首页 > 最新文献

Mathematics of Computation最新文献

英文 中文
Optimal analysis of finite element methods for the stochastic Stokes equations 随机斯托克斯方程有限元方法的优化分析
IF 2 2区 数学 Q1 Mathematics Pub Date : 2024-04-29 DOI: 10.1090/mcom/3972
Buyang Li, Shu Ma, Weiwei Sun

Numerical analysis for the stochastic Stokes equations is still challenging even though it has been well done for the corresponding deterministic equations. In particular, the pre-existing error estimates of finite element methods for the stochastic Stokes equations in the L ( 0 , T ; L 2 ( Ω ; L 2 ) ) L^infty (0, T; L^2(Omega ; L^2)) norm all suffer from the order reduction with respect to the spatial discretizations. The best convergence result obtained for these fully discrete schemes is only half-order in time and first-order in space, which is not optimal in space in the traditional sense. The objective of this article is to establish strong convergence of O ( τ 1 / 2 + h 2 ) O(tau ^{1/2}+ h^2) in the L ( 0 , T ; L 2 ( Ω ; L

尽管随机斯托克斯方程的数值分析已经在相应的确定性方程中得到了很好的应用,但它仍然具有挑战性。特别是,有限元方法在 L ∞ ( 0 , T ; L 2 ( Ω ; L 2 ) 中对随机斯托克斯方程的已有误差估计) L^infty (0, T; L^2(Omega ; L^2)) 规范下的随机斯托克斯方程都会因空间离散化而导致阶次减少。这些全离散方案获得的最佳收敛结果在时间上只有半阶,在空间上只有一阶,并不是传统意义上的空间最优。本文的目的是在 L ∞ ( 0 , T ; L 2 ( Ω ; L 2 ) 中建立 O ( τ 1 / 2 + h 2 ) O(tau ^{1/2}+ h^2) 的强收敛性。) L^{infty}(0,T;L^2(Omega;L^2)) 准则来近似速度,并且在 L ∞ ( 0 ,T ;L 2 ( Ω ;L 2 ) 中强收敛为 O ( τ 1 / 2 + h ) O(tau^{1/2}+h)。 L^{infty }(0, T;L^2(Omega ;L^2)) 规范用于逼近压力的时间积分,其中 τ tau 和 h h 分别表示时间步长和空间网格大小。误差估计值是本文所考虑的空间离散化(使用 MINI 元素)的最优阶,与数值实验结果一致。分析基于完全离散斯托克斯半群技术和相应的新估计。
{"title":"Optimal analysis of finite element methods for the stochastic Stokes equations","authors":"Buyang Li, Shu Ma, Weiwei Sun","doi":"10.1090/mcom/3972","DOIUrl":"https://doi.org/10.1090/mcom/3972","url":null,"abstract":"<p>Numerical analysis for the stochastic Stokes equations is still challenging even though it has been well done for the corresponding deterministic equations. In particular, the pre-existing error estimates of finite element methods for the stochastic Stokes equations in the <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper L Superscript normal infinity Baseline left-parenthesis 0 comma upper T semicolon upper L squared left-parenthesis normal upper Omega semicolon upper L squared right-parenthesis right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:msup> <mml:mi>L</mml:mi> <mml:mi mathvariant=\"normal\">∞</mml:mi> </mml:msup> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mn>0</mml:mn> <mml:mo>,</mml:mo> <mml:mi>T</mml:mi> <mml:mo>;</mml:mo> <mml:msup> <mml:mi>L</mml:mi> <mml:mn>2</mml:mn> </mml:msup> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi mathvariant=\"normal\">Ω</mml:mi> <mml:mo>;</mml:mo> <mml:msup> <mml:mi>L</mml:mi> <mml:mn>2</mml:mn> </mml:msup> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">L^infty (0, T; L^2(Omega ; L^2))</mml:annotation> </mml:semantics> </mml:math> </inline-formula> norm all suffer from the order reduction with respect to the spatial discretizations. The best convergence result obtained for these fully discrete schemes is only half-order in time and first-order in space, which is not optimal in space in the traditional sense. The objective of this article is to establish strong convergence of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper O left-parenthesis tau Superscript 1 slash 2 Baseline plus h squared right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mi>O</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:msup> <mml:mi>τ</mml:mi> <mml:mrow> <mml:mn>1</mml:mn> <mml:mrow> <mml:mo>/</mml:mo> </mml:mrow> <mml:mn>2</mml:mn> </mml:mrow> </mml:msup> <mml:mo>+</mml:mo> <mml:msup> <mml:mi>h</mml:mi> <mml:mn>2</mml:mn> </mml:msup> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">O(tau ^{1/2}+ h^2)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> in the <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper L Superscript normal infinity Baseline left-parenthesis 0 comma upper T semicolon upper L squared left-parenthesis normal upper Omega semicolon upper L squared right-parenthesis right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:msup> <mml:mi>L</mml:mi> <mml:mi mathvariant=\"normal\">∞</mml:mi> </mml:msup> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mn>0</mml:mn> <mml:mo>,</mml:mo> <mml:mi>T</mml:mi> <mml:mo>;</mml:mo> <mml:msup> <mml:mi>L</mml:mi> <mml:mn>2</mml:mn> </mml:msup> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi mathvariant=\"normal\">Ω</mml:mi> <mml:mo>;</mml:mo> <mml:msup> <mml:mi>L</mml:","PeriodicalId":18456,"journal":{"name":"Mathematics of Computation","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140942542","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Towards a classification of isolated 𝑗-invariants 对孤立𝑗变量进行分类
IF 2 2区 数学 Q1 Mathematics Pub Date : 2024-04-25 DOI: 10.1090/mcom/3956
Abbey Bourdon, Sachi Hashimoto, Timo Keller, Z. Klagsbrun, David Lowry-Duda, Travis Morrison, Filip Najman, Himanshu Shukla

We develop an algorithm to test whether a non-complex multiplication elliptic curve E / Q E/mathbf {Q} gives rise to an isolated point of any degree on any modular curve of the form X 1 ( N ) X_1(N) . This builds on prior work of Zywina which gives a method for computing the image of the adelic Galois representation associated to E E . Running this algorithm on all elliptic curves presently in the L L -functions and Modular Forms Database and the Stein–Watkins Database gives strong evidence for the conjecture that E E gives rise to an isolated point on X 1 ( N ) X_1(N) if and only if

我们开发了一种算法来检验非复数乘法椭圆曲线 E / Q E/mathbf {Q} 是否会在任何形式为 X 1 ( N ) X_1(N)的模态曲线上产生一个任意度的孤立点。这建立在 Zywina 之前的工作基础上,Zywina 给出了一种计算与 E E 相关联的adelic伽罗瓦表示的映像的方法。在 L L 函数和模块形式数据库以及 Stein-Watkins 数据库中的所有椭圆曲线上运行这一算法,有力地证明了以下猜想:当且仅当 j ( E ) = - 140625 / 8 , - 9317 j(E)=-140625/8, -9317 , 351 / 4 351/4 , 或 - 162677523113838677 -162677523113838677 时,E E 在 X 1 ( N ) X_1(N)上产生孤立点。
{"title":"Towards a classification of isolated 𝑗-invariants","authors":"Abbey Bourdon, Sachi Hashimoto, Timo Keller, Z. Klagsbrun, David Lowry-Duda, Travis Morrison, Filip Najman, Himanshu Shukla","doi":"10.1090/mcom/3956","DOIUrl":"https://doi.org/10.1090/mcom/3956","url":null,"abstract":"<p>We develop an algorithm to test whether a non-complex multiplication elliptic curve <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper E slash bold upper Q\">\u0000 <mml:semantics>\u0000 <mml:mrow>\u0000 <mml:mi>E</mml:mi>\u0000 <mml:mrow class=\"MJX-TeXAtom-ORD\">\u0000 <mml:mo>/</mml:mo>\u0000 </mml:mrow>\u0000 <mml:mrow class=\"MJX-TeXAtom-ORD\">\u0000 <mml:mi mathvariant=\"bold\">Q</mml:mi>\u0000 </mml:mrow>\u0000 </mml:mrow>\u0000 <mml:annotation encoding=\"application/x-tex\">E/mathbf {Q}</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> gives rise to an isolated point of any degree on any modular curve of the form <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper X 1 left-parenthesis upper N right-parenthesis\">\u0000 <mml:semantics>\u0000 <mml:mrow>\u0000 <mml:msub>\u0000 <mml:mi>X</mml:mi>\u0000 <mml:mn>1</mml:mn>\u0000 </mml:msub>\u0000 <mml:mo stretchy=\"false\">(</mml:mo>\u0000 <mml:mi>N</mml:mi>\u0000 <mml:mo stretchy=\"false\">)</mml:mo>\u0000 </mml:mrow>\u0000 <mml:annotation encoding=\"application/x-tex\">X_1(N)</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula>. This builds on prior work of Zywina which gives a method for computing the image of the adelic Galois representation associated to <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper E\">\u0000 <mml:semantics>\u0000 <mml:mi>E</mml:mi>\u0000 <mml:annotation encoding=\"application/x-tex\">E</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula>. Running this algorithm on all elliptic curves presently in the <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper L\">\u0000 <mml:semantics>\u0000 <mml:mi>L</mml:mi>\u0000 <mml:annotation encoding=\"application/x-tex\">L</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula>-functions and Modular Forms Database and the Stein–Watkins Database gives strong evidence for the conjecture that <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper E\">\u0000 <mml:semantics>\u0000 <mml:mi>E</mml:mi>\u0000 <mml:annotation encoding=\"application/x-tex\">E</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> gives rise to an isolated point on <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper X 1 left-parenthesis upper N right-parenthesis\">\u0000 <mml:semantics>\u0000 <mml:mrow>\u0000 <mml:msub>\u0000 <mml:mi>X</mml:mi>\u0000 <mml:mn>1</mml:mn>\u0000 </mml:msub>\u0000 <mml:mo stretchy=\"false\">(</mml:mo>\u0000 <mml:mi>N</mml:mi>\u0000 <mml:mo stretchy=\"false\">)</mml:mo>\u0000 </mml:mrow>\u0000 <mml:annotation encoding=\"application/x-tex\">X_1(N)</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> if and only if <inline-formula content-type=\"math/mathm","PeriodicalId":18456,"journal":{"name":"Mathematics of Computation","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140656482","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cellular approximations to the diagonal map 对角线图的细胞近似值
IF 2 2区 数学 Q1 Mathematics Pub Date : 2024-04-24 DOI: 10.1090/mcom/3981
Khaled Alzobydi, Graham Ellis

We describe an elementary algorithm for recursively constructing diagonal approximations on those finite regular CW-complexes for which the closure of each cell can be explicitly collapsed to a point. The algorithm is based on the standard proof of the acyclic carrier theorem, made constructive through the use of explicit contracting homotopies. It can be used as a theoretical tool for constructing diagonal approximations on families of polytopes in situations where the diagonals are required to satisfy certain coherence conditions. We compare its output to existing diagonal approximations for the families of simplices, cubes, associahedra and permutahedra. The algorithm yields a new explanation of a magical formula for the associahedron derived by Markl and Shnider [Trans. Amer. Math. Soc. 358 (2006), pp. 2353–2372] and Masuda, Thomas, Tonks, and Vallette [J. Éc. polytech. Math. 8 (2021), pp. 121–146] and Theorem 4.1 provides a magical formula for other polytopes. We also describe a computer implementation of the algorithm and illustrate it on a range of practical examples including the computation of cohomology rings for some low-dimensional manifolds. To achieve some of these examples the paper includes two approaches to generating a regular CW-complex structure on closed compact 3 3 -manifolds, one using an implementation of Dehn surgery on links and the other using an implementation of pairwise identifications of faces in a tessellated boundary of the 3 3 -ball. The latter is illustrated in Proposition 8.1 with a topological classification of all closed orientable 3 3 -manifolds arising from pairwise identifications of faces of the cube.

我们描述了一种在有限正则 CW 复数上递归构造对角线近似的基本算法,对于这些有限正则 CW 复数,每个单元的闭合可以明确地折叠为一个点。该算法基于非循环载体定理的标准证明,并通过使用显式收缩同调而变得具有构造性。在要求对角线满足特定一致性条件的情况下,它可以作为一种理论工具,用于构建多边形族的对角线近似。我们将它的输出结果与现有的简面、立方体、联面和高面族的对角线近似值进行了比较。该算法对 Markl 和 Shnider [Trans. Amer. Math. Soc. 358 (2006), pp.我们还描述了该算法的计算机实现,并在一系列实际例子中进行了说明,包括一些低维流形的同调环计算。为了实现其中的一些例子,论文包含了在封闭紧凑的 3 3 -manifolds 上生成正则 CW-complex 结构的两种方法,一种是在链接上使用 Dehn 手术的实现方法,另一种是在 3 3 -ball 的网格边界上使用面的成对识别的实现方法。后者在命题 8.1 中以立方体面的成对识别所产生的所有封闭可定向 3 3 -manifold 的拓扑分类来说明。
{"title":"Cellular approximations to the diagonal map","authors":"Khaled Alzobydi, Graham Ellis","doi":"10.1090/mcom/3981","DOIUrl":"https://doi.org/10.1090/mcom/3981","url":null,"abstract":"<p>We describe an elementary algorithm for recursively constructing diagonal approximations on those finite regular CW-complexes for which the closure of each cell can be explicitly collapsed to a point. The algorithm is based on the standard proof of the acyclic carrier theorem, made constructive through the use of explicit contracting homotopies. It can be used as a theoretical tool for constructing diagonal approximations on families of polytopes in situations where the diagonals are required to satisfy certain coherence conditions. We compare its output to existing diagonal approximations for the families of simplices, cubes, associahedra and permutahedra. The algorithm yields a new explanation of a <italic>magical formula</italic> for the associahedron derived by Markl and Shnider [Trans. Amer. Math. Soc. 358 (2006), pp. 2353–2372] and Masuda, Thomas, Tonks, and Vallette [J. Éc. polytech. Math. 8 (2021), pp. 121–146] and Theorem 4.1 provides a <italic>magical formula</italic> for other polytopes. We also describe a computer implementation of the algorithm and illustrate it on a range of practical examples including the computation of cohomology rings for some low-dimensional manifolds. To achieve some of these examples the paper includes two approaches to generating a regular CW-complex structure on closed compact <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"3\"> <mml:semantics> <mml:mn>3</mml:mn> <mml:annotation encoding=\"application/x-tex\">3</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-manifolds, one using an implementation of Dehn surgery on links and the other using an implementation of pairwise identifications of faces in a tessellated boundary of the <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"3\"> <mml:semantics> <mml:mn>3</mml:mn> <mml:annotation encoding=\"application/x-tex\">3</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-ball. The latter is illustrated in Proposition 8.1 with a topological classification of all closed orientable <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"3\"> <mml:semantics> <mml:mn>3</mml:mn> <mml:annotation encoding=\"application/x-tex\">3</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-manifolds arising from pairwise identifications of faces of the cube.</p>","PeriodicalId":18456,"journal":{"name":"Mathematics of Computation","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141172264","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Low-regularity exponential-type integrators for the Zakharov system with rough data in all dimensions 扎哈罗夫系统的低规则指数型积分器与所有维度的粗糙数据
IF 2 2区 数学 Q1 Mathematics Pub Date : 2024-04-22 DOI: 10.1090/mcom/3973
Hang Li, Chunmei Su

We propose and analyze a type of low-regularity exponential-type integrators (LREIs) for the Zakharov system (ZS) with rough solutions. Our LREIs include a first-order integrator and a second-order one, and they achieve optimal convergence under weaker regularity assumptions on the exact solution compared to the existing numerical methods in literature. Specifically, the first-order integrator exhibits linear convergence in H m + 2 ( T d ) × H m + 1 ( T d ) × H m ( T d ) H^{m+2}(mathbb {T}^d)times H^{m+1}(mathbb {T}^d)times H^m(mathbb {T}^d) for solutions in

我们针对具有粗糙解的扎哈罗夫系统(ZS)提出并分析了一种低正则指数型积分器(LREIs)。我们的 LREIs 包括一个一阶积分器和一个二阶积分器,与文献中现有的数值方法相比,它们在精确解的较弱规则性假设下实现了最佳收敛。具体来说一阶H m + 2 ( T d ) × H m + 1 ( T d ) × H m ( T d ) H^{m+2}(mathbb {T}^d)times H^{m+1}(mathbb {T}^d)times H^m(mathbb {T}^d) 中的解的线性收敛性。 m + 3 ( T d ) × H m + 2 ( T d ) × H m + 1 ( T d ) H^{m+3}(mathbb {T}^d)times H^{m+2}(mathbb {T}^d)times H^{m+1}(mathbb {T}^d) if m > d / 2 m>d/2 、这意味着只需要求解的一个额外导数的有界性就能实现一阶收敛。而对于二阶积分器,我们证明它通过要求解的两个额外空间导数的有界性来实现二阶精度。与经典的三角积分器相比,所需的额外导数阶数减少了一半。设计积分器的主要技术包括:通过引入新变量进行重新表述,以排除原始 ZS 中空间规则性的损失;对方程线性部分的主要项进行精确积分;对涉及非线性相互作用的指数相位函数进行适当近似(或平均近似)。与经典积分器的数值比较证实,我们新提出的 LREIs 在处理粗糙数据方面具有更高的准确性和鲁棒性。
{"title":"Low-regularity exponential-type integrators for the Zakharov system with rough data in all dimensions","authors":"Hang Li, Chunmei Su","doi":"10.1090/mcom/3973","DOIUrl":"https://doi.org/10.1090/mcom/3973","url":null,"abstract":"<p>We propose and analyze a type of low-regularity exponential-type integrators (LREIs) for the Zakharov system (ZS) with rough solutions. Our LREIs include a first-order integrator and a second-order one, and they achieve optimal convergence under weaker regularity assumptions on the exact solution compared to the existing numerical methods in literature. Specifically, the first-order integrator exhibits linear convergence in <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper H Superscript m plus 2 Baseline left-parenthesis double-struck upper T Superscript d Baseline right-parenthesis times upper H Superscript m plus 1 Baseline left-parenthesis double-struck upper T Superscript d Baseline right-parenthesis times upper H Superscript m Baseline left-parenthesis double-struck upper T Superscript d Baseline right-parenthesis\">\u0000 <mml:semantics>\u0000 <mml:mrow>\u0000 <mml:msup>\u0000 <mml:mi>H</mml:mi>\u0000 <mml:mrow class=\"MJX-TeXAtom-ORD\">\u0000 <mml:mi>m</mml:mi>\u0000 <mml:mo>+</mml:mo>\u0000 <mml:mn>2</mml:mn>\u0000 </mml:mrow>\u0000 </mml:msup>\u0000 <mml:mo stretchy=\"false\">(</mml:mo>\u0000 <mml:msup>\u0000 <mml:mrow class=\"MJX-TeXAtom-ORD\">\u0000 <mml:mi mathvariant=\"double-struck\">T</mml:mi>\u0000 </mml:mrow>\u0000 <mml:mi>d</mml:mi>\u0000 </mml:msup>\u0000 <mml:mo stretchy=\"false\">)</mml:mo>\u0000 <mml:mo>×<!-- × --></mml:mo>\u0000 <mml:msup>\u0000 <mml:mi>H</mml:mi>\u0000 <mml:mrow class=\"MJX-TeXAtom-ORD\">\u0000 <mml:mi>m</mml:mi>\u0000 <mml:mo>+</mml:mo>\u0000 <mml:mn>1</mml:mn>\u0000 </mml:mrow>\u0000 </mml:msup>\u0000 <mml:mo stretchy=\"false\">(</mml:mo>\u0000 <mml:msup>\u0000 <mml:mrow class=\"MJX-TeXAtom-ORD\">\u0000 <mml:mi mathvariant=\"double-struck\">T</mml:mi>\u0000 </mml:mrow>\u0000 <mml:mi>d</mml:mi>\u0000 </mml:msup>\u0000 <mml:mo stretchy=\"false\">)</mml:mo>\u0000 <mml:mo>×<!-- × --></mml:mo>\u0000 <mml:msup>\u0000 <mml:mi>H</mml:mi>\u0000 <mml:mi>m</mml:mi>\u0000 </mml:msup>\u0000 <mml:mo stretchy=\"false\">(</mml:mo>\u0000 <mml:msup>\u0000 <mml:mrow class=\"MJX-TeXAtom-ORD\">\u0000 <mml:mi mathvariant=\"double-struck\">T</mml:mi>\u0000 </mml:mrow>\u0000 <mml:mi>d</mml:mi>\u0000 </mml:msup>\u0000 <mml:mo stretchy=\"false\">)</mml:mo>\u0000 </mml:mrow>\u0000 <mml:annotation encoding=\"application/x-tex\">H^{m+2}(mathbb {T}^d)times H^{m+1}(mathbb {T}^d)times H^m(mathbb {T}^d)</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> for solutions in <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper H Superscript m plus 3 Baseline left-parenthesis double-struck upper T Superscript d Baseline right-parenthesis times upper H Superscript m plus 2 Baseline left-parenthesis double-struck upper T Superscript d Baseline right-parenthesis times upper H Superscript m plus 1 Baseline left-parenthesis double-struck upper T Superscript d Baseline right-","PeriodicalId":18456,"journal":{"name":"Mathematics of Computation","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140674446","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Adaptive fast multiplication of ℋ²-matrices ℋ²矩阵的自适应快速乘法
IF 2 2区 数学 Q1 Mathematics Pub Date : 2024-04-19 DOI: 10.1090/mcom/3978
Steffen Börm

Hierarchical matrices approximate a given matrix by a decomposition into low-rank submatrices that can be handled efficiently in factorized form. H 2 mathcal {H}^2 -matrices refine this representation following the ideas of fast multipole methods in order to achieve linear, i.e., optimal complexity for a variety of important algorithms.

The matrix multiplication, a key component of many more advanced numerical algorithms, has been a challenge: the only linear-time algorithms known so far either require the very special structure of HSS-matrices or need to know a suitable basis for all submatrices in advance.

In this article, a new and fairly general algorithm for multiplying H 2 mathcal {H}^2 -matrices in linear complexity with adaptively constructed bases is presented. The algorithm consists of two phases: first an intermediate representation with a generalized block structure is constructed, then this representation is re-compressed in order to match the structure prescribed by the application.

The complexity and accuracy are analyzed and numerical experiments indicate that the new algorithm can indeed be significantly faster than previous attempts.

层次矩阵通过分解为低秩子矩阵来近似给定矩阵,这些子矩阵可以因式分解的形式高效处理。 H 2 mathcal {H}^2 矩阵根据快速多极方法的思想完善了这种表示方法,从而实现了线性,即各种重要算法的最佳复杂性。矩阵乘法是许多更高级数值算法的关键组成部分,但一直是个难题:迄今已知的唯一线性时间算法要么需要 HSS 矩阵的特殊结构,要么需要事先知道所有子矩阵的合适基础。本文提出了一种新的、相当通用的算法,用于以线性复杂度与自适应构造的基相乘 H 2 mathcal {H}^2 -matrices。该算法包括两个阶段:首先构建一个具有广义块结构的中间表示,然后对该表示进行重新压缩,以匹配应用所规定的结构。对复杂性和准确性进行了分析,数值实验表明,新算法确实比以前的尝试快得多。
{"title":"Adaptive fast multiplication of ℋ²-matrices","authors":"Steffen Börm","doi":"10.1090/mcom/3978","DOIUrl":"https://doi.org/10.1090/mcom/3978","url":null,"abstract":"<p>Hierarchical matrices approximate a given matrix by a decomposition into low-rank submatrices that can be handled efficiently in factorized form. <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"script upper H squared\"> <mml:semantics> <mml:msup> <mml:mrow> <mml:mi mathvariant=\"script\">H</mml:mi> </mml:mrow> <mml:mn>2</mml:mn> </mml:msup> <mml:annotation encoding=\"application/x-tex\">mathcal {H}^2</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-matrices refine this representation following the ideas of fast multipole methods in order to achieve linear, i.e., optimal complexity for a variety of important algorithms.</p> <p>The matrix multiplication, a key component of many more advanced numerical algorithms, has been a challenge: the only linear-time algorithms known so far either require the very special structure of HSS-matrices or need to know a suitable basis for all submatrices in advance.</p> <p>In this article, a new and fairly general algorithm for multiplying <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"script upper H squared\"> <mml:semantics> <mml:msup> <mml:mrow> <mml:mi mathvariant=\"script\">H</mml:mi> </mml:mrow> <mml:mn>2</mml:mn> </mml:msup> <mml:annotation encoding=\"application/x-tex\">mathcal {H}^2</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-matrices in linear complexity with adaptively constructed bases is presented. The algorithm consists of two phases: first an intermediate representation with a generalized block structure is constructed, then this representation is re-compressed in order to match the structure prescribed by the application.</p> <p>The complexity and accuracy are analyzed and numerical experiments indicate that the new algorithm can indeed be significantly faster than previous attempts.</p>","PeriodicalId":18456,"journal":{"name":"Mathematics of Computation","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2024-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140935685","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Polynomial preserving recovery for the finite volume element methods under simplex meshes 简单网格下有限体积元素方法的多项式保留恢复
IF 2 2区 数学 Q1 MATHEMATICS, APPLIED Pub Date : 2024-04-19 DOI: 10.1090/mcom/3980
Yonghai Li, Peng Yang, Zhimin Zhang

The recovered gradient, using the polynomial preserving recovery (PPR), is constructed for the finite volume element method (FVEM) under simplex meshes. Regarding the main results of this paper, there are two aspects. Firstly, we investigate the supercloseness property of the FVEM, specifically examining the quadratic FVEM under tetrahedral meshes. Secondly, we present several guidelines for selecting computing nodes such that the least-squares fitting procedure of the PPR admits a unique solution. Numerical experiments demonstrate that the recovered gradient by the PPR exhibits superconvergence.

利用多项式保留恢复法(PPR)为有限体积元素法(FVEM)构建了简网格下的梯度恢复。本文的主要成果有两个方面。首先,我们研究了有限体积元素法的超粘性,特别是研究了四面体网格下的二次元有限体积元素法。其次,我们提出了几条选择计算节点的准则,从而使 PPR 的最小二乘拟合过程获得唯一解。数值实验证明,PPR 所恢复的梯度具有超收敛性。
{"title":"Polynomial preserving recovery for the finite volume element methods under simplex meshes","authors":"Yonghai Li, Peng Yang, Zhimin Zhang","doi":"10.1090/mcom/3980","DOIUrl":"https://doi.org/10.1090/mcom/3980","url":null,"abstract":"<p>The recovered gradient, using the polynomial preserving recovery (PPR), is constructed for the finite volume element method (FVEM) under simplex meshes. Regarding the main results of this paper, there are two aspects. Firstly, we investigate the supercloseness property of the FVEM, specifically examining the quadratic FVEM under tetrahedral meshes. Secondly, we present several guidelines for selecting computing nodes such that the least-squares fitting procedure of the PPR admits a unique solution. Numerical experiments demonstrate that the recovered gradient by the PPR exhibits superconvergence.</p>","PeriodicalId":18456,"journal":{"name":"Mathematics of Computation","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2024-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141511725","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Convergence of the numerical approximations and well-posedness: Nonlocal conservation laws with rough flux 数值近似的收敛性和拟合性具有粗糙通量的非局部守恒定律
IF 2 2区 数学 Q1 Mathematics Pub Date : 2024-04-19 DOI: 10.1090/mcom/3976
Aekta Aggarwal, Ganesh Vaidya

We study a class of nonlinear nonlocal conservation laws with discontinuous flux, modeling crowd dynamics and traffic flow. The discontinuous coefficient of the flux function is assumed to be of bounded variation (BV) and bounded away from zero, and hence the spatial discontinuities of the flux function can be infinitely many with possible accumulation points. Strong compactness of the Godunov and Lax-Friedrichs type approximations is proved, providing the existence of entropy solutions. A proof of the uniqueness of the adapted entropy solutions is provided, establishing the convergence of the entire sequence of finite volume approximations to the adapted entropy solution. As per the current literature, this is the first well-posedness result for the aforesaid class and connects the theory of nonlocal conservation laws (with discontinuous flux), with its local counterpart in a generic setup. Some numerical examples are presented to display the performance of the schemes and explore the limiting behavior of these nonlocal conservation laws to their local counterparts.

我们研究了一类具有不连续通量的非线性非局部守恒定律,模拟人群动力学和交通流。通量函数的不连续系数被假定为有界变化(BV)且离零有界,因此通量函数的空间不连续性可以是无限多的,并可能存在累积点。证明了戈杜诺夫和拉克斯-弗里德里希斯类型近似的强紧凑性,提供了熵解的存在性。证明了适应熵解的唯一性,确定了整个有限体积近似序列对适应熵解的收敛性。根据现有文献,这是上述类别的第一个拟合性结果,它将非局部守恒定律(具有不连续通量)理论与一般设置中的局部对应理论联系起来。本文通过一些数值示例展示了这些方案的性能,并探讨了这些非局部守恒定律与其局部对应定律的极限行为。
{"title":"Convergence of the numerical approximations and well-posedness: Nonlocal conservation laws with rough flux","authors":"Aekta Aggarwal, Ganesh Vaidya","doi":"10.1090/mcom/3976","DOIUrl":"https://doi.org/10.1090/mcom/3976","url":null,"abstract":"<p>We study a class of nonlinear nonlocal conservation laws with discontinuous flux, modeling crowd dynamics and traffic flow. The discontinuous coefficient of the flux function is assumed to be of bounded variation (BV) and bounded away from zero, and hence the spatial discontinuities of the flux function can be infinitely many with possible accumulation points. Strong compactness of the Godunov and Lax-Friedrichs type approximations is proved, providing the existence of entropy solutions. A proof of the uniqueness of the adapted entropy solutions is provided, establishing the convergence of the entire sequence of finite volume approximations to the adapted entropy solution. As per the current literature, this is the first well-posedness result for the aforesaid class and connects the theory of nonlocal conservation laws (with discontinuous flux), with its local counterpart in a generic setup. Some numerical examples are presented to display the performance of the schemes and explore the limiting behavior of these nonlocal conservation laws to their local counterparts.</p>","PeriodicalId":18456,"journal":{"name":"Mathematics of Computation","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2024-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140935469","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Super-polynomial accuracy of multidimensional randomized nets using the median-of-means 使用均值中值的多维随机网的超多项式精度
IF 2 2区 数学 Q1 Mathematics Pub Date : 2024-04-18 DOI: 10.1090/mcom/3880
Zexin Pan, Art Owen

We study approximate integration of a function f f over [ 0 , 1 ] s [0,1]^s based on taking the median of 2 r 1 2r-1 integral estimates derived from independently randomized ( t , m , s ) (t,m,s) -nets in base 2 2 . The nets are randomized by Matousek’s random linear scramble with a random digital shift. If f f is analytic over [ 0 , 1 ] s

我们研究了函数 f f 在 [ 0 , 1 ] s [0,1]^s 上的近似积分,其基础是取 2 r - 1 2r-1 积分估计值的中值,这些估计值来自以 2 2 为底的独立随机 ( t , m , s ) (t,m,s) 网。这些网络是通过马托塞克随机线性扰乱和随机数字移位随机化的。如果 f f 在 [ 0 , 1 ] s [0,1]^s 上是解析的,那么对于任意 c > 3 log ( 2 ) /π 2 ≈ 0.21 c>3log (2)/pi ^2approx 0.21,任何一个随机网的估计值误差大于 2 - c m 2 / s 2^{-cm^2/s} 倍的概率是 O ( 1 / m ) O(1/sqrt {m})。因此,这些乱码网分布的中值误差为 O ( n - c log ( n ) / s ) O(n^{-clog (n)/s}) for n = 2 m n=2^m function evaluations.只要 r / m 2 r/m^2 在 m → ∞ mto infty 时离零有界,2 r - 1 2r-1 独立抽样的样本中值也能达到这个比率。我们包括有限精度估计的结果,以及取 2 r - 1 2r-1 独立抽样的平均值的一些非渐近比较。
{"title":"Super-polynomial accuracy of multidimensional randomized nets using the median-of-means","authors":"Zexin Pan, Art Owen","doi":"10.1090/mcom/3880","DOIUrl":"https://doi.org/10.1090/mcom/3880","url":null,"abstract":"<p>We study approximate integration of a function <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"f\">\u0000 <mml:semantics>\u0000 <mml:mi>f</mml:mi>\u0000 <mml:annotation encoding=\"application/x-tex\">f</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> over <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-bracket 0 comma 1 right-bracket Superscript s\">\u0000 <mml:semantics>\u0000 <mml:mrow>\u0000 <mml:mo stretchy=\"false\">[</mml:mo>\u0000 <mml:mn>0</mml:mn>\u0000 <mml:mo>,</mml:mo>\u0000 <mml:mn>1</mml:mn>\u0000 <mml:msup>\u0000 <mml:mo stretchy=\"false\">]</mml:mo>\u0000 <mml:mi>s</mml:mi>\u0000 </mml:msup>\u0000 </mml:mrow>\u0000 <mml:annotation encoding=\"application/x-tex\">[0,1]^s</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> based on taking the median of <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"2 r minus 1\">\u0000 <mml:semantics>\u0000 <mml:mrow>\u0000 <mml:mn>2</mml:mn>\u0000 <mml:mi>r</mml:mi>\u0000 <mml:mo>−<!-- − --></mml:mo>\u0000 <mml:mn>1</mml:mn>\u0000 </mml:mrow>\u0000 <mml:annotation encoding=\"application/x-tex\">2r-1</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> integral estimates derived from independently randomized <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-parenthesis t comma m comma s right-parenthesis\">\u0000 <mml:semantics>\u0000 <mml:mrow>\u0000 <mml:mo stretchy=\"false\">(</mml:mo>\u0000 <mml:mi>t</mml:mi>\u0000 <mml:mo>,</mml:mo>\u0000 <mml:mi>m</mml:mi>\u0000 <mml:mo>,</mml:mo>\u0000 <mml:mi>s</mml:mi>\u0000 <mml:mo stretchy=\"false\">)</mml:mo>\u0000 </mml:mrow>\u0000 <mml:annotation encoding=\"application/x-tex\">(t,m,s)</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula>-nets in base <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"2\">\u0000 <mml:semantics>\u0000 <mml:mn>2</mml:mn>\u0000 <mml:annotation encoding=\"application/x-tex\">2</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula>. The nets are randomized by Matousek’s random linear scramble with a random digital shift. If <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"f\">\u0000 <mml:semantics>\u0000 <mml:mi>f</mml:mi>\u0000 <mml:annotation encoding=\"application/x-tex\">f</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> is analytic over <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-bracket 0 comma 1 right-bracket Superscript s\">\u0000 <mml:semantics>\u0000 <mml:mrow>\u0000 <mml:mo stretchy=\"false\">[</mml:mo>\u0000 <mml:mn>0</mml:mn>\u0000 <mml:mo>,</mml:mo>\u0000 <mml:mn>1</mml:mn>\u0000 <mml:msup>\u0000 <mml:mo stretchy=\"false\">]</mml:mo>\u0000 <mml:mi>s</mml:mi>\u0000 </mm","PeriodicalId":18456,"journal":{"name":"Mathematics of Computation","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2024-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140688187","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Discrete tensor product BGG sequences: Splines and finite elements 离散张量积 BGG 序列:样条曲线和有限元
IF 2 2区 数学 Q1 Mathematics Pub Date : 2024-04-17 DOI: 10.1090/mcom/3969
F. Bonizzoni, Kaibo Hu, Guido Kanschat, Duygu Sap
In this paper, we provide a systematic discretization of the Bernstein-Gelfand-Gelfand diagrams and complexes over cubical meshes in arbitrary dimension via the use of tensor product structures of one-dimensional piecewise-polynomial spaces, such as spline and finite element spaces. We demonstrate the construction of the Hessian, the elasticity, and div ⁡ div operatorname {div}operatorname {div} complexes as examples for our construction.
在本文中,我们通过使用一维片状多项式空间的张量乘结构(如样条空间和有限元空间),对任意维度立方网格上的伯恩斯坦-格尔芬-格尔芬图和复数进行了系统离散化。我们以 Hessian、弹性和 div div operatorname {div}operatorname {div} 复数的构造为例,演示了我们的构造。
{"title":"Discrete tensor product BGG sequences: Splines and finite elements","authors":"F. Bonizzoni, Kaibo Hu, Guido Kanschat, Duygu Sap","doi":"10.1090/mcom/3969","DOIUrl":"https://doi.org/10.1090/mcom/3969","url":null,"abstract":"In this paper, we provide a systematic discretization of the Bernstein-Gelfand-Gelfand diagrams and complexes over cubical meshes in arbitrary dimension via the use of tensor product structures of one-dimensional piecewise-polynomial spaces, such as spline and finite element spaces. We demonstrate the construction of the Hessian, the elasticity, and \u0000\u0000 \u0000 \u0000 div\u0000 ⁡\u0000 div\u0000 \u0000 operatorname {div}operatorname {div}\u0000 \u0000\u0000 complexes as examples for our construction.","PeriodicalId":18456,"journal":{"name":"Mathematics of Computation","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140690610","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Wavenumber-explicit stability and convergence analysis of ℎ𝑝 finite element discretizations of Helmholtz problems in piecewise smooth media 片状光滑介质中𝑝有限元离散化的亥姆霍兹问题的波长显式稳定性和收敛性分析
IF 2 2区 数学 Q1 Mathematics Pub Date : 2024-03-29 DOI: 10.1090/mcom/3958
M. Bernkopf, T. Chaumont-Frelet, J. Melenk

We present a wavenumber-explicit convergence analysis of the h p hp Finite Element Method applied to a class of heterogeneous Helmholtz problems with piecewise analytic coefficients at large wavenumber k k . Our analysis covers the heterogeneous Helmholtz equation with Robin, exact Dirichlet-to-Neumann, and second order absorbing boundary conditions, as well as perfectly matched layers.

我们提出了对 h p hp 有限元方法的波数显式收敛性分析,该方法适用于一类在大波数 k k 下具有片断解析系数的异质亥姆霍兹问题。我们的分析涵盖了具有 Robin、精确 Dirichlet-to-Neumann、二阶吸收边界条件以及完全匹配层的异质 Helmholtz 方程。
{"title":"Wavenumber-explicit stability and convergence analysis of ℎ𝑝 finite element discretizations of Helmholtz problems in piecewise smooth media","authors":"M. Bernkopf, T. Chaumont-Frelet, J. Melenk","doi":"10.1090/mcom/3958","DOIUrl":"https://doi.org/10.1090/mcom/3958","url":null,"abstract":"<p>We present a wavenumber-explicit convergence analysis of the <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"h p\"> <mml:semantics> <mml:mrow> <mml:mi>h</mml:mi> <mml:mi>p</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">hp</mml:annotation> </mml:semantics> </mml:math> </inline-formula> Finite Element Method applied to a class of heterogeneous Helmholtz problems with piecewise analytic coefficients at large wavenumber <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"k\"> <mml:semantics> <mml:mi>k</mml:mi> <mml:annotation encoding=\"application/x-tex\">k</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. Our analysis covers the heterogeneous Helmholtz equation with Robin, exact Dirichlet-to-Neumann, and second order absorbing boundary conditions, as well as perfectly matched layers.</p>","PeriodicalId":18456,"journal":{"name":"Mathematics of Computation","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2024-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141195350","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Mathematics of Computation
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1