbiome interactions support sustained productivity in long-lived dairy cows remain unclear. Therefore, this study integrated the metagenomics and metabolomics of the rumen and rectum, along with serum and milk metabolomics, to elucidate the potential impact of the rumen and rectum microbiota on the productivity of long-lived dairy cows.
Results: Serum alanine aminotransferase (ALT), alkaline phosphatase (ALP), total cholesterol (TC), and high-density and low-density lipoprotein cholesterol (HDL-C and LDL-C) levels in long-lived dairy cows were positively correlated with milk yield (MY) and elevated in long-lived high-yielding (LH) dairy cows, whereas insulin (INS) and glucagon (GCG) were negatively correlated with MY and higher in long-lived low-yielding (LL) dairy cows. Rumen propionate level was elevated in LH group and positively correlated with MY. The rumen microbiome, in LH cows upregulated pathways involved in amino acid, cofactor, and vitamin metabolism. LH cows' rumen and rectum microbial networks had cohesion and vulnerability levels similar to those of LL cows and exhibited dependence on key nodes. The rumen and rectum MY-associated purine metabolites, guanosine and D-ribose-1-phosphate, mediated 65.56% and 67.55% of the significant positive effects of Acidaminococcaceae bacterium and Parabacteroides sp. on MY, respectively. Furthermore, the specific lipid metabolism-associated rumen microbiota module enhanced serum eicosapentaenoic acid (EPA) levels by modulating rumen α-linolenic acid metabolism, thereby promoting the synthesis of Pe(20:5/0:0) in milk, which positively contributed to MY.
Conclusions: This study revealed the potential contributions of the rumen and rectum microbiota to the productivity of long-lived dairy cows via purine metabolites, as well as the potential role of the rumen microbial network module in influencing productivity through α-linolenic acid metabolism, providing new insights for nutritional management strategies aimed at improving the persistent production capacity of dairy cows. Video Abstract.
{"title":"The impact of rumen and hindgut microbiomes on the persistent productivity of long-lived dairy cows.","authors":"Jianhao Yang, Yanfei Feng, Tengfei Guo, Shanshan Guo, Mingmao Yang, Dong Zhou, Pengfei Lin, Aihua Wang, Yaping Jin","doi":"10.1186/s40168-025-02309-1","DOIUrl":"10.1186/s40168-025-02309-1","url":null,"abstract":"<p><strong>Background: </strong>In high-producing dairy systems, the average productive lifespan of cows is around 2.5-4 years. Persistent productivity and longevity are key determinants of dairy cow production performance and herd profitability. Although gastrointestinal microbiota influences dairy cow productivity, the mechanisms by which host-microbiome interactions support sustained productivity in long-lived dairy cows remain unclear. Therefore, this study integrated the metagenomics and metabolomics of the rumen and rectum, along with serum and milk metabolomics, to elucidate the potential impact of the rumen and rectum microbiota on the productivity of long-lived dairy cows.</p><p><strong>Results: </strong>Serum alanine aminotransferase (ALT), alkaline phosphatase (ALP), total cholesterol (TC), and high-density and low-density lipoprotein cholesterol (HDL-C and LDL-C) levels in long-lived dairy cows were positively correlated with milk yield (MY) and elevated in long-lived high-yielding (LH) dairy cows, whereas insulin (INS) and glucagon (GCG) were negatively correlated with MY and higher in long-lived low-yielding (LL) dairy cows. Rumen propionate level was elevated in LH group and positively correlated with MY. The rumen microbiome, in LH cows upregulated pathways involved in amino acid, cofactor, and vitamin metabolism. LH cows' rumen and rectum microbial networks had cohesion and vulnerability levels similar to those of LL cows and exhibited dependence on key nodes. The rumen and rectum MY-associated purine metabolites, guanosine and D-ribose-1-phosphate, mediated 65.56% and 67.55% of the significant positive effects of Acidaminococcaceae bacterium and Parabacteroides sp. on MY, respectively. Furthermore, the specific lipid metabolism-associated rumen microbiota module enhanced serum eicosapentaenoic acid (EPA) levels by modulating rumen α-linolenic acid metabolism, thereby promoting the synthesis of Pe(20:5/0:0) in milk, which positively contributed to MY.</p><p><strong>Conclusions: </strong>This study revealed the potential contributions of the rumen and rectum microbiota to the productivity of long-lived dairy cows via purine metabolites, as well as the potential role of the rumen microbial network module in influencing productivity through α-linolenic acid metabolism, providing new insights for nutritional management strategies aimed at improving the persistent production capacity of dairy cows. Video Abstract.</p>","PeriodicalId":18447,"journal":{"name":"Microbiome","volume":" ","pages":"60"},"PeriodicalIF":12.7,"publicationDate":"2026-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12879339/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145944710","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}