The blocky optimization has gained a significant amount of attention in far-reaching practical applications. Following the recent work (M. Nikolova and P. Tan [SIAM J. Optim. 29 (2019), pp. 2053–2078]) on solving a class of nonconvex nonsmooth optimization, we develop a stochastic alternating structure-adapted proximal (s-ASAP) gradient descent method for solving blocky optimization problems. By deploying some state-of-the-art variance reduced gradient estimators (rather than full gradient) in stochastic optimization, the s-ASAP method is applicable to nonconvex optimization whose objective is the sum of a nonsmooth data-fitting term and a finite number of differentiable functions. The sublinear convergence rate of s-ASAP is built upon the proximal point algorithmic framework, whilst the linear convergence rate of s-ASAP is achieved under the error bound condition. Furthermore, the convergence of the sequence produced by s-ASAP is established under the Kurdyka-Łojasiewicz property. Preliminary numerical simulations on some image processing applications demonstrate the compelling performance of the proposed method.
块状优化在意义深远的实际应用中获得了大量关注。继最近关于求解一类非凸非光滑优化的工作(M. Nikolova 和 P. Tan [SIAM J. Optim. 29 (2019),pp. 2053-2078])之后,我们开发了一种用于求解块状优化问题的随机交替结构适应近似(s-ASAP)梯度下降方法。通过采用随机优化中一些最先进的方差缩小梯度估计器(而不是全梯度),s-ASAP 方法适用于目标为非光滑数据拟合项与有限个可微分函数之和的非凸优化。s-ASAP的亚线性收敛率建立在近点算法框架之上,而s-ASAP的线性收敛率是在误差约束条件下实现的。此外,s-ASAP 生成的序列的收敛性是在 Kurdyka-Łojasiewicz 属性下确定的。对一些图像处理应用的初步数值模拟证明了所提方法的卓越性能。
{"title":"Stochastic alternating structure-adapted proximal gradient descent method with variance reduction for nonconvex nonsmooth optimization","authors":"Zehui Jia, Wenxing Zhang, Xingju Cai, Deren Han","doi":"10.1090/mcom/3867","DOIUrl":"https://doi.org/10.1090/mcom/3867","url":null,"abstract":"<p>The blocky optimization has gained a significant amount of attention in far-reaching practical applications. Following the recent work (M. Nikolova and P. Tan [SIAM J. Optim. 29 (2019), pp. 2053–2078]) on solving a class of nonconvex nonsmooth optimization, we develop a stochastic alternating structure-adapted proximal (s-ASAP) gradient descent method for solving blocky optimization problems. By deploying some state-of-the-art variance reduced gradient estimators (rather than full gradient) in stochastic optimization, the s-ASAP method is applicable to nonconvex optimization whose objective is the sum of a nonsmooth data-fitting term and a finite number of differentiable functions. The sublinear convergence rate of s-ASAP is built upon the proximal point algorithmic framework, whilst the linear convergence rate of s-ASAP is achieved under the error bound condition. Furthermore, the convergence of the sequence produced by s-ASAP is established under the Kurdyka-Łojasiewicz property. Preliminary numerical simulations on some image processing applications demonstrate the compelling performance of the proposed method.</p>","PeriodicalId":18456,"journal":{"name":"Mathematics of Computation","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2024-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140935468","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
We present a complete numerical analysis for a general discretization of a coupled flow–mechanics model in fractured porous media, considering single-phase flows and including frictionless contact at matrix–fracture interfaces, as well as nonlinear poromechanical coupling. Fractures are described as planar surfaces, yielding the so-called mixed- or hybrid-dimensional models. Small displacements and a linear elastic behavior are considered for the matrix. The model accounts for discontinuous fluid pressures at matrix–fracture interfaces in order to cover a wide range of normal fracture conductivities.
The numerical analysis is carried out in the Gradient Discretization framework (see J. Droniou, R. Eymard, T. Gallouët, C. Guichard, and R. Herbin [The gradient discretisation method, Springer, Cham, 2018]), encompassing a large family of conforming and nonconforming discretizations. The convergence result also yields, as a by-product, the existence of a weak solution to the continuous model. A numerical experiment in 2D is presented to support the obtained result, employing a Hybrid Finite Volume scheme for the flow and second-order finite elements (P2mathbb {P}_2) for the mechanical displacement coupled with face-wise constant (P0mathbb P_0) Lagrange multipliers on fractures, representing normal stresses, to discretize the contact conditions.
{"title":"Numerical analysis of a mixed-dimensional poromechanical model with frictionless contact at matrix–fracture interfaces","authors":"Francesco Bonaldi, Jérôme Droniou, Roland Masson","doi":"10.1090/mcom/3949","DOIUrl":"https://doi.org/10.1090/mcom/3949","url":null,"abstract":"<p>We present a complete numerical analysis for a general discretization of a coupled flow–mechanics model in fractured porous media, considering single-phase flows and including frictionless contact at matrix–fracture interfaces, as well as nonlinear poromechanical coupling. Fractures are described as planar surfaces, yielding the so-called mixed- or hybrid-dimensional models. Small displacements and a linear elastic behavior are considered for the matrix. The model accounts for discontinuous fluid pressures at matrix–fracture interfaces in order to cover a wide range of normal fracture conductivities.</p> <p>The numerical analysis is carried out in the Gradient Discretization framework (see J. Droniou, R. Eymard, T. Gallouët, C. Guichard, and R. Herbin [<italic>The gradient discretisation method</italic>, Springer, Cham, 2018]), encompassing a large family of conforming and nonconforming discretizations. The convergence result also yields, as a by-product, the existence of a weak solution to the continuous model. A numerical experiment in 2D is presented to support the obtained result, employing a Hybrid Finite Volume scheme for the flow and second-order finite elements (<inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper P 2\"> <mml:semantics> <mml:msub> <mml:mrow> <mml:mi mathvariant=\"double-struck\">P</mml:mi> </mml:mrow> <mml:mn>2</mml:mn> </mml:msub> <mml:annotation encoding=\"application/x-tex\">mathbb {P}_2</mml:annotation> </mml:semantics> </mml:math> </inline-formula>) for the mechanical displacement coupled with face-wise constant (<inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper P 0\"> <mml:semantics> <mml:msub> <mml:mrow> <mml:mi mathvariant=\"double-struck\">P</mml:mi> </mml:mrow> <mml:mn>0</mml:mn> </mml:msub> <mml:annotation encoding=\"application/x-tex\">mathbb P_0</mml:annotation> </mml:semantics> </mml:math> </inline-formula>) Lagrange multipliers on fractures, representing normal stresses, to discretize the contact conditions.</p>","PeriodicalId":18456,"journal":{"name":"Mathematics of Computation","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2024-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140931392","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Current methods for the classification of number fields with small regulator depend mainly on an upper bound for the discriminant, which can be improved by looking for the best possible upper bound of a specific polynomial function over a hypercube. In this paper, we provide new and effective upper bounds for the case of fields with one complex embedding and degree between five and nine: this is done by adapting the strategy we have adopted to study the totally real case, but for this new setting several new computational issues had to be overcome. As a consequence, we detect the four number fields of signature (r1,r2)=(6,1)(r_1,r_2)=(6,1) with smallest regulator; we also expand current lists of number fields with small regulator in signatures (3,1)(3,1), (4,1)(4,1) and (5,1)(5,1).
{"title":"Generalized Pohst inequality and small regulators","authors":"Francesco Battistoni, Giuseppe Molteni","doi":"10.1090/mcom/3954","DOIUrl":"https://doi.org/10.1090/mcom/3954","url":null,"abstract":"<p>Current methods for the classification of number fields with small regulator depend mainly on an upper bound for the discriminant, which can be improved by looking for the best possible upper bound of a specific polynomial function over a hypercube. In this paper, we provide new and effective upper bounds for the case of fields with one complex embedding and degree between five and nine: this is done by adapting the strategy we have adopted to study the totally real case, but for this new setting several new computational issues had to be overcome. As a consequence, we detect the four number fields of signature <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-parenthesis r 1 comma r 2 right-parenthesis equals left-parenthesis 6 comma 1 right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mo stretchy=\"false\">(</mml:mo> <mml:msub> <mml:mi>r</mml:mi> <mml:mn>1</mml:mn> </mml:msub> <mml:mo>,</mml:mo> <mml:msub> <mml:mi>r</mml:mi> <mml:mn>2</mml:mn> </mml:msub> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mo>=</mml:mo> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mn>6</mml:mn> <mml:mo>,</mml:mo> <mml:mn>1</mml:mn> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">(r_1,r_2)=(6,1)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> with smallest regulator; we also expand current lists of number fields with small regulator in signatures <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-parenthesis 3 comma 1 right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mn>3</mml:mn> <mml:mo>,</mml:mo> <mml:mn>1</mml:mn> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">(3,1)</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-parenthesis 4 comma 1 right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mn>4</mml:mn> <mml:mo>,</mml:mo> <mml:mn>1</mml:mn> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">(4,1)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-parenthesis 5 comma 1 right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mn>5</mml:mn> <mml:mo>,</mml:mo> <mml:mn>1</mml:mn> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">(5,1)</mml:annotation> </mml:semantics> </mml:math> </inline-formula>.</p>","PeriodicalId":18456,"journal":{"name":"Mathematics of Computation","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2024-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140931199","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A new H(divdiv)H(operatorname {div}operatorname {div})-conforming finite element is presented, which avoids the need for supersmoothness by redistributing the degrees of freedom to edges and faces. This leads to a hybridizable mixed method with superconvergence for the biharmonic equation. Moreover, new finite element divdiv complexes are established. Finally, new weak Galerkin and C0C^0 discontinuous Galerkin methods for the biharmonic equation are derived.
本文提出了一种新的 H ( div div ) H(operatorname {div}operatorname {div}) 顺应有限元,通过将自由度重新分配到边和面,避免了对超平滑性的需求。这就为双谐波方程带来了一种具有超收敛性的可混合混合方法。此外,还建立了新的有限元 divdiv 复数。最后,推导出了双谐波方程的新弱 Galerkin 方法和 C 0 C^0 非连续 Galerkin 方法。
{"title":"A new div-div-conforming symmetric tensor finite element space with applications to the biharmonic equation","authors":"Long Chen, Xuehai Huang","doi":"10.1090/mcom/3957","DOIUrl":"https://doi.org/10.1090/mcom/3957","url":null,"abstract":"<p>A new <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper H left-parenthesis d i v d i v right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mi>H</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>div</mml:mi> <mml:mo><!-- --></mml:mo> <mml:mi>div</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">H(operatorname {div}operatorname {div})</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-conforming finite element is presented, which avoids the need for supersmoothness by redistributing the degrees of freedom to edges and faces. This leads to a hybridizable mixed method with superconvergence for the biharmonic equation. Moreover, new finite element divdiv complexes are established. Finally, new weak Galerkin and <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper C Superscript 0\"> <mml:semantics> <mml:msup> <mml:mi>C</mml:mi> <mml:mn>0</mml:mn> </mml:msup> <mml:annotation encoding=\"application/x-tex\">C^0</mml:annotation> </mml:semantics> </mml:math> </inline-formula> discontinuous Galerkin methods for the biharmonic equation are derived.</p>","PeriodicalId":18456,"journal":{"name":"Mathematics of Computation","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2024-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140931345","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In this paper, we study the ultraweak-local discontinuous Galerkin (UWLDG) method for time-dependent linear fourth-order problems with four types of boundary conditions. In one dimension and two dimensions, stability and optimal error estimates of order k+1k+1 are derived for the UWLDG scheme with polynomials of degree at most kk (k≥1kge 1) for solving initial-boundary value problems. The main difficulties are the design of suitable penalty terms at the boundary for numerical fluxes and the construction of projections. More precisely, in two dimensions with the Dirichlet boundary condition, an elaborate projection of the exact boundary condition is proposed as the boundary flux, which, in combination with some proper penalty terms, leads to the stability and optimal error estimates. For other three types of boundary conditions, optimal error estimates can also be proved for fluxes without any penalty terms when special projections are designed to match different boundary conditions. Numerical experiments are presented to confirm the sharpness of theoretical results.
本文研究了具有四种边界条件的时变线性四阶问题的超弱局部非连续伽勒金(UWLDG)方法。在一维和二维中,推导了阶数为 k + 1 k+1 的 UWLDG 方案的稳定性和最优误差估计值,该方案的多项式度最多为 k k ( k ≥ 1 kge 1 ) ,用于求解初界值问题。主要困难在于为数值通量设计合适的边界惩罚项和构建投影。更确切地说,在二维的 Dirichlet 边界条件下,提出了精确边界条件的精细投影作为边界通量,结合一些适当的惩罚项,可获得稳定性和最佳误差估计。对于其他三种边界条件,如果设计了与不同边界条件相匹配的特殊投影,则不需要任何惩罚项的通量也能证明最佳误差估计。为了证实理论结果的精确性,我们给出了数值实验结果。
{"title":"Analysis of the boundary conditions for the ultraweak-local discontinuous Galerkin method of time-dependent linear fourth-order problems","authors":"Fengyu Fu, Chi-Wang Shu, Qi Tao, Boying Wu","doi":"10.1090/mcom/3955","DOIUrl":"https://doi.org/10.1090/mcom/3955","url":null,"abstract":"<p>In this paper, we study the ultraweak-local discontinuous Galerkin (UWLDG) method for time-dependent linear fourth-order problems with four types of boundary conditions. In one dimension and two dimensions, stability and optimal error estimates of order <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"k plus 1\"> <mml:semantics> <mml:mrow> <mml:mi>k</mml:mi> <mml:mo>+</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">k+1</mml:annotation> </mml:semantics> </mml:math> </inline-formula> are derived for the UWLDG scheme with polynomials of degree at most <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"k\"> <mml:semantics> <mml:mi>k</mml:mi> <mml:annotation encoding=\"application/x-tex\">k</mml:annotation> </mml:semantics> </mml:math> </inline-formula> (<inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"k greater-than-or-equal-to 1\"> <mml:semantics> <mml:mrow> <mml:mi>k</mml:mi> <mml:mo>≥<!-- ≥ --></mml:mo> <mml:mn>1</mml:mn> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">kge 1</mml:annotation> </mml:semantics> </mml:math> </inline-formula>) for solving initial-boundary value problems. The main difficulties are the design of suitable penalty terms at the boundary for numerical fluxes and the construction of projections. More precisely, in two dimensions with the Dirichlet boundary condition, an elaborate projection of the exact boundary condition is proposed as the boundary flux, which, in combination with some proper penalty terms, leads to the stability and optimal error estimates. For other three types of boundary conditions, optimal error estimates can also be proved for fluxes without any penalty terms when special projections are designed to match different boundary conditions. Numerical experiments are presented to confirm the sharpness of theoretical results.</p>","PeriodicalId":18456,"journal":{"name":"Mathematics of Computation","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2024-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140931331","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In this paper, we consider the problem of computing an arbitrary generalized singular value of a Grassman or real matrix pair and a triplet of associated generalized singular vectors. Based on the QR factorization, the problem is reformulated as two novel trace maximization problems, each of which has double variables with unitary constraints or orthogonal constraints. Theoretically, we show that the arbitrarily prescribed extreme generalized singular values and associated triplets of generalized singular vectors can be determined by the global solutions of the constrained trace optimization problems. Then we propose a geometric inexact Newton–conjugate gradient (Newton-CG) method for solving their equivalent trace minimization problems over the Riemannian manifold of all fixed-rank partial isometries. The proposed method can extract not only the prescribed extreme generalized singular values but also associated triplets of generalized singular vectors. Under some mild assumptions, we establish the global and quadratic convergence of the proposed method. Finally, numerical experiments on both synthetic and real data sets show the effectiveness and high accuracy of our method.
在本文中,我们考虑了计算格拉斯曼或实矩阵对的任意广义奇异值以及相关广义奇异向量三元组的问题。在 QR 因式分解的基础上,该问题被重新表述为两个新颖的迹最大化问题,每个问题都有带有单元约束或正交约束的双变量。从理论上讲,我们证明了任意规定的极端广义奇异值和相关的广义奇异向量三元组可以通过约束迹优化问题的全局解来确定。然后,我们提出了一种几何非精确牛顿-共轭梯度(Newton-CG)方法,用于求解所有固定阶偏等距的黎曼流形上的等效迹最小化问题。所提出的方法不仅能提取规定的极端广义奇异值,还能提取相关的广义奇异向量三元组。在一些温和的假设条件下,我们确定了所提方法的全局收敛性和二次收敛性。最后,在合成数据集和真实数据集上进行的数值实验表明了我们方法的有效性和高精确度。
{"title":"Double-variable trace maximization for extreme generalized singular quartets of a matrix pair: A geometric method","authors":"Wei-Wei Xu, Zheng-Jian Bai","doi":"10.1090/mcom/3936","DOIUrl":"https://doi.org/10.1090/mcom/3936","url":null,"abstract":"In this paper, we consider the problem of computing an arbitrary generalized singular value of a Grassman or real matrix pair and a triplet of associated generalized singular vectors. Based on the QR factorization, the problem is reformulated as two novel trace maximization problems, each of which has double variables with unitary constraints or orthogonal constraints. Theoretically, we show that the arbitrarily prescribed extreme generalized singular values and associated triplets of generalized singular vectors can be determined by the global solutions of the constrained trace optimization problems. Then we propose a geometric inexact Newton–conjugate gradient (Newton-CG) method for solving their equivalent trace minimization problems over the Riemannian manifold of all fixed-rank partial isometries. The proposed method can extract not only the prescribed extreme generalized singular values but also associated triplets of generalized singular vectors. Under some mild assumptions, we establish the global and quadratic convergence of the proposed method. Finally, numerical experiments on both synthetic and real data sets show the effectiveness and high accuracy of our method.","PeriodicalId":18456,"journal":{"name":"Mathematics of Computation","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2024-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139961199","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
We develop a numerical method for the Westervelt equation, an important equation in nonlinear acoustics, in the form where the attenuation is represented by a class of nonlocal in time operators. A semi-discretisation in time based on the trapezoidal rule and A-stable convolution quadrature is stated and analysed. Existence and regularity analysis of the continuous equations informs the stability and error analysis of the semi-discrete system. The error analysis includes the consideration of the singularity at t=0t = 0 which is addressed by the use of a correction in the numerical scheme. Extensive numerical experiments confirm the theory.
我们为非线性声学中的一个重要方程 Westervelt 方程开发了一种数值方法,该方程的衰减形式由一类非局部时间算子表示。基于梯形法则和 A 稳定卷积正交的时间半离散化方法得到了阐述和分析。连续方程的存在性和正则性分析为半离散系统的稳定性和误差分析提供了信息。误差分析包括考虑 t = 0 t = 0 处的奇异性,通过在数值方案中使用修正来解决这一问题。大量的数值实验证实了这一理论。
{"title":"Numerical analysis of a time-stepping method for the Westervelt equation with time-fractional damping","authors":"Katherine Baker, Lehel Banjai, Mariya Ptashnyk","doi":"10.1090/mcom/3945","DOIUrl":"https://doi.org/10.1090/mcom/3945","url":null,"abstract":"<p>We develop a numerical method for the Westervelt equation, an important equation in nonlinear acoustics, in the form where the attenuation is represented by a class of nonlocal in time operators. A semi-discretisation in time based on the trapezoidal rule and A-stable convolution quadrature is stated and analysed. Existence and regularity analysis of the continuous equations informs the stability and error analysis of the semi-discrete system. The error analysis includes the consideration of the singularity at <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"t equals 0\"> <mml:semantics> <mml:mrow> <mml:mi>t</mml:mi> <mml:mo>=</mml:mo> <mml:mn>0</mml:mn> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">t = 0</mml:annotation> </mml:semantics> </mml:math> </inline-formula> which is addressed by the use of a correction in the numerical scheme. Extensive numerical experiments confirm the theory.</p>","PeriodicalId":18456,"journal":{"name":"Mathematics of Computation","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2024-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140931313","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The Richards equation is commonly used to model the flow of water and air through soil, and it serves as a gateway equation for multiphase flows through porous media. It is a nonlinear advection–reaction–diffusion equation that exhibits both parabolic–hyperbolic and parabolic–elliptic kind of degeneracies. In this study, we provide reliable, fully computable, and locally space–time efficient a posteriori error bounds for numerical approximations of the fully degenerate Richards equation. For showing global reliability, a nonlocal-in-time error estimate is derived individually for the time-integrated H1(H−1)H^1(H^{-1}), L2(L2)L^2(L^2), and the L2(H1)L^2(H^1) errors. A maximum principle and a degeneracy estimator are employed for the last one. Global and local space–time efficiency error bounds are then obtained in a standard H1(H−
理查兹方程常用于模拟水和空气在土壤中的流动,是多孔介质中多相流的关健方程。它是一个非线性平流-反应-扩散方程,表现出抛物线-双曲和抛物线-椭圆两种退行性。在本研究中,我们为完全退化的理查兹方程的数值近似提供了可靠、完全可计算和局部时空高效的后验误差边界。为了显示全局可靠性,我们为时间积分的 H 1 ( H - 1 ) H^1(H^{-1}) 、L 2 ( L 2 ) L^2(L^2) 和 L 2 ( H 1 ) L^2(H^1) 误差分别导出了非局部时间误差估计。最后一个误差采用了最大原则和退化估计器。然后,在标准的 H 1 ( H - 1 ) ∩ L 2 ( H 1 ) H^1(H^{-1})cap L^2(H^1) 规范中得到全局和局部时空效率误差边界。当不存在非线性时,所采用的可靠性规范和效率规范是一致的。此外,还识别并区分了空间离散化、时间离散化、正交、线性化和数据振荡等误差因素。这些估计值在考虑使用非精确求解器进行迭代线性化时也是有效的。对具有精确解的非退化和退化情况,以及现实情况和基准情况进行了数值测试。结果表明,估计器能正确识别误差,误差最大可达 1 倍。
{"title":"A posteriori error estimates for the Richards equation","authors":"K. Mitra, M. Vohralík","doi":"10.1090/mcom/3932","DOIUrl":"https://doi.org/10.1090/mcom/3932","url":null,"abstract":"<p>The Richards equation is commonly used to model the flow of water and air through soil, and it serves as a gateway equation for multiphase flows through porous media. It is a nonlinear advection–reaction–diffusion equation that exhibits both parabolic–hyperbolic and parabolic–elliptic kind of degeneracies. In this study, we provide reliable, fully computable, and locally space–time efficient a posteriori error bounds for numerical approximations of the fully degenerate Richards equation. For showing global reliability, a nonlocal-in-time error estimate is derived individually for the time-integrated <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper H Superscript 1 Baseline left-parenthesis upper H Superscript negative 1 Baseline right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:msup> <mml:mi>H</mml:mi> <mml:mn>1</mml:mn> </mml:msup> <mml:mo stretchy=\"false\">(</mml:mo> <mml:msup> <mml:mi>H</mml:mi> <mml:mrow> <mml:mo>−<!-- − --></mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:msup> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">H^1(H^{-1})</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper L squared left-parenthesis upper L squared right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:msup> <mml:mi>L</mml:mi> <mml:mn>2</mml:mn> </mml:msup> <mml:mo stretchy=\"false\">(</mml:mo> <mml:msup> <mml:mi>L</mml:mi> <mml:mn>2</mml:mn> </mml:msup> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">L^2(L^2)</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, and the <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper L squared left-parenthesis upper H Superscript 1 Baseline right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:msup> <mml:mi>L</mml:mi> <mml:mn>2</mml:mn> </mml:msup> <mml:mo stretchy=\"false\">(</mml:mo> <mml:msup> <mml:mi>H</mml:mi> <mml:mn>1</mml:mn> </mml:msup> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">L^2(H^1)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> errors. A maximum principle and a degeneracy estimator are employed for the last one. Global and local space–time efficiency error bounds are then obtained in a standard <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper H Superscript 1 Baseline left-parenthesis upper H Superscript negative 1 Baseline right-parenthesis intersection upper L squared left-parenthesis upper H Superscript 1 Baseline right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:msup> <mml:mi>H</mml:mi> <mml:mn>1</mml:mn> </mml:msup> <mml:mo stretchy=\"false\">(</mml:mo> <mml:msup> <mml:mi>H</mml:mi> <mml:mrow> <mml:mo>−<!-- − --></mml:mo> <mml","PeriodicalId":18456,"journal":{"name":"Mathematics of Computation","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2024-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140942574","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
We work out the exact relationship between algebraic modular forms for a two-by-two general unitary group over a definite quaternion algebra, and those arising from genera of positive-definite quinary lattices, relating stabilisers of local lattices with specific open compact subgroups, paramodular at split places, and with Atkin-Lehner operators. Combining this with the recent work of Rösner and Weissauer, proving conjectures of Ibukiyama on Jacquet-Langlands type correspondences (mildly generalised here), provides an effective tool for computing Hecke eigenvalues for Siegel modular forms of degree two and paramodular level. It also enables us to prove examples of congruences of Hecke eigenvalues connecting Siegel modular forms of degrees two and one. These include some of a type conjectured by Harder at level one, supported by computations of Fretwell at higher levels, and a subtly different congruence discovered experimentally by Buzzard and Golyshev.
{"title":"Quinary forms and paramodular forms","authors":"N. Dummigan, A. Pacetti, G. Rama, G. Tornaría","doi":"10.1090/mcom/3815","DOIUrl":"https://doi.org/10.1090/mcom/3815","url":null,"abstract":"<p>We work out the exact relationship between algebraic modular forms for a two-by-two general unitary group over a definite quaternion algebra, and those arising from genera of positive-definite quinary lattices, relating stabilisers of local lattices with specific open compact subgroups, paramodular at split places, and with Atkin-Lehner operators. Combining this with the recent work of Rösner and Weissauer, proving conjectures of Ibukiyama on Jacquet-Langlands type correspondences (mildly generalised here), provides an effective tool for computing Hecke eigenvalues for Siegel modular forms of degree two and paramodular level. It also enables us to prove examples of congruences of Hecke eigenvalues connecting Siegel modular forms of degrees two and one. These include some of a type conjectured by Harder at level one, supported by computations of Fretwell at higher levels, and a subtly different congruence discovered experimentally by Buzzard and Golyshev.</p>","PeriodicalId":18456,"journal":{"name":"Mathematics of Computation","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2024-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140931393","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This paper is dedicated to the full discretization of linear wave equations, where the space discretization is carried out with a discontinuous Galerkin method on spatial meshes which are locally refined or have a large wave speed on only a small part of the mesh. Such small local structures lead to a strong Courant–Friedrichs–Lewy (CFL) condition in explicit time integration schemes causing a severe loss in efficiency. For these problems, various local time-stepping schemes have been proposed in the literature in the last years and have been shown to be very efficient. Here, we construct a quite general class of local time integration methods preserving a perturbed energy and containing local time-stepping and locally implicit methods as special cases. For these two variants we prove stability and optimal convergence rates in space and time. Numerical results confirm the stability behavior and show the proved convergence rates.
{"title":"Error analysis of second-order local time integration methods for discontinuous Galerkin discretizations of linear wave equations","authors":"Constantin Carle, Marlis Hochbruck","doi":"10.1090/mcom/3952","DOIUrl":"https://doi.org/10.1090/mcom/3952","url":null,"abstract":"<p>This paper is dedicated to the full discretization of linear wave equations, where the space discretization is carried out with a discontinuous Galerkin method on spatial meshes which are locally refined or have a large wave speed on only a small part of the mesh. Such small local structures lead to a strong Courant–Friedrichs–Lewy (CFL) condition in explicit time integration schemes causing a severe loss in efficiency. For these problems, various local time-stepping schemes have been proposed in the literature in the last years and have been shown to be very efficient. Here, we construct a quite general class of local time integration methods preserving a perturbed energy and containing local time-stepping and locally implicit methods as special cases. For these two variants we prove stability and optimal convergence rates in space and time. Numerical results confirm the stability behavior and show the proved convergence rates.</p>","PeriodicalId":18456,"journal":{"name":"Mathematics of Computation","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2024-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140931379","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}