首页 > 最新文献

Mathematics of Computation最新文献

英文 中文
On the 𝑝-adic zeros of the Tribonacci sequence 在Tribonacci数列的𝑝-adic零点上
2区 数学 Q1 Mathematics Pub Date : 2023-08-31 DOI: 10.1090/mcom/3893
Yuri Bilu, Florian Luca, Joris Nieuwveld, Joël Ouaknine, James Worrell
Let ( T n ) n Z (T_n)_{nin {mathbb Z}} be the Tribonacci sequence and for a prime p p and an integer m m let ν p ( m ) nu _p(m) be the exponent of p p in the factorization of m m . For p = 2 p=2 Marques and Lengyel found some formulas relating
设(tn) n∈Z (T_n)_{nin {mathbb Z}}为Tribonacci序列对于素数p p和整数m m,设ν p(m) nu _p(m)为p p在m m分解中的指数。对于p=2 p=2, Marques和Lengyel发现了一些关于ν p(tn) nu _p(T_n)与ν p(f(n)) nu _p(f(n))的公式,其中f(n) f(n)是n n的某个线性函数(可能是常数)根据n n模32 32的剩余类,并询问是否存在其他素数p p的类似公式。在本文中,我们给出了一个算法来检验对于给定素数p p是否存在这样的公式。当它们存在时,我们的算法计算这些公式。给出了一些数值结果。
{"title":"On the 𝑝-adic zeros of the Tribonacci sequence","authors":"Yuri Bilu, Florian Luca, Joris Nieuwveld, Joël Ouaknine, James Worrell","doi":"10.1090/mcom/3893","DOIUrl":"https://doi.org/10.1090/mcom/3893","url":null,"abstract":"Let <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-parenthesis upper T Subscript n Baseline right-parenthesis Subscript n element-of double-struck upper Z\"> <mml:semantics> <mml:mrow> <mml:mo stretchy=\"false\">(</mml:mo> <mml:msub> <mml:mi>T</mml:mi> <mml:mi>n</mml:mi> </mml:msub> <mml:msub> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi>n</mml:mi> <mml:mo>∈<!-- ∈ --></mml:mo> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi mathvariant=\"double-struck\">Z</mml:mi> </mml:mrow> </mml:mrow> </mml:mrow> </mml:msub> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">(T_n)_{nin {mathbb Z}}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> be the Tribonacci sequence and for a prime <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p\"> <mml:semantics> <mml:mi>p</mml:mi> <mml:annotation encoding=\"application/x-tex\">p</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and an integer <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"m\"> <mml:semantics> <mml:mi>m</mml:mi> <mml:annotation encoding=\"application/x-tex\">m</mml:annotation> </mml:semantics> </mml:math> </inline-formula> let <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"nu Subscript p Baseline left-parenthesis m right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi>ν<!-- ν --></mml:mi> <mml:mi>p</mml:mi> </mml:msub> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>m</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">nu _p(m)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> be the exponent of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p\"> <mml:semantics> <mml:mi>p</mml:mi> <mml:annotation encoding=\"application/x-tex\">p</mml:annotation> </mml:semantics> </mml:math> </inline-formula> in the factorization of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"m\"> <mml:semantics> <mml:mi>m</mml:mi> <mml:annotation encoding=\"application/x-tex\">m</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. For <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p equals 2\"> <mml:semantics> <mml:mrow> <mml:mi>p</mml:mi> <mml:mo>=</mml:mo> <mml:mn>2</mml:mn> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">p=2</mml:annotation> </mml:semantics> </mml:math> </inline-formula> Marques and Lengyel found some formulas relating <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"nu Subscript p Baseline left-parenthesis upper T Subscript n Baseline right-par","PeriodicalId":18456,"journal":{"name":"Mathematics of Computation","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135782399","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Doubly isogenous genus-2 curves with 𝐷₄-action 具有𝐷₄-作用的双重等均属-2曲线
IF 2 2区 数学 Q1 Mathematics Pub Date : 2023-08-31 DOI: 10.1090/mcom/3891
V. Arul, J. Booher, Steven R. Groen, Everett W. Howe, Wanlin Li, Vlad Matei, R. Pries, Caleb Springer

We study the extent to which curves over finite fields are characterized by their zeta functions and the zeta functions of certain of their covers. Suppose C C and C C’ are curves over a finite field K K , with K K -rational base points P P and P P’ , and let D D and D D’ be the pullbacks (via the Abel–Jacobi map) of the multiplication-by- 2 2 map

我们研究了有限域上的曲线在多大程度上由它们的ζ函数和它们的某些覆盖的ζ功能表征。假设C C和C′C′是有限域K K上的曲线,具有K K-有理基点P P和P′P′,并且设D D和D′D′是乘-2 2映射在其雅可比上的回调(通过Abel–Jacobi映射)。如果J a C(C)Jac(C)和J a CK与J(D)Jac(D)和J(D′)Jac。对于自同构群包含八阶二面体群的亏格2 2的曲线,我们证明了双同构曲线对的数量大于天真启发式预测的数量,并对这一现象给出了解释。
{"title":"Doubly isogenous genus-2 curves with 𝐷₄-action","authors":"V. Arul, J. Booher, Steven R. Groen, Everett W. Howe, Wanlin Li, Vlad Matei, R. Pries, Caleb Springer","doi":"10.1090/mcom/3891","DOIUrl":"https://doi.org/10.1090/mcom/3891","url":null,"abstract":"<p>We study the extent to which curves over finite fields are characterized by their zeta functions and the zeta functions of certain of their covers. Suppose <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper C\">\u0000 <mml:semantics>\u0000 <mml:mi>C</mml:mi>\u0000 <mml:annotation encoding=\"application/x-tex\">C</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> and <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper C prime\">\u0000 <mml:semantics>\u0000 <mml:msup>\u0000 <mml:mi>C</mml:mi>\u0000 <mml:mo>′</mml:mo>\u0000 </mml:msup>\u0000 <mml:annotation encoding=\"application/x-tex\">C’</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> are curves over a finite field <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper K\">\u0000 <mml:semantics>\u0000 <mml:mi>K</mml:mi>\u0000 <mml:annotation encoding=\"application/x-tex\">K</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula>, with <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper K\">\u0000 <mml:semantics>\u0000 <mml:mi>K</mml:mi>\u0000 <mml:annotation encoding=\"application/x-tex\">K</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula>-rational base points <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper P\">\u0000 <mml:semantics>\u0000 <mml:mi>P</mml:mi>\u0000 <mml:annotation encoding=\"application/x-tex\">P</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> and <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper P prime\">\u0000 <mml:semantics>\u0000 <mml:msup>\u0000 <mml:mi>P</mml:mi>\u0000 <mml:mo>′</mml:mo>\u0000 </mml:msup>\u0000 <mml:annotation encoding=\"application/x-tex\">P’</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula>, and let <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper D\">\u0000 <mml:semantics>\u0000 <mml:mi>D</mml:mi>\u0000 <mml:annotation encoding=\"application/x-tex\">D</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> and <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper D prime\">\u0000 <mml:semantics>\u0000 <mml:msup>\u0000 <mml:mi>D</mml:mi>\u0000 <mml:mo>′</mml:mo>\u0000 </mml:msup>\u0000 <mml:annotation encoding=\"application/x-tex\">D’</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> be the pullbacks (via the Abel–Jacobi map) of the multiplication-by-<inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"2\">\u0000 <mml:semantics>\u0000 <mml:mn>2</mml:mn>\u0000 <mml:annotation encoding=\"application/x-tex\">2</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> map","PeriodicalId":18456,"journal":{"name":"Mathematics of Computation","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2023-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44511508","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cyclic isogenies of elliptic curves over fixed quadratic fields 固定二次场上椭圆曲线的循环等同性
2区 数学 Q1 Mathematics Pub Date : 2023-08-30 DOI: 10.1090/mcom/3894
Barinder Banwait, Filip Najman, Oana Padurariu
Building on Mazur’s 1978 work on prime degree isogenies, Kenku determined in 1981 all possible cyclic isogenies of elliptic curves over Q mathbb {Q} . Although more than 40 years have passed, the determination of cyclic isogenies of elliptic curves over a single other number field has hitherto not been realised. In this paper we develop a procedure to assist in establishing such a determination for a given quadratic field. Executing this procedure on all quadratic fields Q ( d ) mathbb {Q}(sqrt {d}) with | d | > 10 4 |d| > 10^4 we obtain, conditional on the Generalised Riemann Hypothesis, the determination of cyclic isogenies of elliptic curves over 19 19 quadratic fields, including Q ( 213 ) mathbb {Q}(sqrt {213}) a
在Mazur 1978年关于素次等同性的工作的基础上,Kenku于1981年确定了Q mathbb {Q}上的椭圆曲线的所有可能的循环等同性。尽管40多年过去了,椭圆曲线在其他单一数场上的循环等同源性的确定至今尚未实现。在本文中,我们开发了一个程序,以帮助建立这样一个确定给定的二次域。对所有二次域Q (d) mathbb {Q}(sqrt {d})执行此过程,并使用| d | >10 4 |d| >10^4在广义黎曼假设的条件下,我们得到了19个二次场上椭圆曲线循环等同性的确定,包括Q (213) mathbb {Q}(sqrt{213})和Q(−2289)mathbb {Q}(sqrt{-2289})。为了使这个过程有效,我们确定了模曲线x0 (125) X_0(125)和x0 (169) X_0(169)上的所有有限多个二次点,这可能是独立的兴趣。
{"title":"Cyclic isogenies of elliptic curves over fixed quadratic fields","authors":"Barinder Banwait, Filip Najman, Oana Padurariu","doi":"10.1090/mcom/3894","DOIUrl":"https://doi.org/10.1090/mcom/3894","url":null,"abstract":"Building on Mazur’s 1978 work on prime degree isogenies, Kenku determined in 1981 all possible cyclic isogenies of elliptic curves over <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper Q\"> <mml:semantics> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi mathvariant=\"double-struck\">Q</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">mathbb {Q}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. Although more than 40 years have passed, the determination of cyclic isogenies of elliptic curves over a single other number field has hitherto not been realised. In this paper we develop a procedure to assist in establishing such a determination for a given quadratic field. Executing this procedure on all quadratic fields <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper Q left-parenthesis StartRoot d EndRoot right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi mathvariant=\"double-struck\">Q</mml:mi> </mml:mrow> <mml:mo stretchy=\"false\">(</mml:mo> <mml:msqrt> <mml:mi>d</mml:mi> </mml:msqrt> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">mathbb {Q}(sqrt {d})</mml:annotation> </mml:semantics> </mml:math> </inline-formula> with <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"StartAbsoluteValue d EndAbsoluteValue greater-than 10 Superscript 4\"> <mml:semantics> <mml:mrow> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mo stretchy=\"false\">|</mml:mo> </mml:mrow> <mml:mi>d</mml:mi> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mo stretchy=\"false\">|</mml:mo> </mml:mrow> <mml:mo>&gt;</mml:mo> <mml:msup> <mml:mn>10</mml:mn> <mml:mn>4</mml:mn> </mml:msup> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">|d| &gt; 10^4</mml:annotation> </mml:semantics> </mml:math> </inline-formula> we obtain, conditional on the Generalised Riemann Hypothesis, the determination of cyclic isogenies of elliptic curves over <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"19\"> <mml:semantics> <mml:mn>19</mml:mn> <mml:annotation encoding=\"application/x-tex\">19</mml:annotation> </mml:semantics> </mml:math> </inline-formula> quadratic fields, including <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper Q left-parenthesis StartRoot 213 EndRoot right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi mathvariant=\"double-struck\">Q</mml:mi> </mml:mrow> <mml:mo stretchy=\"false\">(</mml:mo> <mml:msqrt> <mml:mn>213</mml:mn> </mml:msqrt> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">mathbb {Q}(sqrt {213})</mml:annotation> </mml:semantics> </mml:math> </inline-formula> a","PeriodicalId":18456,"journal":{"name":"Mathematics of Computation","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136037366","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Modified-operator method for the calculation of band diagrams of crystalline materials 晶体材料能带图计算的修正算子法
2区 数学 Q1 Mathematics Pub Date : 2023-08-25 DOI: 10.1090/mcom/3897
Eric Cancès, Muhammad Hassan, Laurent Vidal
In solid state physics, electronic properties of crystalline materials are often inferred from the spectrum of periodic Schrödinger operators. As a consequence of Bloch’s theorem, the numerical computation of electronic quantities of interest involves computing derivatives or integrals over the Brillouin zone of so-called energy bands, which are piecewise smooth, Lipschitz continuous periodic functions obtained by solving a parametrized elliptic eigenvalue problem on a Hilbert space of periodic functions. Classical discretization strategies for resolving these eigenvalue problems produce approximate energy bands that are either non-periodic or discontinuous, both of which cause difficulty when computing numerical derivatives or employing numerical quadrature. In this article, we study an alternative discretization strategy based on an ad hoc operator modification approach. While specific instances of this approach have been proposed in the physics literature, we introduce here a systematic formulation of this operator modification approach. We derive a priori error estimates for the resulting energy bands and we show that these bands are periodic and can be made arbitrarily smooth (away from band crossings) by adjusting suitable parameters in the operator modification approach. Numerical experiments involving a toy model in 1D, graphene in 2D, and silicon in 3D validate our theoretical results and showcase the efficiency of the operator modification approach.
在固态物理中,晶体材料的电子特性通常是从周期性Schrödinger算符的谱中推断出来的。作为Bloch定理的结果,我们感兴趣的电子量的数值计算涉及计算所谓的能量带的布里因区域的导数或积分,这是通过在周期函数的Hilbert空间上求解参数化椭圆特征值问题而得到的分段光滑的Lipschitz连续周期函数。解决这些特征值问题的经典离散化策略产生非周期或不连续的近似能带,这两种情况在计算数值导数或采用数值正交时都会造成困难。在本文中,我们研究了一种基于特别算子修正方法的替代离散化策略。虽然在物理文献中已经提出了这种方法的具体实例,但我们在这里介绍了这种算子修正方法的系统表述。我们推导了所得能带的先验误差估计,并表明这些能带是周期性的,并且可以通过在算子修正方法中调整适当的参数来任意平滑(远离带交叉)。涉及一维玩具模型、二维石墨烯模型和三维硅模型的数值实验验证了我们的理论结果,并展示了算子修正方法的效率。
{"title":"Modified-operator method for the calculation of band diagrams of crystalline materials","authors":"Eric Cancès, Muhammad Hassan, Laurent Vidal","doi":"10.1090/mcom/3897","DOIUrl":"https://doi.org/10.1090/mcom/3897","url":null,"abstract":"In solid state physics, electronic properties of crystalline materials are often inferred from the spectrum of periodic Schrödinger operators. As a consequence of Bloch’s theorem, the numerical computation of electronic quantities of interest involves computing derivatives or integrals over the Brillouin zone of so-called energy bands, which are piecewise smooth, Lipschitz continuous periodic functions obtained by solving a parametrized elliptic eigenvalue problem on a Hilbert space of periodic functions. Classical discretization strategies for resolving these eigenvalue problems produce approximate energy bands that are either non-periodic or discontinuous, both of which cause difficulty when computing numerical derivatives or employing numerical quadrature. In this article, we study an alternative discretization strategy based on an ad hoc operator modification approach. While specific instances of this approach have been proposed in the physics literature, we introduce here a systematic formulation of this operator modification approach. We derive a priori error estimates for the resulting energy bands and we show that these bands are periodic and can be made arbitrarily smooth (away from band crossings) by adjusting suitable parameters in the operator modification approach. Numerical experiments involving a toy model in 1D, graphene in 2D, and silicon in 3D validate our theoretical results and showcase the efficiency of the operator modification approach.","PeriodicalId":18456,"journal":{"name":"Mathematics of Computation","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135236031","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Modular curves with infinitely many quartic points 具有无穷多个四次点的模曲线
2区 数学 Q1 Mathematics Pub Date : 2023-08-18 DOI: 10.1090/mcom/3864
Wontae Hwang, Daeyeol Jeon
In this work, we determine all modular curves X 0 ( N ) X_0(N) which admit infinitely many quartic points.
在这项工作中,我们确定了所有允许无限个四分点的模曲线x0 (N) X_0(N)。
{"title":"Modular curves with infinitely many quartic points","authors":"Wontae Hwang, Daeyeol Jeon","doi":"10.1090/mcom/3864","DOIUrl":"https://doi.org/10.1090/mcom/3864","url":null,"abstract":"In this work, we determine all modular curves <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper X 0 left-parenthesis upper N right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi>X</mml:mi> <mml:mn>0</mml:mn> </mml:msub> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>N</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">X_0(N)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> which admit infinitely many quartic points.","PeriodicalId":18456,"journal":{"name":"Mathematics of Computation","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135971628","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the seeds and the great-grandchildren of a numerical semigroup 论数值半群的子代和曾孙
2区 数学 Q1 Mathematics Pub Date : 2023-08-16 DOI: 10.1090/mcom/3881
Maria Bras-Amorós
We present a revisit of the seeds algorithm to explore the semigroup tree. First, an equivalent definition of seed is presented, which seems easier to manage. Second, we determine the seeds of semigroups with at most three left elements. And third, we find the great-grandchildren of any numerical semigroup in terms of its seeds. The the right-generators descendant (RGD) algorithm is the fastest known algorithm at the moment. But if one compares the originary seeds algorithm with the RGD algorithm, one observes that the seeds algorithm uses more elaborated mathematical tools while the RGD algorithm uses data structures that are better adapted to the final C implementations. For genera up to around one half of the maximum size of native integers, the newly defined seeds algorithm performs significantly better than the RGD algorithm. For future compilators allowing larger native sized integers this may constitute a powerful tool to explore the semigroup tree up to genera never explored before. The new seeds algorithm uses bitwise integer operations, the knowledge of the seeds of semigroups with at most three left elements and of the great-grandchildren of any numerical semigroup, apart from techniques such as parallelization and depth first search as wisely introduced in this context by Fromentin and Hivert [Math. Comp. 85 (2016) pp. 2553–2568]. The algorithm has been used to prove that there are no Eliahou semigroups of genus 66 66 , hence proving the Wilf conjecture for genus up to 66 66 . We also found three Eliahou semigroups of genus 67 67 . One of these semigroups is neither of Eliahou-Fromentin type, nor of Delgado’s type. However, it is a member of a new family suggested by Shalom Eliahou.
我们提出了一种种子算法来探索半群树。首先,给出了种子的等价定义,该定义似乎更易于管理。其次,我们确定了最多有三个左元素的半群的种子。第三,我们根据它的种子找到任何数值半群的曾孙。右生成器后代(RGD)算法是目前已知最快的算法。但是,如果将原始种子算法与RGD算法进行比较,就会发现种子算法使用了更复杂的数学工具,而RGD算法使用了更适合最终C实现的数据结构。对于原生整数最大大小的一半左右的属,新定义的种子算法的性能明显优于RGD算法。对于将来允许更大的本地整数的编译器来说,这可能是一个强大的工具,可以探索半群树,直到以前从未探索过的属。新的种子算法使用位整数运算,除了并行化和深度优先搜索等技术(由Fromentin和Hivert [Math]在此背景下明智地引入)之外,还使用最多有三个左元素的半群的种子和任何数值半群的曾孙的知识。Comp. 85 (2016) pp. 2553-2568]。利用该算法证明了66 66属的Eliahou半群不存在,从而证明了66 66属的Wilf猜想。我们还发现了3个属667的Eliahou半群。其中一个半群既不是Eliahou-Fromentin型,也不是Delgado型。然而,它是Shalom Eliahou建议的一个新家庭的成员。
{"title":"On the seeds and the great-grandchildren of a numerical semigroup","authors":"Maria Bras-Amorós","doi":"10.1090/mcom/3881","DOIUrl":"https://doi.org/10.1090/mcom/3881","url":null,"abstract":"We present a revisit of the seeds algorithm to explore the semigroup tree. First, an equivalent definition of seed is presented, which seems easier to manage. Second, we determine the seeds of semigroups with at most three left elements. And third, we find the great-grandchildren of any numerical semigroup in terms of its seeds. The the right-generators descendant (RGD) algorithm is the fastest known algorithm at the moment. But if one compares the originary seeds algorithm with the RGD algorithm, one observes that the seeds algorithm uses more elaborated mathematical tools while the RGD algorithm uses data structures that are better adapted to the final C implementations. For genera up to around one half of the maximum size of native integers, the newly defined seeds algorithm performs significantly better than the RGD algorithm. For future compilators allowing larger native sized integers this may constitute a powerful tool to explore the semigroup tree up to genera never explored before. The new seeds algorithm uses bitwise integer operations, the knowledge of the seeds of semigroups with at most three left elements and of the great-grandchildren of any numerical semigroup, apart from techniques such as parallelization and depth first search as wisely introduced in this context by Fromentin and Hivert [Math. Comp. 85 (2016) pp. 2553–2568]. The algorithm has been used to prove that there are no Eliahou semigroups of genus <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"66\"> <mml:semantics> <mml:mn>66</mml:mn> <mml:annotation encoding=\"application/x-tex\">66</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, hence proving the Wilf conjecture for genus up to <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"66\"> <mml:semantics> <mml:mn>66</mml:mn> <mml:annotation encoding=\"application/x-tex\">66</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. We also found three Eliahou semigroups of genus <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"67\"> <mml:semantics> <mml:mn>67</mml:mn> <mml:annotation encoding=\"application/x-tex\">67</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. One of these semigroups is neither of Eliahou-Fromentin type, nor of Delgado’s type. However, it is a member of a new family suggested by Shalom Eliahou.","PeriodicalId":18456,"journal":{"name":"Mathematics of Computation","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136337533","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Computing error bounds for asymptotic expansions of regular P-recursive sequences 正则p -递归序列渐近展开式的误差界计算
2区 数学 Q1 Mathematics Pub Date : 2023-08-16 DOI: 10.1090/mcom/3888
Ruiwen Dong, Stephen Melczer, Marc Mezzarobba
Over the last several decades, improvements in the fields of analytic combinatorics and computer algebra have made determining the asymptotic behaviour of sequences satisfying linear recurrence relations with polynomial coefficients largely a matter of routine, under assumptions that hold often in practice. The algorithms involved typically take a sequence, encoded by a recurrence relation and initial terms, and return the leading terms in an asymptotic expansion up to a big-O error term. Less studied, however, are effective techniques giving an explicit bound on asymptotic error terms. Among other things, such explicit bounds typically allow the user to automatically prove sequence positivity (an active area of enumerative and algebraic combinatorics) by exhibiting an index when positive leading asymptotic behaviour dominates any error terms. In this article, we present a practical algorithm for computing such asymptotic approximations with rigorous error bounds, under the assumption that the generating series of the sequence is a solution of a differential equation with regular (Fuchsian) dominant singularities. Our algorithm approximately follows the singularity analysis method of Flajolet and Odlyzko, except that all big-O terms involved in the derivation of the asymptotic expansion are replaced by explicit error terms. The computation of the error terms combines analytic bounds from the literature with effective techniques from rigorous numerics and computer algebra. We implement our algorithm in the SageMath computer algebra system and exhibit its use on a variety of applications (including our original motivating example, solution uniqueness in the Canham model for the shape of genus one biomembranes).
在过去的几十年里,分析组合学和计算机代数领域的进步使得在实践中经常成立的假设下,确定满足多项式系数线性递归关系的序列的渐近行为在很大程度上是一种常规问题。所涉及的算法通常采用由递归关系和初始项编码的序列,并在渐近展开中返回到大0误差项的前导项。然而,研究较少的是给出渐近误差项的显式界的有效技术。除其他事项外,这种显式界限通常允许用户自动证明序列正性(枚举学和代数组合学的活跃领域),当正渐近行为主导任何错误项时,通过显示索引。在本文中,我们给出了一种实用的算法来计算这种具有严格误差界的渐近逼近,假设序列的生成级数是具有正则(Fuchsian)优势奇点的微分方程的解。我们的算法近似地遵循Flajolet和Odlyzko的奇异分析方法,只是在渐近展开的推导中涉及的所有大o项都被显式误差项所取代。误差项的计算结合了文献中的解析界与严格数值和计算机代数的有效技术。我们在SageMath计算机代数系统中实现了我们的算法,并展示了它在各种应用中的使用(包括我们最初的激励示例,属1生物膜形状的Canham模型的解唯一性)。
{"title":"Computing error bounds for asymptotic expansions of regular P-recursive sequences","authors":"Ruiwen Dong, Stephen Melczer, Marc Mezzarobba","doi":"10.1090/mcom/3888","DOIUrl":"https://doi.org/10.1090/mcom/3888","url":null,"abstract":"Over the last several decades, improvements in the fields of analytic combinatorics and computer algebra have made determining the asymptotic behaviour of sequences satisfying linear recurrence relations with polynomial coefficients largely a matter of routine, under assumptions that hold often in practice. The algorithms involved typically take a sequence, encoded by a recurrence relation and initial terms, and return the leading terms in an asymptotic expansion up to a big-O error term. Less studied, however, are effective techniques giving an explicit bound on asymptotic error terms. Among other things, such explicit bounds typically allow the user to automatically prove sequence positivity (an active area of enumerative and algebraic combinatorics) by exhibiting an index when positive leading asymptotic behaviour dominates any error terms. In this article, we present a practical algorithm for computing such asymptotic approximations with rigorous error bounds, under the assumption that the generating series of the sequence is a solution of a differential equation with regular (Fuchsian) dominant singularities. Our algorithm approximately follows the singularity analysis method of Flajolet and Odlyzko, except that all big-O terms involved in the derivation of the asymptotic expansion are replaced by explicit error terms. The computation of the error terms combines analytic bounds from the literature with effective techniques from rigorous numerics and computer algebra. We implement our algorithm in the SageMath computer algebra system and exhibit its use on a variety of applications (including our original motivating example, solution uniqueness in the Canham model for the shape of genus one biomembranes).","PeriodicalId":18456,"journal":{"name":"Mathematics of Computation","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136337990","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
A Ramanujan integral and its derivatives: computation and analysis 拉马努金积分及其导数:计算与分析
2区 数学 Q1 Mathematics Pub Date : 2023-08-15 DOI: 10.1090/mcom/3892
Walter Gautschi, Gradimir Milovanovic
The principal tool of computation used in this paper is classical Gaussian quadrature on the interval [0,1], which happens to be particularly effective here. Explicit expressions are found for the derivatives of the Ramanujan integral in question, and it is proved that the latter is completely monotone on ( 0 , ) (0,infty ) . As a byproduct, known series expansions for incomplete gamma functions are examined with regard to their convergence properties. The paper also pays attention to another famous integral, the Euler integral — better known as the gamma function — revitalizing a largely neglected part of the function, the part corresponding to negative values of the argument, which plays a prominent role in our work.
本文使用的主要计算工具是区间[0,1]上的经典高斯正交,它在这里特别有效。得到了所讨论的Ramanujan积分的导数的显式表达式,并证明了Ramanujan积分在(0,∞)(0,infty)上是完全单调的。作为一个副产品,已知的不完全函数的级数展开式是关于其收敛性的。本文还关注了另一个著名的积分,欧拉积分-更广为人知的是伽马函数-重新激活了函数中很大程度上被忽视的部分,即对应于参数负值的部分,这部分在我们的工作中起着突出的作用。
{"title":"A Ramanujan integral and its derivatives: computation and analysis","authors":"Walter Gautschi, Gradimir Milovanovic","doi":"10.1090/mcom/3892","DOIUrl":"https://doi.org/10.1090/mcom/3892","url":null,"abstract":"The principal tool of computation used in this paper is classical Gaussian quadrature on the interval [0,1], which happens to be particularly effective here. Explicit expressions are found for the derivatives of the Ramanujan integral in question, and it is proved that the latter is completely monotone on <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-parenthesis 0 comma normal infinity right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mn>0</mml:mn> <mml:mo>,</mml:mo> <mml:mi mathvariant=\"normal\">∞<!-- ∞ --></mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">(0,infty )</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. As a byproduct, known series expansions for incomplete gamma functions are examined with regard to their convergence properties. The paper also pays attention to another famous integral, the Euler integral — better known as the gamma function — revitalizing a largely neglected part of the function, the part corresponding to negative values of the argument, which plays a prominent role in our work.","PeriodicalId":18456,"journal":{"name":"Mathematics of Computation","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135065443","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A short basis of the Stickelberger ideal of a cyclotomic field 一个简单的基础的斯蒂克尔伯格理想的环切场
2区 数学 Q1 Mathematics Pub Date : 2023-08-09 DOI: 10.1090/mcom/3863
Olivier Bernard, Radan Kučera
We exhibit an explicit short basis of the Stickelberger ideal of cyclotomic fields of any conductor m m , i.e., a basis containing only short elements. An element σ G m ε σ σ sum _{sigma in G_m} varepsilon _{sigma }sigma of the group ring Z [ G m ] mathbb {Z}[G_{m}] , where G m G_m is the Galois group of the field, is said to be short if all of its coefficients ε σ varepsilon _{sigma } are 0 0 or
我们展示了任意导体m m的旋切场的Stickelberger理想的显式短基,即只包含短元素的基。群环Z[G m] mathbb Z[G_m]中的一个元素∑σ∈G m ε σ σ sum{ _ }{sigma}{}{in} G_m varepsilon{ _ }{sigma}sigma,其中G m G_m是场的伽罗瓦群,如果它的所有系数ε σ {}{}varepsilon _ {sigma都是0 0或11,则称其为短。作为一个直接的实际结果,我们从这个短基中推导出对任何导体都有效的相对类数的明确上界。这个基础也有几个具体的应用,特别是对理想格上最短向量问题的密码分析。}
{"title":"A short basis of the Stickelberger ideal of a cyclotomic field","authors":"Olivier Bernard, Radan Kučera","doi":"10.1090/mcom/3863","DOIUrl":"https://doi.org/10.1090/mcom/3863","url":null,"abstract":"We exhibit an explicit <italic>short</italic> basis of the Stickelberger ideal of cyclotomic fields of any conductor <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"m\"> <mml:semantics> <mml:mi>m</mml:mi> <mml:annotation encoding=\"application/x-tex\">m</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, i.e., a basis containing only short elements. An element <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"sigma-summation Underscript sigma element-of upper G Subscript m Endscripts epsilon Subscript sigma Baseline sigma\"> <mml:semantics> <mml:mrow> <mml:munder> <mml:mo>∑<!-- ∑ --></mml:mo> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi>σ<!-- σ --></mml:mi> <mml:mo>∈<!-- ∈ --></mml:mo> <mml:msub> <mml:mi>G</mml:mi> <mml:mi>m</mml:mi> </mml:msub> </mml:mrow> </mml:munder> <mml:msub> <mml:mi>ε<!-- ε --></mml:mi> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi>σ<!-- σ --></mml:mi> </mml:mrow> </mml:msub> <mml:mi>σ<!-- σ --></mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">sum _{sigma in G_m} varepsilon _{sigma }sigma</mml:annotation> </mml:semantics> </mml:math> </inline-formula> of the group ring <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper Z left-bracket upper G Subscript m Baseline right-bracket\"> <mml:semantics> <mml:mrow> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi mathvariant=\"double-struck\">Z</mml:mi> </mml:mrow> <mml:mo stretchy=\"false\">[</mml:mo> <mml:msub> <mml:mi>G</mml:mi> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi>m</mml:mi> </mml:mrow> </mml:msub> <mml:mo stretchy=\"false\">]</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">mathbb {Z}[G_{m}]</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, where <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper G Subscript m\"> <mml:semantics> <mml:msub> <mml:mi>G</mml:mi> <mml:mi>m</mml:mi> </mml:msub> <mml:annotation encoding=\"application/x-tex\">G_m</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is the Galois group of the field, is said to be short if all of its coefficients <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"epsilon Subscript sigma\"> <mml:semantics> <mml:msub> <mml:mi>ε<!-- ε --></mml:mi> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi>σ<!-- σ --></mml:mi> </mml:mrow> </mml:msub> <mml:annotation encoding=\"application/x-tex\">varepsilon _{sigma }</mml:annotation> </mml:semantics> </mml:math> </inline-formula> are <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"0\"> <mml:semantics> <mml:mn>0</mml:mn> <mml:annotation encoding=\"application/x-tex\">0</mml:annotation> </mml:semantics> </mml:math> </inline-formula> or <inline-formula content-type=\"","PeriodicalId":18456,"journal":{"name":"Mathematics of Computation","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135598019","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Low regularity estimates for CutFEM approximations of an elliptic problem with mixed boundary conditions 混合边界条件下椭圆型问题的低正则性估计
2区 数学 Q1 Mathematics Pub Date : 2023-08-07 DOI: 10.1090/mcom/3875
Erik Burman, Peter Hansbo, Mats G. Larson
We show error estimates for a cut finite element approximation of a second order elliptic problem with mixed boundary conditions. The error estimates are of low regularity type where we consider the case when the exact solution u H s u in H^s with s ( 1 , 3 / 2 ] sin (1,3/2] . For Nitsche type methods this case requires special handling of the terms involving the normal flux of the exact solution at the the boundary. For Dirichlet boundary conditions the estimates are optimal, whereas in the case of mixed Dirichlet-Neumann boundary conditions they are suboptimal by a logarithmic factor.
给出了具有混合边界条件的二阶椭圆型问题的切割有限元近似的误差估计。误差估计是低正则型的,我们考虑当精确解u∈H s u in H^s与s∈(1,3/2)sin(1,3/2)的情况。对于Nitsche型方法,这种情况需要对涉及精确解在边界处的法向通量的项进行特殊处理。对于狄利克雷边界条件,估计是最优的,而在混合狄利克雷-诺伊曼边界条件的情况下,它们是次优的对数因子。
{"title":"Low regularity estimates for CutFEM approximations of an elliptic problem with mixed boundary conditions","authors":"Erik Burman, Peter Hansbo, Mats G. Larson","doi":"10.1090/mcom/3875","DOIUrl":"https://doi.org/10.1090/mcom/3875","url":null,"abstract":"We show error estimates for a cut finite element approximation of a second order elliptic problem with mixed boundary conditions. The error estimates are of low regularity type where we consider the case when the exact solution <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"u element-of upper H Superscript s\"> <mml:semantics> <mml:mrow> <mml:mi>u</mml:mi> <mml:mo>∈<!-- ∈ --></mml:mo> <mml:msup> <mml:mi>H</mml:mi> <mml:mi>s</mml:mi> </mml:msup> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">u in H^s</mml:annotation> </mml:semantics> </mml:math> </inline-formula> with <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"s element-of left-parenthesis 1 comma 3 slash 2 right-bracket\"> <mml:semantics> <mml:mrow> <mml:mi>s</mml:mi> <mml:mo>∈<!-- ∈ --></mml:mo> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mn>1</mml:mn> <mml:mo>,</mml:mo> <mml:mn>3</mml:mn> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mo>/</mml:mo> </mml:mrow> <mml:mn>2</mml:mn> <mml:mo stretchy=\"false\">]</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">sin (1,3/2]</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. For Nitsche type methods this case requires special handling of the terms involving the normal flux of the exact solution at the the boundary. For Dirichlet boundary conditions the estimates are optimal, whereas in the case of mixed Dirichlet-Neumann boundary conditions they are suboptimal by a logarithmic factor.","PeriodicalId":18456,"journal":{"name":"Mathematics of Computation","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135840481","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Mathematics of Computation
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1