首页 > 最新文献

Mathematics of Computation最新文献

英文 中文
Numerical analysis of a time-stepping method for the Westervelt equation with time-fractional damping 带有时间分数阻尼的韦斯特韦尔特方程时步法数值分析
IF 2 2区 数学 Q1 MATHEMATICS, APPLIED Pub Date : 2024-02-14 DOI: 10.1090/mcom/3945
Katherine Baker, Lehel Banjai, Mariya Ptashnyk

We develop a numerical method for the Westervelt equation, an important equation in nonlinear acoustics, in the form where the attenuation is represented by a class of nonlocal in time operators. A semi-discretisation in time based on the trapezoidal rule and A-stable convolution quadrature is stated and analysed. Existence and regularity analysis of the continuous equations informs the stability and error analysis of the semi-discrete system. The error analysis includes the consideration of the singularity at t = 0 t = 0 which is addressed by the use of a correction in the numerical scheme. Extensive numerical experiments confirm the theory.

我们为非线性声学中的一个重要方程 Westervelt 方程开发了一种数值方法,该方程的衰减形式由一类非局部时间算子表示。基于梯形法则和 A 稳定卷积正交的时间半离散化方法得到了阐述和分析。连续方程的存在性和正则性分析为半离散系统的稳定性和误差分析提供了信息。误差分析包括考虑 t = 0 t = 0 处的奇异性,通过在数值方案中使用修正来解决这一问题。大量的数值实验证实了这一理论。
{"title":"Numerical analysis of a time-stepping method for the Westervelt equation with time-fractional damping","authors":"Katherine Baker, Lehel Banjai, Mariya Ptashnyk","doi":"10.1090/mcom/3945","DOIUrl":"https://doi.org/10.1090/mcom/3945","url":null,"abstract":"<p>We develop a numerical method for the Westervelt equation, an important equation in nonlinear acoustics, in the form where the attenuation is represented by a class of nonlocal in time operators. A semi-discretisation in time based on the trapezoidal rule and A-stable convolution quadrature is stated and analysed. Existence and regularity analysis of the continuous equations informs the stability and error analysis of the semi-discrete system. The error analysis includes the consideration of the singularity at <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"t equals 0\"> <mml:semantics> <mml:mrow> <mml:mi>t</mml:mi> <mml:mo>=</mml:mo> <mml:mn>0</mml:mn> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">t = 0</mml:annotation> </mml:semantics> </mml:math> </inline-formula> which is addressed by the use of a correction in the numerical scheme. Extensive numerical experiments confirm the theory.</p>","PeriodicalId":18456,"journal":{"name":"Mathematics of Computation","volume":"147 1","pages":""},"PeriodicalIF":2.0,"publicationDate":"2024-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140931313","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A posteriori error estimates for the Richards equation 理查兹方程的后验误差估计值
IF 2 2区 数学 Q1 MATHEMATICS, APPLIED Pub Date : 2024-02-14 DOI: 10.1090/mcom/3932
K. Mitra, M. Vohralík

The Richards equation is commonly used to model the flow of water and air through soil, and it serves as a gateway equation for multiphase flows through porous media. It is a nonlinear advection–reaction–diffusion equation that exhibits both parabolic–hyperbolic and parabolic–elliptic kind of degeneracies. In this study, we provide reliable, fully computable, and locally space–time efficient a posteriori error bounds for numerical approximations of the fully degenerate Richards equation. For showing global reliability, a nonlocal-in-time error estimate is derived individually for the time-integrated H 1 ( H 1 ) H^1(H^{-1}) , L 2 ( L 2 ) L^2(L^2) , and the L 2 ( H 1 ) L^2(H^1) errors. A maximum principle and a degeneracy estimator are employed for the last one. Global and local space–time efficiency error bounds are then obtained in a standard H 1 ( H

理查兹方程常用于模拟水和空气在土壤中的流动,是多孔介质中多相流的关健方程。它是一个非线性平流-反应-扩散方程,表现出抛物线-双曲和抛物线-椭圆两种退行性。在本研究中,我们为完全退化的理查兹方程的数值近似提供了可靠、完全可计算和局部时空高效的后验误差边界。为了显示全局可靠性,我们为时间积分的 H 1 ( H - 1 ) H^1(H^{-1}) 、L 2 ( L 2 ) L^2(L^2) 和 L 2 ( H 1 ) L^2(H^1) 误差分别导出了非局部时间误差估计。最后一个误差采用了最大原则和退化估计器。然后,在标准的 H 1 ( H - 1 ) ∩ L 2 ( H 1 ) H^1(H^{-1})cap L^2(H^1) 规范中得到全局和局部时空效率误差边界。当不存在非线性时,所采用的可靠性规范和效率规范是一致的。此外,还识别并区分了空间离散化、时间离散化、正交、线性化和数据振荡等误差因素。这些估计值在考虑使用非精确求解器进行迭代线性化时也是有效的。对具有精确解的非退化和退化情况,以及现实情况和基准情况进行了数值测试。结果表明,估计器能正确识别误差,误差最大可达 1 倍。
{"title":"A posteriori error estimates for the Richards equation","authors":"K. Mitra, M. Vohralík","doi":"10.1090/mcom/3932","DOIUrl":"https://doi.org/10.1090/mcom/3932","url":null,"abstract":"<p>The Richards equation is commonly used to model the flow of water and air through soil, and it serves as a gateway equation for multiphase flows through porous media. It is a nonlinear advection–reaction–diffusion equation that exhibits both parabolic–hyperbolic and parabolic–elliptic kind of degeneracies. In this study, we provide reliable, fully computable, and locally space–time efficient a posteriori error bounds for numerical approximations of the fully degenerate Richards equation. For showing global reliability, a nonlocal-in-time error estimate is derived individually for the time-integrated <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper H Superscript 1 Baseline left-parenthesis upper H Superscript negative 1 Baseline right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:msup> <mml:mi>H</mml:mi> <mml:mn>1</mml:mn> </mml:msup> <mml:mo stretchy=\"false\">(</mml:mo> <mml:msup> <mml:mi>H</mml:mi> <mml:mrow> <mml:mo>−<!-- − --></mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:msup> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">H^1(H^{-1})</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper L squared left-parenthesis upper L squared right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:msup> <mml:mi>L</mml:mi> <mml:mn>2</mml:mn> </mml:msup> <mml:mo stretchy=\"false\">(</mml:mo> <mml:msup> <mml:mi>L</mml:mi> <mml:mn>2</mml:mn> </mml:msup> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">L^2(L^2)</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, and the <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper L squared left-parenthesis upper H Superscript 1 Baseline right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:msup> <mml:mi>L</mml:mi> <mml:mn>2</mml:mn> </mml:msup> <mml:mo stretchy=\"false\">(</mml:mo> <mml:msup> <mml:mi>H</mml:mi> <mml:mn>1</mml:mn> </mml:msup> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">L^2(H^1)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> errors. A maximum principle and a degeneracy estimator are employed for the last one. Global and local space–time efficiency error bounds are then obtained in a standard <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper H Superscript 1 Baseline left-parenthesis upper H Superscript negative 1 Baseline right-parenthesis intersection upper L squared left-parenthesis upper H Superscript 1 Baseline right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:msup> <mml:mi>H</mml:mi> <mml:mn>1</mml:mn> </mml:msup> <mml:mo stretchy=\"false\">(</mml:mo> <mml:msup> <mml:mi>H</mml:mi> <mml:mrow> <mml:mo>−<!-- − --></mml:mo> <mml","PeriodicalId":18456,"journal":{"name":"Mathematics of Computation","volume":"47 1","pages":""},"PeriodicalIF":2.0,"publicationDate":"2024-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140942574","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Error analysis of second-order local time integration methods for discontinuous Galerkin discretizations of linear wave equations 线性波方程非连续伽勒金离散化的二阶局部时间积分法误差分析
IF 2 2区 数学 Q1 MATHEMATICS, APPLIED Pub Date : 2024-02-07 DOI: 10.1090/mcom/3952
Constantin Carle, Marlis Hochbruck

This paper is dedicated to the full discretization of linear wave equations, where the space discretization is carried out with a discontinuous Galerkin method on spatial meshes which are locally refined or have a large wave speed on only a small part of the mesh. Such small local structures lead to a strong Courant–Friedrichs–Lewy (CFL) condition in explicit time integration schemes causing a severe loss in efficiency. For these problems, various local time-stepping schemes have been proposed in the literature in the last years and have been shown to be very efficient. Here, we construct a quite general class of local time integration methods preserving a perturbed energy and containing local time-stepping and locally implicit methods as special cases. For these two variants we prove stability and optimal convergence rates in space and time. Numerical results confirm the stability behavior and show the proved convergence rates.

本文致力于线性波方程的完全离散化,其中空间离散化是在局部细化或仅在网格的一小部分具有较大波速的空间网格上采用非连续 Galerkin 方法进行的。在显式时间积分方案中,这种小的局部结构会导致强烈的库兰特-弗里德里希斯-路维(CFL)条件,从而严重降低效率。针对这些问题,过去几年中已有文献提出了各种局部时间步进方案,并被证明非常高效。在这里,我们构建了一类相当通用的局部时间积分方法,它保留了扰动能量,并包含局部时间步进和局部隐式方法作为特例。我们证明了这两种方法在空间和时间上的稳定性和最佳收敛率。数值结果证实了稳定性行为,并显示了所证明的收敛率。
{"title":"Error analysis of second-order local time integration methods for discontinuous Galerkin discretizations of linear wave equations","authors":"Constantin Carle, Marlis Hochbruck","doi":"10.1090/mcom/3952","DOIUrl":"https://doi.org/10.1090/mcom/3952","url":null,"abstract":"<p>This paper is dedicated to the full discretization of linear wave equations, where the space discretization is carried out with a discontinuous Galerkin method on spatial meshes which are locally refined or have a large wave speed on only a small part of the mesh. Such small local structures lead to a strong Courant–Friedrichs–Lewy (CFL) condition in explicit time integration schemes causing a severe loss in efficiency. For these problems, various local time-stepping schemes have been proposed in the literature in the last years and have been shown to be very efficient. Here, we construct a quite general class of local time integration methods preserving a perturbed energy and containing local time-stepping and locally implicit methods as special cases. For these two variants we prove stability and optimal convergence rates in space and time. Numerical results confirm the stability behavior and show the proved convergence rates.</p>","PeriodicalId":18456,"journal":{"name":"Mathematics of Computation","volume":"38 1","pages":""},"PeriodicalIF":2.0,"publicationDate":"2024-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140931379","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quinary forms and paramodular forms 二元形式和参数形式
IF 2 2区 数学 Q1 MATHEMATICS, APPLIED Pub Date : 2024-02-07 DOI: 10.1090/mcom/3815
N. Dummigan, A. Pacetti, G. Rama, G. Tornaría

We work out the exact relationship between algebraic modular forms for a two-by-two general unitary group over a definite quaternion algebra, and those arising from genera of positive-definite quinary lattices, relating stabilisers of local lattices with specific open compact subgroups, paramodular at split places, and with Atkin-Lehner operators. Combining this with the recent work of Rösner and Weissauer, proving conjectures of Ibukiyama on Jacquet-Langlands type correspondences (mildly generalised here), provides an effective tool for computing Hecke eigenvalues for Siegel modular forms of degree two and paramodular level. It also enables us to prove examples of congruences of Hecke eigenvalues connecting Siegel modular forms of degrees two and one. These include some of a type conjectured by Harder at level one, supported by computations of Fretwell at higher levels, and a subtly different congruence discovered experimentally by Buzzard and Golyshev.

我们研究了定四元数代数上的二乘二一般单元群的代数模形式与正定二元网格的属产生的代数模形式之间的确切关系,将局部网格的稳定子与特定的开放紧凑子群、分裂处的参数化以及阿特金-雷纳算子联系起来。这与罗斯纳和魏绍尔的最新研究相结合,证明了伊布基山关于雅克特-朗兰兹类型对应性的猜想(在此作了轻度概括),为计算二度和参数级西格尔模形式的赫克特征值提供了有效工具。它还使我们能够证明连接二度和一度西格尔模形式的赫克特征值的同调实例。这些例子包括哈德(Harder)在第一级猜想的一些类型,弗雷特维尔(Fretwell)在更高级别计算所支持的一些类型,以及巴扎德(Buzzard)和戈利舍夫(Golyshev)通过实验发现的一种微妙不同的同调。
{"title":"Quinary forms and paramodular forms","authors":"N. Dummigan, A. Pacetti, G. Rama, G. Tornaría","doi":"10.1090/mcom/3815","DOIUrl":"https://doi.org/10.1090/mcom/3815","url":null,"abstract":"<p>We work out the exact relationship between algebraic modular forms for a two-by-two general unitary group over a definite quaternion algebra, and those arising from genera of positive-definite quinary lattices, relating stabilisers of local lattices with specific open compact subgroups, paramodular at split places, and with Atkin-Lehner operators. Combining this with the recent work of Rösner and Weissauer, proving conjectures of Ibukiyama on Jacquet-Langlands type correspondences (mildly generalised here), provides an effective tool for computing Hecke eigenvalues for Siegel modular forms of degree two and paramodular level. It also enables us to prove examples of congruences of Hecke eigenvalues connecting Siegel modular forms of degrees two and one. These include some of a type conjectured by Harder at level one, supported by computations of Fretwell at higher levels, and a subtly different congruence discovered experimentally by Buzzard and Golyshev.</p>","PeriodicalId":18456,"journal":{"name":"Mathematics of Computation","volume":"43 1","pages":""},"PeriodicalIF":2.0,"publicationDate":"2024-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140931393","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Energy diminishing implicit-explicit Runge–Kutta methods for gradient flows 梯度流的能量递减隐式-显式 Runge-Kutta 方法
IF 2 2区 数学 Q1 MATHEMATICS, APPLIED Pub Date : 2024-02-07 DOI: 10.1090/mcom/3950
Zhaohui Fu, Tao Tang, Jiang Yang

This study focuses on the development and analysis of a group of high-order implicit-explicit (IMEX) Runge–Kutta (RK) methods that are suitable for discretizing gradient flows with nonlinearity that is Lipschitz continuous. We demonstrate that these IMEX-RK methods can preserve the original energy dissipation property without any restrictions on the time-step size, thanks to a stabilization technique. The stabilization constants are solely dependent on the minimal eigenvalues that result from the Butcher tables of the IMEX-RKs. Furthermore, we establish a simple framework that can determine whether an IMEX-RK scheme is capable of preserving the original energy dissipation property or not. We also present a heuristic convergence analysis based on the truncation errors. This is the first research to prove that a linear high-order single-step scheme can ensure the original energy stability unconditionally for general gradient flows. Additionally, we provide several high-order IMEX-RK schemes that satisfy the established framework. Notably, we discovered a new four-stage third-order IMEX-RK scheme that reduces energy. Finally, we provide numerical examples to demonstrate the stability and accuracy properties of the proposed methods.

本研究的重点是开发和分析一组高阶隐式-显式(IMEX)Runge-Kutta(RK)方法,这些方法适用于离散非线性利普齐兹连续的梯度流。我们证明,由于采用了稳定技术,这些 IMEX-RK 方法可以在不限制时间步长的情况下保持原有的能量耗散特性。稳定常数完全取决于 IMEX-RK 的布彻表得出的最小特征值。此外,我们还建立了一个简单的框架,可以确定 IMEX-RK 方案是否能够保持原有的能量耗散特性。我们还提出了基于截断误差的启发式收敛分析。这是首次证明线性高阶单步方案可以无条件确保一般梯度流的原始能量稳定性的研究。此外,我们还提供了几种符合既定框架的高阶 IMEX-RK 方案。值得注意的是,我们发现了一种新的四阶三阶 IMEX-RK 方案,它能降低能量。最后,我们提供了数值示例来证明所提方法的稳定性和准确性。
{"title":"Energy diminishing implicit-explicit Runge–Kutta methods for gradient flows","authors":"Zhaohui Fu, Tao Tang, Jiang Yang","doi":"10.1090/mcom/3950","DOIUrl":"https://doi.org/10.1090/mcom/3950","url":null,"abstract":"<p>This study focuses on the development and analysis of a group of high-order implicit-explicit (IMEX) Runge–Kutta (RK) methods that are suitable for discretizing gradient flows with nonlinearity that is Lipschitz continuous. We demonstrate that these IMEX-RK methods can preserve the original energy dissipation property without any restrictions on the time-step size, thanks to a stabilization technique. The stabilization constants are solely dependent on the minimal eigenvalues that result from the Butcher tables of the IMEX-RKs. Furthermore, we establish a simple framework that can determine whether an IMEX-RK scheme is capable of preserving the original energy dissipation property or not. We also present a heuristic convergence analysis based on the truncation errors. This is the first research to prove that a linear high-order single-step scheme can ensure the original energy stability unconditionally for general gradient flows. Additionally, we provide several high-order IMEX-RK schemes that satisfy the established framework. Notably, we discovered a new four-stage third-order IMEX-RK scheme that reduces energy. Finally, we provide numerical examples to demonstrate the stability and accuracy properties of the proposed methods.</p>","PeriodicalId":18456,"journal":{"name":"Mathematics of Computation","volume":"38 1","pages":""},"PeriodicalIF":2.0,"publicationDate":"2024-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140931340","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Construction of diagonal quintic threefolds with infinitely many rational points 构建具有无穷多个有理点的对角五元三次方
IF 2 2区 数学 Q1 MATHEMATICS, APPLIED Pub Date : 2024-02-07 DOI: 10.1090/mcom/3953
Maciej Ulas

In this note we present a construction of an infinite family of diagonal quintic threefolds defined over Q mathbb {Q} each containing infinitely many rational points. As an application, we prove that there are infinitely many quadruples B = ( B 0 , B 1 , B 2 , B 3 ) B=(B_{0}, B_{1}, B_{2}, B_{3}) of co-prime integers such that for a suitable chosen integer b b (depending on B B ), the equation B 0 X 0 5 + B 1 X 1 5 + B 2 X 2

在本注释中,我们提出了一个定义在 Q mathbb {Q} 上的对角五元三次方的无穷族的构造,每个对角五元三次方都包含无穷多个有理点。作为应用,我们证明存在无穷多个四元数 B = ( B 0 , B 1 , B 2 , B 3 ) B=(B_{0}, B_{1}, B_{2}, B_{3}),对于一个合适的选定整数 b b (取决于 B B )、方程 B 0 X 0 5 + B 1 X 1 5 + B 2 X 2 5 + B 3 X 3 5 = b B_{0}X_{0}^5+B_{1}X_{1}^5+B_{2}X_{2}^5+B_{3}X_{3}^{5}=b 有无穷多个正整数解。
{"title":"Construction of diagonal quintic threefolds with infinitely many rational points","authors":"Maciej Ulas","doi":"10.1090/mcom/3953","DOIUrl":"https://doi.org/10.1090/mcom/3953","url":null,"abstract":"<p>In this note we present a construction of an infinite family of diagonal quintic threefolds defined over <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper Q\"> <mml:semantics> <mml:mrow> <mml:mi mathvariant=\"double-struck\">Q</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">mathbb {Q}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> each containing infinitely many rational points. As an application, we prove that there are infinitely many quadruples <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper B equals left-parenthesis upper B 0 comma upper B 1 comma upper B 2 comma upper B 3 right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mi>B</mml:mi> <mml:mo>=</mml:mo> <mml:mo stretchy=\"false\">(</mml:mo> <mml:msub> <mml:mi>B</mml:mi> <mml:mrow> <mml:mn>0</mml:mn> </mml:mrow> </mml:msub> <mml:mo>,</mml:mo> <mml:msub> <mml:mi>B</mml:mi> <mml:mrow> <mml:mn>1</mml:mn> </mml:mrow> </mml:msub> <mml:mo>,</mml:mo> <mml:msub> <mml:mi>B</mml:mi> <mml:mrow> <mml:mn>2</mml:mn> </mml:mrow> </mml:msub> <mml:mo>,</mml:mo> <mml:msub> <mml:mi>B</mml:mi> <mml:mrow> <mml:mn>3</mml:mn> </mml:mrow> </mml:msub> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">B=(B_{0}, B_{1}, B_{2}, B_{3})</mml:annotation> </mml:semantics> </mml:math> </inline-formula> of co-prime integers such that for a suitable chosen integer <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"b\"> <mml:semantics> <mml:mi>b</mml:mi> <mml:annotation encoding=\"application/x-tex\">b</mml:annotation> </mml:semantics> </mml:math> </inline-formula> (depending on <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper B\"> <mml:semantics> <mml:mi>B</mml:mi> <mml:annotation encoding=\"application/x-tex\">B</mml:annotation> </mml:semantics> </mml:math> </inline-formula>), the equation <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper B 0 upper X 0 Superscript 5 Baseline plus upper B 1 upper X 1 Superscript 5 Baseline plus upper B 2 upper X 2 Superscript 5 Baseline plus upper B 3 upper X 3 Superscript 5 Baseline equals b\"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi>B</mml:mi> <mml:mrow> <mml:mn>0</mml:mn> </mml:mrow> </mml:msub> <mml:msubsup> <mml:mi>X</mml:mi> <mml:mrow> <mml:mn>0</mml:mn> </mml:mrow> <mml:mn>5</mml:mn> </mml:msubsup> <mml:mo>+</mml:mo> <mml:msub> <mml:mi>B</mml:mi> <mml:mrow> <mml:mn>1</mml:mn> </mml:mrow> </mml:msub> <mml:msubsup> <mml:mi>X</mml:mi> <mml:mrow> <mml:mn>1</mml:mn> </mml:mrow> <mml:mn>5</mml:mn> </mml:msubsup> <mml:mo>+</mml:mo> <mml:msub> <mml:mi>B</mml:mi> <mml:mrow> <mml:mn>2</mml:mn> </mml:mrow> </mml:msub> <mml:msubsup> <mml:mi>X</mml:mi> <mml:mrow> <mml:mn>2</mml:mn> </mml:mro","PeriodicalId":18456,"journal":{"name":"Mathematics of Computation","volume":"147 1","pages":""},"PeriodicalIF":2.0,"publicationDate":"2024-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140931203","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
High-order splitting finite element methods for the subdiffusion equation with limited smoothing property 具有有限平滑特性的亚扩散方程的高阶分裂有限元方法
IF 2 2区 数学 Q1 MATHEMATICS, APPLIED Pub Date : 2024-02-07 DOI: 10.1090/mcom/3944
Buyang Li, Zongze Yang, Zhi Zhou

In contrast with the diffusion equation which smoothens the initial data to C C^infty for t > 0 t>0 (away from the corners/edges of the domain), the subdiffusion equation only exhibits limited spatial regularity. As a result, one generally cannot expect high-order accuracy in space in solving the subdiffusion equation with nonsmooth initial data. In this paper, a new splitting of the solution is constructed for high-order finite element approximations to the subdiffusion equation with nonsmooth initial data. The method is constructed by splitting the solution into two parts, i.e., a time-dependent smooth part and a time-independent nonsmooth part, and then approximating the two parts via different strategies. The time-dependent smooth part is approximated by using high-order finite element method in space and convolution quadrature in time, while the steady nonsmooth part could be approximated by using smaller mesh size or other methods that could yield high-order accuracy. Several examples are presented to show how to accurately approximate the steady nonsmooth part, including piecewise smooth initial data, Dirac–Delta point initial data, and Dirac measure concentrated on an interface. The argument could be directly extended to subdiffusion equations with nonsmooth source data. Extensive numerical experiments are presented to support the theoretical analysis and to illustrate the performance of the proposed high-order splitting finite element methods.

扩散方程在 t > 0 t>0 时(远离域的角落/边缘)将初始数据平滑为 C ∞ C^infty,而亚扩散方程只表现出有限的空间规则性。因此,在用非光滑初始数据求解亚扩散方程时,一般不能期望空间上的高阶精度。本文为非光滑初始数据的亚扩散方程的高阶有限元近似求解构建了一种新的求解分割方法。该方法通过将解拆分为两部分,即与时间相关的平稳部分和与时间无关的非平稳部分,然后通过不同的策略对两部分进行逼近。与时间相关的平滑部分采用空间高阶有限元法和时间卷积正交法进行逼近,而稳定的非平滑部分可采用较小的网格尺寸或其他可获得高阶精度的方法进行逼近。本文举了几个例子来说明如何精确逼近稳定非光滑部分,包括片状光滑初始数据、Dirac-Delta 点初始数据和集中在界面上的 Dirac 量。该论证可直接扩展到具有非光滑源数据的子扩散方程。为了支持理论分析并说明所提出的高阶分裂有限元方法的性能,我们进行了大量的数值实验。
{"title":"High-order splitting finite element methods for the subdiffusion equation with limited smoothing property","authors":"Buyang Li, Zongze Yang, Zhi Zhou","doi":"10.1090/mcom/3944","DOIUrl":"https://doi.org/10.1090/mcom/3944","url":null,"abstract":"<p>In contrast with the diffusion equation which smoothens the initial data to <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper C Superscript normal infinity\"> <mml:semantics> <mml:msup> <mml:mi>C</mml:mi> <mml:mi mathvariant=\"normal\">∞<!-- ∞ --></mml:mi> </mml:msup> <mml:annotation encoding=\"application/x-tex\">C^infty</mml:annotation> </mml:semantics> </mml:math> </inline-formula> for <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"t greater-than 0\"> <mml:semantics> <mml:mrow> <mml:mi>t</mml:mi> <mml:mo>&gt;</mml:mo> <mml:mn>0</mml:mn> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">t&gt;0</mml:annotation> </mml:semantics> </mml:math> </inline-formula> (away from the corners/edges of the domain), the subdiffusion equation only exhibits limited spatial regularity. As a result, one generally cannot expect high-order accuracy in space in solving the subdiffusion equation with nonsmooth initial data. In this paper, a new splitting of the solution is constructed for high-order finite element approximations to the subdiffusion equation with nonsmooth initial data. The method is constructed by splitting the solution into two parts, i.e., a time-dependent smooth part and a time-independent nonsmooth part, and then approximating the two parts via different strategies. The time-dependent smooth part is approximated by using high-order finite element method in space and convolution quadrature in time, while the steady nonsmooth part could be approximated by using smaller mesh size or other methods that could yield high-order accuracy. Several examples are presented to show how to accurately approximate the steady nonsmooth part, including piecewise smooth initial data, Dirac–Delta point initial data, and Dirac measure concentrated on an interface. The argument could be directly extended to subdiffusion equations with nonsmooth source data. Extensive numerical experiments are presented to support the theoretical analysis and to illustrate the performance of the proposed high-order splitting finite element methods.</p>","PeriodicalId":18456,"journal":{"name":"Mathematics of Computation","volume":"23 1","pages":""},"PeriodicalIF":2.0,"publicationDate":"2024-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140931235","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effective homology and periods of complex projective hypersurfaces 复杂投影超曲面的有效同调与周期
IF 2 2区 数学 Q1 MATHEMATICS, APPLIED Pub Date : 2024-02-07 DOI: 10.1090/mcom/3947
Pierre Lairez, Eric Pichon-Pharabod, Pierre Vanhove

We introduce a new algorithm for computing the periods of a smooth complex projective hypersurface. The algorithm intertwines with a new method for computing an explicit basis of the singular homology of the hypersurface. It is based on Picard–Lefschetz theory and relies on the computation of the monodromy action induced by a one-parameter family of hyperplane sections on the homology of a given section.

We provide a SageMath implementation. For example, on a laptop, it makes it possible to compute the periods of a smooth complex quartic surface with hundreds of digits of precision in typically an hour.

我们介绍了一种计算光滑复射超曲面周期的新算法。该算法与计算超曲面奇异同调的明确基础的新方法相互交织。它基于 Picard-Lefchetsz 理论,依赖于计算超平面截面的单参数族对给定截面同调引起的单色作用。我们提供了一个 SageMath 实现。例如,在笔记本电脑上,它可以在通常一个小时内计算出数百位精度的光滑复曲面的周期。
{"title":"Effective homology and periods of complex projective hypersurfaces","authors":"Pierre Lairez, Eric Pichon-Pharabod, Pierre Vanhove","doi":"10.1090/mcom/3947","DOIUrl":"https://doi.org/10.1090/mcom/3947","url":null,"abstract":"<p>We introduce a new algorithm for computing the periods of a smooth complex projective hypersurface. The algorithm intertwines with a new method for computing an explicit basis of the singular homology of the hypersurface. It is based on Picard–Lefschetz theory and relies on the computation of the monodromy action induced by a one-parameter family of hyperplane sections on the homology of a given section.</p> <p>We provide a SageMath implementation. For example, on a laptop, it makes it possible to compute the periods of a smooth complex quartic surface with hundreds of digits of precision in typically an hour.</p>","PeriodicalId":18456,"journal":{"name":"Mathematics of Computation","volume":"64 1","pages":""},"PeriodicalIF":2.0,"publicationDate":"2024-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140931320","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Convergence, finiteness and periodicity of several new algorithms of 𝑝-adic continued fractions 𝑝-adic续分数的几种新算法的收敛性、有限性和周期性
IF 2 2区 数学 Q1 MATHEMATICS, APPLIED Pub Date : 2024-01-25 DOI: 10.1090/mcom/3948
Zhaonan Wang, Yingpu Deng
<p>Classical continued fractions can be introduced in the field of <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="p"> <mml:semantics> <mml:mi>p</mml:mi> <mml:annotation encoding="application/x-tex">p</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-adic numbers, where <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="p"> <mml:semantics> <mml:mi>p</mml:mi> <mml:annotation encoding="application/x-tex">p</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-adic continued fractions offer novel perspectives on number representation and approximation. While numerous <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="p"> <mml:semantics> <mml:mi>p</mml:mi> <mml:annotation encoding="application/x-tex">p</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-adic continued fraction expansion algorithms have been proposed by the researchers, the establishment of several excellent properties, such as the Lagrange’s Theorem for classic continued fractions, which indicates that every quadratic irrationals can be expanded periodically, remains elusive. In this paper, we introduce several new algorithms designed for expanding algebraic numbers in <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="double-struck upper Q Subscript p"> <mml:semantics> <mml:msub> <mml:mrow> <mml:mi mathvariant="double-struck">Q</mml:mi> </mml:mrow> <mml:mi>p</mml:mi> </mml:msub> <mml:annotation encoding="application/x-tex">mathbb {Q}_p</mml:annotation> </mml:semantics> </mml:math> </inline-formula> for a given prime <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="p"> <mml:semantics> <mml:mi>p</mml:mi> <mml:annotation encoding="application/x-tex">p</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. We give an upper bound of the number of partial quotients for the expansion of rational numbers, and prove that for small primes <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="p"> <mml:semantics> <mml:mi>p</mml:mi> <mml:annotation encoding="application/x-tex">p</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, our algorithm generates periodic continued fraction expansions for all quadratic irrationals. Experimental data demonstrates that our algorithms exhibit better performance in the periodicity of expansions for quadratic irrationals compared to the existing algorithms. Furthermore, for bigger primes <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="p"> <mml:semantics> <mml:mi>p</mml:mi> <mml:annotation encoding="application/x-tex">p</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, we propos
经典的续分数可以引入 p p -adic 数领域,其中 p p -adic 续分数为数的表示和逼近提供了新的视角。虽然研究人员已经提出了许多 p p -adic 续分数展开算法,但一些优秀性质的建立,如经典续分数的拉格朗日定理(该定理表明每个二次无理数都可以周期性展开),仍是一个未知数。在本文中,我们介绍了几种新算法,旨在为给定素数 p p 在 Q p mathbb {Q}_p 中展开代数数。我们给出了有理数展开的部分商数上限,并证明了对于小素数 p p ,我们的算法能生成所有二次无理数的周期性续分展开。实验数据表明,与现有算法相比,我们的算法在二次无理数的周期性展开方面表现出更好的性能。此外,对于更大的素数 p p,我们提出了一种建立 p p -adic 连续分数展开算法的潜在方法。与之前的算法一样,该算法旨在扩展 Q p mathbb {Q}_p 中的代数数,同时为 Q p mathbb {Q}_p 中的所有二次无理数生成周期性扩展。
{"title":"Convergence, finiteness and periodicity of several new algorithms of 𝑝-adic continued fractions","authors":"Zhaonan Wang, Yingpu Deng","doi":"10.1090/mcom/3948","DOIUrl":"https://doi.org/10.1090/mcom/3948","url":null,"abstract":"&lt;p&gt;Classical continued fractions can be introduced in the field of &lt;inline-formula content-type=\"math/mathml\"&gt; &lt;mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p\"&gt; &lt;mml:semantics&gt; &lt;mml:mi&gt;p&lt;/mml:mi&gt; &lt;mml:annotation encoding=\"application/x-tex\"&gt;p&lt;/mml:annotation&gt; &lt;/mml:semantics&gt; &lt;/mml:math&gt; &lt;/inline-formula&gt;-adic numbers, where &lt;inline-formula content-type=\"math/mathml\"&gt; &lt;mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p\"&gt; &lt;mml:semantics&gt; &lt;mml:mi&gt;p&lt;/mml:mi&gt; &lt;mml:annotation encoding=\"application/x-tex\"&gt;p&lt;/mml:annotation&gt; &lt;/mml:semantics&gt; &lt;/mml:math&gt; &lt;/inline-formula&gt;-adic continued fractions offer novel perspectives on number representation and approximation. While numerous &lt;inline-formula content-type=\"math/mathml\"&gt; &lt;mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p\"&gt; &lt;mml:semantics&gt; &lt;mml:mi&gt;p&lt;/mml:mi&gt; &lt;mml:annotation encoding=\"application/x-tex\"&gt;p&lt;/mml:annotation&gt; &lt;/mml:semantics&gt; &lt;/mml:math&gt; &lt;/inline-formula&gt;-adic continued fraction expansion algorithms have been proposed by the researchers, the establishment of several excellent properties, such as the Lagrange’s Theorem for classic continued fractions, which indicates that every quadratic irrationals can be expanded periodically, remains elusive. In this paper, we introduce several new algorithms designed for expanding algebraic numbers in &lt;inline-formula content-type=\"math/mathml\"&gt; &lt;mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper Q Subscript p\"&gt; &lt;mml:semantics&gt; &lt;mml:msub&gt; &lt;mml:mrow&gt; &lt;mml:mi mathvariant=\"double-struck\"&gt;Q&lt;/mml:mi&gt; &lt;/mml:mrow&gt; &lt;mml:mi&gt;p&lt;/mml:mi&gt; &lt;/mml:msub&gt; &lt;mml:annotation encoding=\"application/x-tex\"&gt;mathbb {Q}_p&lt;/mml:annotation&gt; &lt;/mml:semantics&gt; &lt;/mml:math&gt; &lt;/inline-formula&gt; for a given prime &lt;inline-formula content-type=\"math/mathml\"&gt; &lt;mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p\"&gt; &lt;mml:semantics&gt; &lt;mml:mi&gt;p&lt;/mml:mi&gt; &lt;mml:annotation encoding=\"application/x-tex\"&gt;p&lt;/mml:annotation&gt; &lt;/mml:semantics&gt; &lt;/mml:math&gt; &lt;/inline-formula&gt;. We give an upper bound of the number of partial quotients for the expansion of rational numbers, and prove that for small primes &lt;inline-formula content-type=\"math/mathml\"&gt; &lt;mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p\"&gt; &lt;mml:semantics&gt; &lt;mml:mi&gt;p&lt;/mml:mi&gt; &lt;mml:annotation encoding=\"application/x-tex\"&gt;p&lt;/mml:annotation&gt; &lt;/mml:semantics&gt; &lt;/mml:math&gt; &lt;/inline-formula&gt;, our algorithm generates periodic continued fraction expansions for all quadratic irrationals. Experimental data demonstrates that our algorithms exhibit better performance in the periodicity of expansions for quadratic irrationals compared to the existing algorithms. Furthermore, for bigger primes &lt;inline-formula content-type=\"math/mathml\"&gt; &lt;mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p\"&gt; &lt;mml:semantics&gt; &lt;mml:mi&gt;p&lt;/mml:mi&gt; &lt;mml:annotation encoding=\"application/x-tex\"&gt;p&lt;/mml:annotation&gt; &lt;/mml:semantics&gt; &lt;/mml:math&gt; &lt;/inline-formula&gt;, we propos","PeriodicalId":18456,"journal":{"name":"Mathematics of Computation","volume":"64 1","pages":""},"PeriodicalIF":2.0,"publicationDate":"2024-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140931310","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Few hamiltonian cycles in graphs with one or two vertex degrees 具有一个或两个顶点度的图中的少量哈密顿循环
IF 2 2区 数学 Q1 MATHEMATICS, APPLIED Pub Date : 2024-01-17 DOI: 10.1090/mcom/3943
Jan Goedgebeur, Jorik Jooken, On-Hei Solomon Lo, Ben Seamone, Carol Zamfirescu

Inspired by Sheehan’s conjecture that no 4 4 -regular graph contains exactly one hamiltonian cycle, we prove results on hamiltonian cycles in regular graphs and nearly regular graphs. We fully disprove a conjecture of Haythorpe on the minimum number of hamiltonian cycles in regular hamiltonian graphs, thereby extending a result of Zamfirescu, as well as correct and complement Haythorpe’s computational enumerative results from [Exp. Math. 27 (2018), no. 4, 426–430]. Thereafter, we use the Lovász Local Lemma to extend Thomassen’s independent dominating set method. This extension allows us to find a second hamiltonian cycle that inherits linearly many edges from the first hamiltonian cycle. Regarding the limitations of this method, we answer a question of Haxell, Seamone, and Verstraete, and settle the first open case of a problem of Thomassen by showing that for k { 5 , 6 } k in {5, 6} there exist infinitely many k k -regular hamiltonian graphs having no independent dominating set with respect to a prescribed hamiltonian cycle. Motivated by an observation of Aldred and Thomassen, we prove that for every κ { 2 , 3 } kappa in { 2, 3 } and any positive integer k k , there are infinitely many non-regular gra

受希恩(Sheehan)关于没有任何 4 4 不规则图恰好包含一个哈密尔顿循环的猜想的启发,我们证明了关于规则图和近似规则图中哈密尔顿循环的结果。我们完全推翻了海索普关于正则哈密顿图中哈密顿循环的最小数目的猜想,从而扩展了扎姆费斯库的一个结果,并修正和补充了海索普在[Exp. Math. 27 (2018),no. 4,426-430]中的计算枚举结果。此后,我们利用洛瓦兹局部定理(Lovász Local Lemma)扩展了托马森的独立支配集方法。通过这种扩展,我们可以找到第二个哈密顿循环,它从第一个哈密顿循环中继承了线性多条边。关于这种方法的局限性,我们回答了哈克塞尔(Haxell)、西蒙(Seamone)和韦斯特拉特(Verstraete)的一个问题,并通过证明对于 k ∈ { 5 , 6 } k in {5, 6} 存在无限多的 k k -regular 哈密尔顿图,这些图相对于规定的哈密尔顿循环没有独立支配集,解决了托马森问题的第一个开放案例。受 Aldred 和 Thomassen 的观察结果的启发,我们证明了对于每一个 κ ∈ { 2 , 3 },都有一个独立的支配集。 和任意正整数 k k,存在无限多的连通性 κ kappa 的非规则图,其中包含一个哈密顿循环,并且每个顶点都有 3 3 或 2 k 2k 度。
{"title":"Few hamiltonian cycles in graphs with one or two vertex degrees","authors":"Jan Goedgebeur, Jorik Jooken, On-Hei Solomon Lo, Ben Seamone, Carol Zamfirescu","doi":"10.1090/mcom/3943","DOIUrl":"https://doi.org/10.1090/mcom/3943","url":null,"abstract":"<p>Inspired by Sheehan’s conjecture that no <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"4\"> <mml:semantics> <mml:mn>4</mml:mn> <mml:annotation encoding=\"application/x-tex\">4</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-regular graph contains exactly one hamiltonian cycle, we prove results on hamiltonian cycles in regular graphs and nearly regular graphs. We fully disprove a conjecture of Haythorpe on the minimum number of hamiltonian cycles in regular hamiltonian graphs, thereby extending a result of Zamfirescu, as well as correct and complement Haythorpe’s computational enumerative results from [Exp. Math. <bold>27</bold> (2018), no. 4, 426–430]. Thereafter, we use the Lovász Local Lemma to extend Thomassen’s independent dominating set method. This extension allows us to find a second hamiltonian cycle that inherits linearly many edges from the first hamiltonian cycle. Regarding the limitations of this method, we answer a question of Haxell, Seamone, and Verstraete, and settle the first open case of a problem of Thomassen by showing that for <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"k element-of StartSet 5 comma 6 EndSet\"> <mml:semantics> <mml:mrow> <mml:mi>k</mml:mi> <mml:mo>∈<!-- ∈ --></mml:mo> <mml:mo fence=\"false\" stretchy=\"false\">{</mml:mo> <mml:mn>5</mml:mn> <mml:mo>,</mml:mo> <mml:mn>6</mml:mn> <mml:mo fence=\"false\" stretchy=\"false\">}</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">k in {5, 6}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> there exist infinitely many <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"k\"> <mml:semantics> <mml:mi>k</mml:mi> <mml:annotation encoding=\"application/x-tex\">k</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-regular hamiltonian graphs having no independent dominating set with respect to a prescribed hamiltonian cycle. Motivated by an observation of Aldred and Thomassen, we prove that for every <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"kappa element-of StartSet 2 comma 3 EndSet\"> <mml:semantics> <mml:mrow> <mml:mi>κ<!-- κ --></mml:mi> <mml:mo>∈<!-- ∈ --></mml:mo> <mml:mo fence=\"false\" stretchy=\"false\">{</mml:mo> <mml:mn>2</mml:mn> <mml:mo>,</mml:mo> <mml:mn>3</mml:mn> <mml:mo fence=\"false\" stretchy=\"false\">}</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">kappa in { 2, 3 }</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and any positive integer <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"k\"> <mml:semantics> <mml:mi>k</mml:mi> <mml:annotation encoding=\"application/x-tex\">k</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, there are infinitely many non-regular gra","PeriodicalId":18456,"journal":{"name":"Mathematics of Computation","volume":"26 1","pages":""},"PeriodicalIF":2.0,"publicationDate":"2024-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140931236","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Mathematics of Computation
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1