首页 > 最新文献

Mathematics of Computation最新文献

英文 中文
Construction and analysis of a HDG solution for the total-flux formulation of the convected Helmholtz equation 共轭亥姆霍兹方程全通量公式的HDG解的构造和分析
2区 数学 Q1 MATHEMATICS, APPLIED Pub Date : 2023-05-04 DOI: 10.1090/mcom/3850
Hélène Barucq, Nathan Rouxelin, Sébastien Tordeux
We introduce a hybridizable discontinuous Galerkin (HDG) method for the convected Helmholtz equation based on the total flux formulation, in which the vector unknown represents both diffusive and convective phenomena. This HDG method is constricted with the same interpolation degree for all the unknowns and a physically informed value for the penalization parameter is computed. A detailed analysis including local and global well-posedness as well as a super-convergence result is carried out. We then provide numerical experiments to illustrate the theoretical results.
基于总通量公式,引入了一种求解共轭亥姆霍兹方程的杂交不连续伽辽金(HDG)方法,其中未知向量同时表示扩散和对流现象。这种HDG方法对所有未知数具有相同的插值度,并计算出惩罚参数的物理通知值。详细分析了该方法的局部适定性和全局适定性,并给出了超收敛结果。然后,我们提供数值实验来说明理论结果。
{"title":"Construction and analysis of a HDG solution for the total-flux formulation of the convected Helmholtz equation","authors":"Hélène Barucq, Nathan Rouxelin, Sébastien Tordeux","doi":"10.1090/mcom/3850","DOIUrl":"https://doi.org/10.1090/mcom/3850","url":null,"abstract":"We introduce a hybridizable discontinuous Galerkin (HDG) method for the convected Helmholtz equation based on the total flux formulation, in which the vector unknown represents both diffusive and convective phenomena. This HDG method is constricted with the same interpolation degree for all the unknowns and a physically informed value for the penalization parameter is computed. A detailed analysis including local and global well-posedness as well as a super-convergence result is carried out. We then provide numerical experiments to illustrate the theoretical results.","PeriodicalId":18456,"journal":{"name":"Mathematics of Computation","volume":"204 5 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136265188","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Supercloseness of the local discontinuous Galerkin method for a singularly perturbed convection-diffusion problem 奇异摄动对流扩散问题局部不连续Galerkin方法的超逼近性
2区 数学 Q1 MATHEMATICS, APPLIED Pub Date : 2023-05-04 DOI: 10.1090/mcom/3844
Yao Cheng, Shan Jiang, Martin Stynes
A singularly perturbed convection-diffusion problem posed on the unit square in <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="double-struck upper R squared"> <mml:semantics> <mml:msup> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="double-struck">R</mml:mi> </mml:mrow> <mml:mn>2</mml:mn> </mml:msup> <mml:annotation encoding="application/x-tex">mathbb {R}^2</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, whose solution has exponential boundary layers, is solved numerically using the local discontinuous Galerkin (LDG) method with tensor-product piecewise polynomials of degree at most <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="k greater-than 0"> <mml:semantics> <mml:mrow> <mml:mi>k</mml:mi> <mml:mo>></mml:mo> <mml:mn>0</mml:mn> </mml:mrow> <mml:annotation encoding="application/x-tex">k>0</mml:annotation> </mml:semantics> </mml:math> </inline-formula> on three families of layer-adapted meshes: Shishkin-type, Bakhvalov-Shishkin-type and Bakhvalov-type. On Shishkin-type meshes this method is known to be no greater than <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper O left-parenthesis upper N Superscript minus left-parenthesis k plus 1 slash 2 right-parenthesis Baseline right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mi>O</mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:msup> <mml:mi>N</mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo>−<!-- − --></mml:mo> <mml:mo stretchy="false">(</mml:mo> <mml:mi>k</mml:mi> <mml:mo>+</mml:mo> <mml:mn>1</mml:mn> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo>/</mml:mo> </mml:mrow> <mml:mn>2</mml:mn> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> </mml:msup> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">O(N^{-(k+1/2)})</mml:annotation> </mml:semantics> </mml:math> </inline-formula> accurate in the energy norm induced by the bilinear form of the weak formulation, where <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper N"> <mml:semantics> <mml:mi>N</mml:mi> <mml:annotation encoding="application/x-tex">N</mml:annotation> </mml:semantics> </mml:math> </inline-formula> mesh intervals are used in each coordinate direction. (Note: all bounds in this abstract are uniform in the singular perturbation parameter and neglect logarithmic factors that will appear in our detailed analysis.) A delicate argument is used in this paper to establish <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper O left-parenthesis upper N Superscript minus left-parenthesis k plus 1 right-parenthesis Baseline right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mi>O</mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:msup> <mml:mi>N</mml:mi> <mml:mro
利用局部不连续伽辽金(LDG)方法,用最大为k >次的张量积分段多项式数值求解了r2 mathbb {R}^2中单位方阵上的奇摄动对流扩散问题,其解具有指数边界层;在三种层适应网格上:shishkin型,bakhvalov - shishkin型和bakhvalov型。在shishkin型网格上,已知该方法在弱公式双线性形式诱导的能量范数上不大于O(N−(k+1/2)) O(N^{-(k+1/2)}),其中在每个坐标方向上使用N N网格间隔。(注意:本文中所有的边界在奇异扰动参数下都是一致的,忽略了我们详细分析中会出现的对数因子。)对于LDG解与真解在有限元空间的局部高斯-拉道投影之间的差异,本文用一个微妙的论证在所有三种网格上建立了O(N−(k+1)) O(N^{-(k+1)})能量范数超收敛性。这种超接近性意味着每种网格上的LDG解与问题的真实解之间的l2l ^2误差有一个新的N−(k+1) N^{-(k+1)}界;这个边界是最优的(直到对数因子)。数值实验证实了我们的理论结果。
{"title":"Supercloseness of the local discontinuous Galerkin method for a singularly perturbed convection-diffusion problem","authors":"Yao Cheng, Shan Jiang, Martin Stynes","doi":"10.1090/mcom/3844","DOIUrl":"https://doi.org/10.1090/mcom/3844","url":null,"abstract":"A singularly perturbed convection-diffusion problem posed on the unit square in &lt;inline-formula content-type=\"math/mathml\"&gt; &lt;mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper R squared\"&gt; &lt;mml:semantics&gt; &lt;mml:msup&gt; &lt;mml:mrow class=\"MJX-TeXAtom-ORD\"&gt; &lt;mml:mi mathvariant=\"double-struck\"&gt;R&lt;/mml:mi&gt; &lt;/mml:mrow&gt; &lt;mml:mn&gt;2&lt;/mml:mn&gt; &lt;/mml:msup&gt; &lt;mml:annotation encoding=\"application/x-tex\"&gt;mathbb {R}^2&lt;/mml:annotation&gt; &lt;/mml:semantics&gt; &lt;/mml:math&gt; &lt;/inline-formula&gt;, whose solution has exponential boundary layers, is solved numerically using the local discontinuous Galerkin (LDG) method with tensor-product piecewise polynomials of degree at most &lt;inline-formula content-type=\"math/mathml\"&gt; &lt;mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"k greater-than 0\"&gt; &lt;mml:semantics&gt; &lt;mml:mrow&gt; &lt;mml:mi&gt;k&lt;/mml:mi&gt; &lt;mml:mo&gt;&gt;&lt;/mml:mo&gt; &lt;mml:mn&gt;0&lt;/mml:mn&gt; &lt;/mml:mrow&gt; &lt;mml:annotation encoding=\"application/x-tex\"&gt;k&gt;0&lt;/mml:annotation&gt; &lt;/mml:semantics&gt; &lt;/mml:math&gt; &lt;/inline-formula&gt; on three families of layer-adapted meshes: Shishkin-type, Bakhvalov-Shishkin-type and Bakhvalov-type. On Shishkin-type meshes this method is known to be no greater than &lt;inline-formula content-type=\"math/mathml\"&gt; &lt;mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper O left-parenthesis upper N Superscript minus left-parenthesis k plus 1 slash 2 right-parenthesis Baseline right-parenthesis\"&gt; &lt;mml:semantics&gt; &lt;mml:mrow&gt; &lt;mml:mi&gt;O&lt;/mml:mi&gt; &lt;mml:mo stretchy=\"false\"&gt;(&lt;/mml:mo&gt; &lt;mml:msup&gt; &lt;mml:mi&gt;N&lt;/mml:mi&gt; &lt;mml:mrow class=\"MJX-TeXAtom-ORD\"&gt; &lt;mml:mo&gt;−&lt;!-- − --&gt;&lt;/mml:mo&gt; &lt;mml:mo stretchy=\"false\"&gt;(&lt;/mml:mo&gt; &lt;mml:mi&gt;k&lt;/mml:mi&gt; &lt;mml:mo&gt;+&lt;/mml:mo&gt; &lt;mml:mn&gt;1&lt;/mml:mn&gt; &lt;mml:mrow class=\"MJX-TeXAtom-ORD\"&gt; &lt;mml:mo&gt;/&lt;/mml:mo&gt; &lt;/mml:mrow&gt; &lt;mml:mn&gt;2&lt;/mml:mn&gt; &lt;mml:mo stretchy=\"false\"&gt;)&lt;/mml:mo&gt; &lt;/mml:mrow&gt; &lt;/mml:msup&gt; &lt;mml:mo stretchy=\"false\"&gt;)&lt;/mml:mo&gt; &lt;/mml:mrow&gt; &lt;mml:annotation encoding=\"application/x-tex\"&gt;O(N^{-(k+1/2)})&lt;/mml:annotation&gt; &lt;/mml:semantics&gt; &lt;/mml:math&gt; &lt;/inline-formula&gt; accurate in the energy norm induced by the bilinear form of the weak formulation, where &lt;inline-formula content-type=\"math/mathml\"&gt; &lt;mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper N\"&gt; &lt;mml:semantics&gt; &lt;mml:mi&gt;N&lt;/mml:mi&gt; &lt;mml:annotation encoding=\"application/x-tex\"&gt;N&lt;/mml:annotation&gt; &lt;/mml:semantics&gt; &lt;/mml:math&gt; &lt;/inline-formula&gt; mesh intervals are used in each coordinate direction. (Note: all bounds in this abstract are uniform in the singular perturbation parameter and neglect logarithmic factors that will appear in our detailed analysis.) A delicate argument is used in this paper to establish &lt;inline-formula content-type=\"math/mathml\"&gt; &lt;mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper O left-parenthesis upper N Superscript minus left-parenthesis k plus 1 right-parenthesis Baseline right-parenthesis\"&gt; &lt;mml:semantics&gt; &lt;mml:mrow&gt; &lt;mml:mi&gt;O&lt;/mml:mi&gt; &lt;mml:mo stretchy=\"false\"&gt;(&lt;/mml:mo&gt; &lt;mml:msup&gt; &lt;mml:mi&gt;N&lt;/mml:mi&gt; &lt;mml:mro","PeriodicalId":18456,"journal":{"name":"Mathematics of Computation","volume":"5 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136231610","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Divisibility conditions on the order of the reductions of algebraic numbers 代数数约化阶上的可整除性条件
2区 数学 Q1 MATHEMATICS, APPLIED Pub Date : 2023-05-03 DOI: 10.1090/mcom/3848
Pietro Sgobba
Let <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper K"> <mml:semantics> <mml:mi>K</mml:mi> <mml:annotation encoding="application/x-tex">K</mml:annotation> </mml:semantics> </mml:math> </inline-formula> be a number field, and let <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper G"> <mml:semantics> <mml:mi>G</mml:mi> <mml:annotation encoding="application/x-tex">G</mml:annotation> </mml:semantics> </mml:math> </inline-formula> be a finitely generated subgroup of <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper K Superscript times"> <mml:semantics> <mml:msup> <mml:mi>K</mml:mi> <mml:mo>×<!-- × --></mml:mo> </mml:msup> <mml:annotation encoding="application/x-tex">K^times</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. Without relying on the Generalized Riemann Hypothesis we prove an asymptotic formula for the number of primes <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="German p"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="fraktur">p</mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">mathfrak p</mml:annotation> </mml:semantics> </mml:math> </inline-formula> of <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper K"> <mml:semantics> <mml:mi>K</mml:mi> <mml:annotation encoding="application/x-tex">K</mml:annotation> </mml:semantics> </mml:math> </inline-formula> such that the order of <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="left-parenthesis upper G mod German p right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mo stretchy="false">(</mml:mo> <mml:mi>G</mml:mi> <mml:mo lspace="thickmathspace" rspace="thickmathspace">mod</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="fraktur">p</mml:mi> </mml:mrow> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">(Gbmod mathfrak p)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is divisible by a fixed integer. We also provide a rational expression for the natural density of this set. Furthermore, we study the primes <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="German p"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="fraktur">p</mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">mathfrak p</mml:annotation> </mml:semantics> </mml:math> </inline-formula> for which the order is <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="k"> <mml:semantics> <mml:mi>k</mml:mi> <mml:annotation encoding="application/x-tex">k</mml:annotation> </mml:
设K K是一个数字域,G G是K × K^次的有限生成子群。在不依赖广义黎曼假设的情况下,我们证明了K K的素数p mathfrak p的渐近公式,使得(G mod p) (Gbmod mathfrak p)的阶可被一个固定整数整除。我们也给出了这个集合的自然密度的一个有理表达式。进一步,我们研究了阶数为k自由的素数p mathfrak p,以及阶数对有限多个素数具有规定的r ell -adic值的素数p mathfrak p。可以考虑p mathfrak p的Frobenius共轭类的一个附加条件。为了证明这些结果,我们证明了数域Kummer扩展的Chebotarev密度定理的一个无条件版本。
{"title":"Divisibility conditions on the order of the reductions of algebraic numbers","authors":"Pietro Sgobba","doi":"10.1090/mcom/3848","DOIUrl":"https://doi.org/10.1090/mcom/3848","url":null,"abstract":"Let &lt;inline-formula content-type=\"math/mathml\"&gt; &lt;mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper K\"&gt; &lt;mml:semantics&gt; &lt;mml:mi&gt;K&lt;/mml:mi&gt; &lt;mml:annotation encoding=\"application/x-tex\"&gt;K&lt;/mml:annotation&gt; &lt;/mml:semantics&gt; &lt;/mml:math&gt; &lt;/inline-formula&gt; be a number field, and let &lt;inline-formula content-type=\"math/mathml\"&gt; &lt;mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper G\"&gt; &lt;mml:semantics&gt; &lt;mml:mi&gt;G&lt;/mml:mi&gt; &lt;mml:annotation encoding=\"application/x-tex\"&gt;G&lt;/mml:annotation&gt; &lt;/mml:semantics&gt; &lt;/mml:math&gt; &lt;/inline-formula&gt; be a finitely generated subgroup of &lt;inline-formula content-type=\"math/mathml\"&gt; &lt;mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper K Superscript times\"&gt; &lt;mml:semantics&gt; &lt;mml:msup&gt; &lt;mml:mi&gt;K&lt;/mml:mi&gt; &lt;mml:mo&gt;×&lt;!-- × --&gt;&lt;/mml:mo&gt; &lt;/mml:msup&gt; &lt;mml:annotation encoding=\"application/x-tex\"&gt;K^times&lt;/mml:annotation&gt; &lt;/mml:semantics&gt; &lt;/mml:math&gt; &lt;/inline-formula&gt;. Without relying on the Generalized Riemann Hypothesis we prove an asymptotic formula for the number of primes &lt;inline-formula content-type=\"math/mathml\"&gt; &lt;mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"German p\"&gt; &lt;mml:semantics&gt; &lt;mml:mrow class=\"MJX-TeXAtom-ORD\"&gt; &lt;mml:mi mathvariant=\"fraktur\"&gt;p&lt;/mml:mi&gt; &lt;/mml:mrow&gt; &lt;mml:annotation encoding=\"application/x-tex\"&gt;mathfrak p&lt;/mml:annotation&gt; &lt;/mml:semantics&gt; &lt;/mml:math&gt; &lt;/inline-formula&gt; of &lt;inline-formula content-type=\"math/mathml\"&gt; &lt;mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper K\"&gt; &lt;mml:semantics&gt; &lt;mml:mi&gt;K&lt;/mml:mi&gt; &lt;mml:annotation encoding=\"application/x-tex\"&gt;K&lt;/mml:annotation&gt; &lt;/mml:semantics&gt; &lt;/mml:math&gt; &lt;/inline-formula&gt; such that the order of &lt;inline-formula content-type=\"math/mathml\"&gt; &lt;mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-parenthesis upper G mod German p right-parenthesis\"&gt; &lt;mml:semantics&gt; &lt;mml:mrow&gt; &lt;mml:mo stretchy=\"false\"&gt;(&lt;/mml:mo&gt; &lt;mml:mi&gt;G&lt;/mml:mi&gt; &lt;mml:mo lspace=\"thickmathspace\" rspace=\"thickmathspace\"&gt;mod&lt;/mml:mo&gt; &lt;mml:mrow class=\"MJX-TeXAtom-ORD\"&gt; &lt;mml:mi mathvariant=\"fraktur\"&gt;p&lt;/mml:mi&gt; &lt;/mml:mrow&gt; &lt;mml:mo stretchy=\"false\"&gt;)&lt;/mml:mo&gt; &lt;/mml:mrow&gt; &lt;mml:annotation encoding=\"application/x-tex\"&gt;(Gbmod mathfrak p)&lt;/mml:annotation&gt; &lt;/mml:semantics&gt; &lt;/mml:math&gt; &lt;/inline-formula&gt; is divisible by a fixed integer. We also provide a rational expression for the natural density of this set. Furthermore, we study the primes &lt;inline-formula content-type=\"math/mathml\"&gt; &lt;mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"German p\"&gt; &lt;mml:semantics&gt; &lt;mml:mrow class=\"MJX-TeXAtom-ORD\"&gt; &lt;mml:mi mathvariant=\"fraktur\"&gt;p&lt;/mml:mi&gt; &lt;/mml:mrow&gt; &lt;mml:annotation encoding=\"application/x-tex\"&gt;mathfrak p&lt;/mml:annotation&gt; &lt;/mml:semantics&gt; &lt;/mml:math&gt; &lt;/inline-formula&gt; for which the order is &lt;inline-formula content-type=\"math/mathml\"&gt; &lt;mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"k\"&gt; &lt;mml:semantics&gt; &lt;mml:mi&gt;k&lt;/mml:mi&gt; &lt;mml:annotation encoding=\"application/x-tex\"&gt;k&lt;/mml:annotation&gt; &lt;/mml:","PeriodicalId":18456,"journal":{"name":"Mathematics of Computation","volume":"235 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134922467","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Splitting integrators for stochastic Lie–Poisson systems 随机Lie-Poisson系统的分裂积分器
2区 数学 Q1 MATHEMATICS, APPLIED Pub Date : 2023-04-27 DOI: 10.1090/mcom/3829
Charles-Edouard Bréhier, David Cohen, Tobias Jahnke
We study stochastic Poisson integrators for a class of stochastic Poisson systems driven by Stratonovich noise. Such geometric integrators preserve Casimir functions and the Poisson map property. For this purpose, we propose explicit stochastic Poisson integrators based on a splitting strategy, and analyse their qualitative and quantitative properties: preservation of Casimir functions, existence of almost sure or moment bounds, asymptotic preserving property, and strong and weak rates of convergence. The construction of the schemes and the theoretical results are illustrated through extensive numerical experiments for three examples of stochastic Lie–Poisson systems, namely: stochastically perturbed Maxwell–Bloch, rigid body and sine–Euler equations.
研究了一类由Stratonovich噪声驱动的随机泊松系统的随机泊松积分器。这样的几何积分器保留了卡西米尔函数和泊松映射的性质。为此,我们提出了一种基于分裂策略的显式随机泊松积分器,并分析了它们的定性和定量性质:卡西米尔函数的保持性、几乎确定或矩界的存在性、渐近保持性、强收敛率和弱收敛率。通过对随机扰动麦克斯韦-布洛赫方程、刚体方程和正弦-欧拉方程三种随机李泊松系统的大量数值实验,说明了格式的构造和理论结果。
{"title":"Splitting integrators for stochastic Lie–Poisson systems","authors":"Charles-Edouard Bréhier, David Cohen, Tobias Jahnke","doi":"10.1090/mcom/3829","DOIUrl":"https://doi.org/10.1090/mcom/3829","url":null,"abstract":"We study stochastic Poisson integrators for a class of stochastic Poisson systems driven by Stratonovich noise. Such geometric integrators preserve Casimir functions and the Poisson map property. For this purpose, we propose explicit stochastic Poisson integrators based on a splitting strategy, and analyse their qualitative and quantitative properties: preservation of Casimir functions, existence of almost sure or moment bounds, asymptotic preserving property, and strong and weak rates of convergence. The construction of the schemes and the theoretical results are illustrated through extensive numerical experiments for three examples of stochastic Lie–Poisson systems, namely: stochastically perturbed Maxwell–Bloch, rigid body and sine–Euler equations.","PeriodicalId":18456,"journal":{"name":"Mathematics of Computation","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136086440","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Explicit bounds for products of primes in AP AP中素数乘积的显界
2区 数学 Q1 MATHEMATICS, APPLIED Pub Date : 2023-04-21 DOI: 10.1090/mcom/3853
Ramachandran Balasubramanian, Olivier Ramaré, Priyamvad Srivastav
For all q 2 qge 2 and for all invertible residue classes a a modulo q q , there exists a natural number that is congruent to a a modulo q q and that is the product of exactly three primes, all of which are below ( 10 15 q ) 5 / 2 (10^{15}q)^{5/2} .
对于所有q≥2 qge 2,对于所有可逆残数类a a模q q,存在一个自然数与a a模q q全等,并且是恰好三个素数的乘积,它们都小于(10 15 q) 5/2 (10^{15}q)^{5/2}。
{"title":"Explicit bounds for products of primes in AP","authors":"Ramachandran Balasubramanian, Olivier Ramaré, Priyamvad Srivastav","doi":"10.1090/mcom/3853","DOIUrl":"https://doi.org/10.1090/mcom/3853","url":null,"abstract":"For all <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"q greater-than-or-equal-to 2\"> <mml:semantics> <mml:mrow> <mml:mi>q</mml:mi> <mml:mo>≥<!-- ≥ --></mml:mo> <mml:mn>2</mml:mn> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">qge 2</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and for all invertible residue classes <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"a\"> <mml:semantics> <mml:mi>a</mml:mi> <mml:annotation encoding=\"application/x-tex\">a</mml:annotation> </mml:semantics> </mml:math> </inline-formula> modulo <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"q\"> <mml:semantics> <mml:mi>q</mml:mi> <mml:annotation encoding=\"application/x-tex\">q</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, there exists a natural number that is congruent to <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"a\"> <mml:semantics> <mml:mi>a</mml:mi> <mml:annotation encoding=\"application/x-tex\">a</mml:annotation> </mml:semantics> </mml:math> </inline-formula> modulo <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"q\"> <mml:semantics> <mml:mi>q</mml:mi> <mml:annotation encoding=\"application/x-tex\">q</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and that is the product of exactly three primes, all of which are below <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-parenthesis 10 Superscript 15 Baseline q right-parenthesis Superscript 5 slash 2\"> <mml:semantics> <mml:mrow> <mml:mo stretchy=\"false\">(</mml:mo> <mml:msup> <mml:mn>10</mml:mn> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mn>15</mml:mn> </mml:mrow> </mml:msup> <mml:mi>q</mml:mi> <mml:msup> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mn>5</mml:mn> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mo>/</mml:mo> </mml:mrow> <mml:mn>2</mml:mn> </mml:mrow> </mml:msup> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">(10^{15}q)^{5/2}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>.","PeriodicalId":18456,"journal":{"name":"Mathematics of Computation","volume":"45 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135463822","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Robust a posteriori estimates for the stochastic Cahn-Hilliard equation 随机Cahn-Hilliard方程的稳健后验估计
2区 数学 Q1 MATHEMATICS, APPLIED Pub Date : 2023-04-19 DOI: 10.1090/mcom/3836
L’ubomír Baňas, Christian Vieth
We derive a posteriori error estimates for a fully discrete finite element approximation of the stochastic Cahn-Hilliard equation. The a posteriori bound is obtained by a splitting of the equation into a linear stochastic partial differential equation and a nonlinear random partial differential equation. The resulting estimate is robust with respect to the interfacial width parameter and is computable since it involves the discrete principal eigenvalue of a linearized (stochastic) Cahn-Hilliard operator. Furthermore, the estimate is robust with respect to topological changes as well as the intensity of the stochastic noise. We provide numerical simulations to demonstrate the practicability of the proposed adaptive algorithm.
我们推导了随机Cahn-Hilliard方程的完全离散有限元近似的后验误差估计。将方程分解为一个线性随机偏微分方程和一个非线性随机偏微分方程,得到了后验界。所得到的估计对于界面宽度参数是鲁棒的,并且是可计算的,因为它涉及线性化(随机)Cahn-Hilliard算子的离散主特征值。此外,该估计对于拓扑变化以及随机噪声的强度具有鲁棒性。通过数值模拟验证了所提出的自适应算法的实用性。
{"title":"Robust a posteriori estimates for the stochastic Cahn-Hilliard equation","authors":"L’ubomír Baňas, Christian Vieth","doi":"10.1090/mcom/3836","DOIUrl":"https://doi.org/10.1090/mcom/3836","url":null,"abstract":"We derive a posteriori error estimates for a fully discrete finite element approximation of the stochastic Cahn-Hilliard equation. The a posteriori bound is obtained by a splitting of the equation into a linear stochastic partial differential equation and a nonlinear random partial differential equation. The resulting estimate is robust with respect to the interfacial width parameter and is computable since it involves the discrete principal eigenvalue of a linearized (stochastic) Cahn-Hilliard operator. Furthermore, the estimate is robust with respect to topological changes as well as the intensity of the stochastic noise. We provide numerical simulations to demonstrate the practicability of the proposed adaptive algorithm.","PeriodicalId":18456,"journal":{"name":"Mathematics of Computation","volume":"104 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135708611","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Jacobi-type algorithms for homogeneous polynomial optimization on Stiefel manifolds with applications to tensor approximations Stiefel流形上齐次多项式优化的jacobi型算法及其在张量逼近中的应用
2区 数学 Q1 MATHEMATICS, APPLIED Pub Date : 2023-04-05 DOI: 10.1090/mcom/3834
Zhou Sheng, Jianze Li, Qin Ni
This paper mainly studies the gradient-based Jacobi-type algorithms to maximize two classes of homogeneous polynomials with orthogonality constraints, and establish their convergence properties. For the first class of homogeneous polynomials subject to a constraint on a Stiefel manifold, we reformulate it as an optimization problem on a unitary group, which makes it possible to apply the gradient-based Jacobi-type (Jacobi-G) algorithm. Then, if the subproblem can always be represented as a quadratic form, we establish the global convergence of Jacobi-G under any one of three conditions. The convergence result for the first condition is an easy extension of the result by Usevich, Li, and Comon [SIAM J. Optim. 30 (2020), pp. 2998–3028], while other two conditions are new ones. This algorithm and the convergence properties apply to the well-known joint approximate symmetric tensor diagonalization. For the second class of homogeneous polynomials subject to constraints on the product of Stiefel manifolds, we reformulate it as an optimization problem on the product of unitary groups, and then develop a new gradient-based multiblock Jacobi-type (Jacobi-MG) algorithm to solve it. We establish the global convergence of Jacobi-MG under any one of the above three conditions, if the subproblem can always be represented as a quadratic form. This algorithm and the convergence properties are suitable to the well-known joint approximate tensor diagonalization. As the proximal variants of Jacobi-G and Jacobi-MG, we also propose the Jacobi-GP and Jacobi-MGP algorithms, and establish their global convergence without any further condition. Some numerical results are provided indicating the efficiency of the proposed algorithms.
本文主要研究了基于梯度的jacobi型算法求解两类具有正交约束的齐次多项式的极值问题,并建立了它们的收敛性。对于Stiefel流形约束下的第一类齐次多项式,我们将其重新表述为一个酉群上的优化问题,从而使基于梯度的Jacobi-G算法得以应用。然后,如果子问题总是可以用二次形式表示,我们建立了Jacobi-G在三种条件中的任意一种下的全局收敛性。第一个条件的收敛结果是Usevich, Li, Comon [SIAM J. Optim. 30 (2020), pp. 2998-3028]结果的简单推广,而其他两个条件是新的。该算法及其收敛性适用于众所周知的联合近似对称张量对角化。对于Stiefel流形积约束下的第二类齐次多项式,将其重新表述为酉群积上的优化问题,并提出了一种新的基于梯度的多块雅可比型(Jacobi-MG)算法。在上述三种条件中的任意一种下,如果子问题总是可以用二次型表示,则证明了Jacobi-MG的全局收敛性。该算法及其收敛性适用于众所周知的联合近似张量对角化。作为Jacobi-G和Jacobi-MG的近端变体,我们还提出了Jacobi-GP和Jacobi-MGP算法,并证明了它们在没有任何进一步条件下的全局收敛性。数值结果表明了所提算法的有效性。
{"title":"Jacobi-type algorithms for homogeneous polynomial optimization on Stiefel manifolds with applications to tensor approximations","authors":"Zhou Sheng, Jianze Li, Qin Ni","doi":"10.1090/mcom/3834","DOIUrl":"https://doi.org/10.1090/mcom/3834","url":null,"abstract":"This paper mainly studies the gradient-based Jacobi-type algorithms to maximize two classes of homogeneous polynomials with orthogonality constraints, and establish their convergence properties. For the first class of homogeneous polynomials subject to a constraint on a Stiefel manifold, we reformulate it as an optimization problem on a unitary group, which makes it possible to apply the gradient-based Jacobi-type (Jacobi-G) algorithm. Then, if the subproblem can always be represented as a quadratic form, we establish the global convergence of Jacobi-G under any one of three conditions. The convergence result for the first condition is an easy extension of the result by Usevich, Li, and Comon [SIAM J. Optim. 30 (2020), pp. 2998–3028], while other two conditions are new ones. This algorithm and the convergence properties apply to the well-known joint approximate symmetric tensor diagonalization. For the second class of homogeneous polynomials subject to constraints on the product of Stiefel manifolds, we reformulate it as an optimization problem on the product of unitary groups, and then develop a new gradient-based multiblock Jacobi-type (Jacobi-MG) algorithm to solve it. We establish the global convergence of Jacobi-MG under any one of the above three conditions, if the subproblem can always be represented as a quadratic form. This algorithm and the convergence properties are suitable to the well-known joint approximate tensor diagonalization. As the proximal variants of Jacobi-G and Jacobi-MG, we also propose the Jacobi-GP and Jacobi-MGP algorithms, and establish their global convergence without any further condition. Some numerical results are provided indicating the efficiency of the proposed algorithms.","PeriodicalId":18456,"journal":{"name":"Mathematics of Computation","volume":"122 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135956560","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Thermodynamically consistent and positivity-preserving discretization of the thin-film equation with thermal noise 热噪声下薄膜方程的热力学一致性和保正离散化
2区 数学 Q1 MATHEMATICS, APPLIED Pub Date : 2023-04-04 DOI: 10.1090/mcom/3830
Benjamin Gess, Rishabh S. Gvalani, Florian Kunick, Felix Otto
In micro-fluidics, both capillarity and thermal fluctuations play an important role. On the level of the lubrication approximation, this leads to a quasi-linear fourth-order parabolic equation for the film height <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="h"> <mml:semantics> <mml:mi>h</mml:mi> <mml:annotation encoding="application/x-tex">h</mml:annotation> </mml:semantics> </mml:math> </inline-formula> driven by space-time white noise. The (formal) gradient flow structure of its deterministic counterpart, the so-called thin-film equation, which encodes the balance between driving capillary and limiting viscous forces, provides the guidance for the thermodynamically consistent introduction of fluctuations. We follow this route on the level of a spatial discretization of the gradient flow structure, i.e., on the level of a discretization of energy functional and dissipative metric tensor. Starting from an energetically conformal finite-element (FE) discretization, we point out that the numerical mobility function introduced by Grün and Rumpf can be interpreted as a discretization of the metric tensor in the sense of a mixed FE method with lumping. While this discretization was devised in order to preserve the so-called entropy estimate, we use this to show that the resulting high-dimensional stochastic differential equation (SDE) preserves pathwise and pointwise strict positivity, at least in case of the physically relevant mobility function arising from the no-slip boundary condition. As a consequence, and as opposed to previous discretizations of the thin-film equation with thermal noise, the above discretization is not in need of an artificial condition at the boundary of the configuration space orthant <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="left-brace h greater-than 0 right-brace"> <mml:semantics> <mml:mrow> <mml:mo fence="false" stretchy="false">{</mml:mo> <mml:mi>h</mml:mi> <mml:mo>></mml:mo> <mml:mn>0</mml:mn> <mml:mo fence="false" stretchy="false">}</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">{h>0}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> (which, admittedly, could also be avoided by modelling a disjoining pressure). Thus, this discretization gives rise to a consistent invariant measure, namely a discretization of the Brownian excursion (up to the volume constraint), and thus features an entropic repulsion. The price to pay over more direct discretizations is that when writing the SDE in Itô’s form, which is the basis for the Euler-Mayurama time discretization, a correction term appears. We perform various numerical experiments to compare the behavior and performance of our discretization to that of a particular finite difference discretization of the equation. Among other things, we study numerically the invariance and entropic repulsion of the invariant
在微流体中,毛细作用和热波动都起着重要的作用。在润滑近似的水平上,得到了时空白噪声驱动下膜高度h h的拟线性四阶抛物方程。其确定性对应的(正式的)梯度流动结构,即所谓的薄膜方程,编码了驱动毛细管力和限制粘性力之间的平衡,为波动的热力学一致性引入提供了指导。我们在梯度流结构的空间离散化水平上遵循这条路线,即在能量泛函和耗散度量张量的离散化水平上。从能量共形有限元(FE)离散出发,指出gr n和Rumpf引入的数值迁移率函数可以解释为带有集总的混合有限元方法意义上度量张量的离散化。虽然这种离散化是为了保持所谓的熵估计而设计的,但我们用它来表明,所得到的高维随机微分方程(SDE)至少在无滑移边界条件产生的物理相关迁移函数的情况下,保持了路径和点的严格正性。因此,与之前对热噪声薄膜方程的离散化相反,上述离散化不需要在构形空间正交{h >0} {h>0}(诚然,这也可以通过模拟分离压力来避免)。因此,这种离散化产生了一个一致的不变测度,即布朗偏移的离散化(直到体积约束),从而具有熵排斥。与更直接的离散化相比,付出的代价是,当将SDE写成Itô的形式(这是欧拉- mayurama时间离散化的基础)时,会出现一个校正项。我们进行了各种数值实验来比较我们的离散化与方程的特定有限差分离散化的行为和性能。除其他事项外,我们在数值上研究了不变测度的不变性和熵排斥,并为以下事实提供了证据:当我们的离散化远离∂{h >0} partial {h >0 }。
{"title":"Thermodynamically consistent and positivity-preserving discretization of the thin-film equation with thermal noise","authors":"Benjamin Gess, Rishabh S. Gvalani, Florian Kunick, Felix Otto","doi":"10.1090/mcom/3830","DOIUrl":"https://doi.org/10.1090/mcom/3830","url":null,"abstract":"In micro-fluidics, both capillarity and thermal fluctuations play an important role. On the level of the lubrication approximation, this leads to a quasi-linear fourth-order parabolic equation for the film height &lt;inline-formula content-type=\"math/mathml\"&gt; &lt;mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"h\"&gt; &lt;mml:semantics&gt; &lt;mml:mi&gt;h&lt;/mml:mi&gt; &lt;mml:annotation encoding=\"application/x-tex\"&gt;h&lt;/mml:annotation&gt; &lt;/mml:semantics&gt; &lt;/mml:math&gt; &lt;/inline-formula&gt; driven by space-time white noise. The (formal) gradient flow structure of its deterministic counterpart, the so-called thin-film equation, which encodes the balance between driving capillary and limiting viscous forces, provides the guidance for the thermodynamically consistent introduction of fluctuations. We follow this route on the level of a spatial discretization of the gradient flow structure, i.e., on the level of a discretization of energy functional and dissipative metric tensor. Starting from an energetically conformal finite-element (FE) discretization, we point out that the numerical mobility function introduced by Grün and Rumpf can be interpreted as a discretization of the metric tensor in the sense of a mixed FE method with lumping. While this discretization was devised in order to preserve the so-called entropy estimate, we use this to show that the resulting high-dimensional stochastic differential equation (SDE) preserves pathwise and pointwise strict positivity, at least in case of the physically relevant mobility function arising from the no-slip boundary condition. As a consequence, and as opposed to previous discretizations of the thin-film equation with thermal noise, the above discretization is not in need of an artificial condition at the boundary of the configuration space orthant &lt;inline-formula content-type=\"math/mathml\"&gt; &lt;mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-brace h greater-than 0 right-brace\"&gt; &lt;mml:semantics&gt; &lt;mml:mrow&gt; &lt;mml:mo fence=\"false\" stretchy=\"false\"&gt;{&lt;/mml:mo&gt; &lt;mml:mi&gt;h&lt;/mml:mi&gt; &lt;mml:mo&gt;&gt;&lt;/mml:mo&gt; &lt;mml:mn&gt;0&lt;/mml:mn&gt; &lt;mml:mo fence=\"false\" stretchy=\"false\"&gt;}&lt;/mml:mo&gt; &lt;/mml:mrow&gt; &lt;mml:annotation encoding=\"application/x-tex\"&gt;{h&gt;0}&lt;/mml:annotation&gt; &lt;/mml:semantics&gt; &lt;/mml:math&gt; &lt;/inline-formula&gt; (which, admittedly, could also be avoided by modelling a disjoining pressure). Thus, this discretization gives rise to a consistent invariant measure, namely a discretization of the Brownian excursion (up to the volume constraint), and thus features an entropic repulsion. The price to pay over more direct discretizations is that when writing the SDE in Itô’s form, which is the basis for the Euler-Mayurama time discretization, a correction term appears. We perform various numerical experiments to compare the behavior and performance of our discretization to that of a particular finite difference discretization of the equation. Among other things, we study numerically the invariance and entropic repulsion of the invariant ","PeriodicalId":18456,"journal":{"name":"Mathematics of Computation","volume":"68 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136088151","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Explicit and efficient error estimation for convex minimization problems 凸极小化问题的显式有效误差估计
2区 数学 Q1 MATHEMATICS, APPLIED Pub Date : 2023-03-22 DOI: 10.1090/mcom/3821
Sören Bartels, Alex Kaltenbach
We combine a systematic approach for deriving general a posteriori error estimates for convex minimization problems based on convex duality relations with a recently derived generalized Marini formula. The a posteriori error estimates are quasi constant-free and apply to a large class of variational problems including the p p -Dirichlet problem, as well as degenerate minimization, obstacle and image de-noising problems. In addition, these a posteriori error estimates are based on a comparison to a given non-conforming finite element solution. For the p p -Dirichlet problem, these a posteriori error bounds are equivalent to residual type a posteriori error bounds and, hence, reliable and efficient.
我们将基于凸对偶关系的凸最小化问题的一般后验误差估计的系统方法与最近导出的广义Marini公式相结合。后验误差估计是准常数自由的,并适用于一大类变分问题,包括p -Dirichlet问题,以及退化最小化,障碍和图像去噪问题。此外,这些后验误差估计是基于与给定非一致性有限元解的比较。对于p p -Dirichlet问题,这些后验误差界等价于残差型后验误差界,因此是可靠和有效的。
{"title":"Explicit and efficient error estimation for convex minimization problems","authors":"Sören Bartels, Alex Kaltenbach","doi":"10.1090/mcom/3821","DOIUrl":"https://doi.org/10.1090/mcom/3821","url":null,"abstract":"We combine a systematic approach for deriving general a posteriori error estimates for convex minimization problems based on convex duality relations with a recently derived generalized Marini formula. The a posteriori error estimates are quasi constant-free and apply to a large class of variational problems including the <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p\"> <mml:semantics> <mml:mi>p</mml:mi> <mml:annotation encoding=\"application/x-tex\">p</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-Dirichlet problem, as well as degenerate minimization, obstacle and image de-noising problems. In addition, these a posteriori error estimates are based on a comparison to a given non-conforming finite element solution. For the <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p\"> <mml:semantics> <mml:mi>p</mml:mi> <mml:annotation encoding=\"application/x-tex\">p</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-Dirichlet problem, these a posteriori error bounds are equivalent to residual type a posteriori error bounds and, hence, reliable and efficient.","PeriodicalId":18456,"journal":{"name":"Mathematics of Computation","volume":"204 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136174585","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Pointwise error estimates and local superconvergence of Jacobi expansions Jacobi展开的点态误差估计和局部超收敛性
2区 数学 Q1 MATHEMATICS, APPLIED Pub Date : 2023-03-21 DOI: 10.1090/mcom/3835
Shuhuang Xiang, Desong Kong, Guidong Liu, Li-Lian Wang
As one myth of polynomial interpolation and quadrature, Trefethen [Math. Today (Southend-on-Sea) 47 (2011), pp. 184–188] revealed that the Chebyshev interpolation of <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="StartAbsoluteValue x minus a EndAbsoluteValue"> <mml:semantics> <mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo stretchy="false">|</mml:mo> </mml:mrow> <mml:mi>x</mml:mi> <mml:mo>−<!-- − --></mml:mo> <mml:mi>a</mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo stretchy="false">|</mml:mo> </mml:mrow> </mml:mrow> <mml:annotation encoding="application/x-tex">|x-a|</mml:annotation> </mml:semantics> </mml:math> </inline-formula> (with <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="StartAbsoluteValue a EndAbsoluteValue greater-than 1"> <mml:semantics> <mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo stretchy="false">|</mml:mo> </mml:mrow> <mml:mi>a</mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo stretchy="false">|</mml:mo> </mml:mrow> <mml:mo>></mml:mo> <mml:mn>1</mml:mn> </mml:mrow> <mml:annotation encoding="application/x-tex">|a|>1</mml:annotation> </mml:semantics> </mml:math> </inline-formula>) at the Clenshaw-Curtis points exhibited a much smaller error than the best polynomial approximation (in the maximum norm) in about <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="95"> <mml:semantics> <mml:mn>95</mml:mn> <mml:annotation encoding="application/x-tex">95%</mml:annotation> </mml:semantics> </mml:math> </inline-formula> range of <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="left-bracket negative 1 comma 1 right-bracket"> <mml:semantics> <mml:mrow> <mml:mo stretchy="false">[</mml:mo> <mml:mo>−<!-- − --></mml:mo> <mml:mn>1</mml:mn> <mml:mo>,</mml:mo> <mml:mn>1</mml:mn> <mml:mo stretchy="false">]</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">[-1,1]</mml:annotation> </mml:semantics> </mml:math> </inline-formula> except for a small neighbourhood near the singular point <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="x equals a period"> <mml:semantics> <mml:mrow> <mml:mi>x</mml:mi> <mml:mo>=</mml:mo> <mml:mi>a</mml:mi> <mml:mo>.</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">x=a.</mml:annotation> </mml:semantics> </mml:math> </inline-formula> In this paper, we rigorously show that the Jacobi expansion for a more general class of <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="normal upper Phi"> <mml:semantics> <mml:mi mathvariant="normal">Φ<!-- Φ --></mml:mi> <mml:annotation encoding="application/x-tex">Phi</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-functions also enjoys such a local convergence
作为多项式插值和正交的一个神话,Trefethen[数学]。Today (Southend-on-Sea) 47 (2011), pp. 184-188]揭示了|x−a| |x-a|的切比雪夫插值(与| a| &gt;1 |a|&gt;1)在克伦肖-柯蒂斯点上的误差比最佳多项式近似(在最大范数中)在大约95 95的误差要小得多% range of [ − 1 , 1 ] [-1,1] except for a small neighbourhood near the singular point x = a . x=a. In this paper, we rigorously show that the Jacobi expansion for a more general class of Φ Phi -functions also enjoys such a local convergence behaviour. Our assertion draws on the pointwise error estimate using the reproducing kernel of Jacobi polynomials and the Hilb-type formula on the asymptotic of the Bessel transforms. We also study the local superconvergence and show the gain in order and the subregions it occurs. As a by-product of this new argument, the undesired log ⁡ n log n -factor in the pointwise error estimate for the Legendre expansion recently stated in Babus̆ka and Hakula [Comput. Methods Appl. Mech Engrg. 345 (2019), pp. 748–773] can be removed. Finally, all these estimates are extended to the functions with boundary singularities. We provide ample numerical evidences to demonstrate the optimality and sharpness of the estimates.
{"title":"Pointwise error estimates and local superconvergence of Jacobi expansions","authors":"Shuhuang Xiang, Desong Kong, Guidong Liu, Li-Lian Wang","doi":"10.1090/mcom/3835","DOIUrl":"https://doi.org/10.1090/mcom/3835","url":null,"abstract":"As one myth of polynomial interpolation and quadrature, Trefethen [Math. Today (Southend-on-Sea) 47 (2011), pp. 184–188] revealed that the Chebyshev interpolation of &lt;inline-formula content-type=\"math/mathml\"&gt; &lt;mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"StartAbsoluteValue x minus a EndAbsoluteValue\"&gt; &lt;mml:semantics&gt; &lt;mml:mrow&gt; &lt;mml:mrow class=\"MJX-TeXAtom-ORD\"&gt; &lt;mml:mo stretchy=\"false\"&gt;|&lt;/mml:mo&gt; &lt;/mml:mrow&gt; &lt;mml:mi&gt;x&lt;/mml:mi&gt; &lt;mml:mo&gt;−&lt;!-- − --&gt;&lt;/mml:mo&gt; &lt;mml:mi&gt;a&lt;/mml:mi&gt; &lt;mml:mrow class=\"MJX-TeXAtom-ORD\"&gt; &lt;mml:mo stretchy=\"false\"&gt;|&lt;/mml:mo&gt; &lt;/mml:mrow&gt; &lt;/mml:mrow&gt; &lt;mml:annotation encoding=\"application/x-tex\"&gt;|x-a|&lt;/mml:annotation&gt; &lt;/mml:semantics&gt; &lt;/mml:math&gt; &lt;/inline-formula&gt; (with &lt;inline-formula content-type=\"math/mathml\"&gt; &lt;mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"StartAbsoluteValue a EndAbsoluteValue greater-than 1\"&gt; &lt;mml:semantics&gt; &lt;mml:mrow&gt; &lt;mml:mrow class=\"MJX-TeXAtom-ORD\"&gt; &lt;mml:mo stretchy=\"false\"&gt;|&lt;/mml:mo&gt; &lt;/mml:mrow&gt; &lt;mml:mi&gt;a&lt;/mml:mi&gt; &lt;mml:mrow class=\"MJX-TeXAtom-ORD\"&gt; &lt;mml:mo stretchy=\"false\"&gt;|&lt;/mml:mo&gt; &lt;/mml:mrow&gt; &lt;mml:mo&gt;&gt;&lt;/mml:mo&gt; &lt;mml:mn&gt;1&lt;/mml:mn&gt; &lt;/mml:mrow&gt; &lt;mml:annotation encoding=\"application/x-tex\"&gt;|a|&gt;1&lt;/mml:annotation&gt; &lt;/mml:semantics&gt; &lt;/mml:math&gt; &lt;/inline-formula&gt;) at the Clenshaw-Curtis points exhibited a much smaller error than the best polynomial approximation (in the maximum norm) in about &lt;inline-formula content-type=\"math/mathml\"&gt; &lt;mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"95\"&gt; &lt;mml:semantics&gt; &lt;mml:mn&gt;95&lt;/mml:mn&gt; &lt;mml:annotation encoding=\"application/x-tex\"&gt;95%&lt;/mml:annotation&gt; &lt;/mml:semantics&gt; &lt;/mml:math&gt; &lt;/inline-formula&gt; range of &lt;inline-formula content-type=\"math/mathml\"&gt; &lt;mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-bracket negative 1 comma 1 right-bracket\"&gt; &lt;mml:semantics&gt; &lt;mml:mrow&gt; &lt;mml:mo stretchy=\"false\"&gt;[&lt;/mml:mo&gt; &lt;mml:mo&gt;−&lt;!-- − --&gt;&lt;/mml:mo&gt; &lt;mml:mn&gt;1&lt;/mml:mn&gt; &lt;mml:mo&gt;,&lt;/mml:mo&gt; &lt;mml:mn&gt;1&lt;/mml:mn&gt; &lt;mml:mo stretchy=\"false\"&gt;]&lt;/mml:mo&gt; &lt;/mml:mrow&gt; &lt;mml:annotation encoding=\"application/x-tex\"&gt;[-1,1]&lt;/mml:annotation&gt; &lt;/mml:semantics&gt; &lt;/mml:math&gt; &lt;/inline-formula&gt; except for a small neighbourhood near the singular point &lt;inline-formula content-type=\"math/mathml\"&gt; &lt;mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"x equals a period\"&gt; &lt;mml:semantics&gt; &lt;mml:mrow&gt; &lt;mml:mi&gt;x&lt;/mml:mi&gt; &lt;mml:mo&gt;=&lt;/mml:mo&gt; &lt;mml:mi&gt;a&lt;/mml:mi&gt; &lt;mml:mo&gt;.&lt;/mml:mo&gt; &lt;/mml:mrow&gt; &lt;mml:annotation encoding=\"application/x-tex\"&gt;x=a.&lt;/mml:annotation&gt; &lt;/mml:semantics&gt; &lt;/mml:math&gt; &lt;/inline-formula&gt; In this paper, we rigorously show that the Jacobi expansion for a more general class of &lt;inline-formula content-type=\"math/mathml\"&gt; &lt;mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper Phi\"&gt; &lt;mml:semantics&gt; &lt;mml:mi mathvariant=\"normal\"&gt;Φ&lt;!-- Φ --&gt;&lt;/mml:mi&gt; &lt;mml:annotation encoding=\"application/x-tex\"&gt;Phi&lt;/mml:annotation&gt; &lt;/mml:semantics&gt; &lt;/mml:math&gt; &lt;/inline-formula&gt;-functions also enjoys such a local convergence ","PeriodicalId":18456,"journal":{"name":"Mathematics of Computation","volume":"35 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136338734","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Mathematics of Computation
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1