Pub Date : 2024-12-07DOI: 10.1016/j.ymben.2024.12.003
Paula Espinoza, Ming Cheng, Carrie Ng, Demitri de la Cruz, Elizabeth D Wasson, Deirdre M McCarthy, Pradeep G Bhide, Casey A Maguire, Miguel C Santoscoy
Adeno-associated viruses (AAV) are promising vectors for gene therapy due to their efficacy in vivo. However, there is room for improvement to address key limitations such as the pre-existing immunity to AAV in patients, high-dose toxicity, and relatively low efficiency for some cell types. This study introduces a metabolic engineering approach, using knockout of the enzyme phosphatidylserine synthase 1 (PTDSS1) to increase the abundance of extracellular vesicle-enclosed AAV (EV-AAV) relative to free AAV in the supernatant of producer cells, simplifying downstream purification processes. The lipid-engineered HEK293T-ΔPTDSS1 cell line achieved a 42.7-fold enrichment of EV-AAV9 compared to free AAV9 in the supernatant. The rational genetic strategy also led to a 300-fold decrease of free AAV in supernatant compared to wild-type HEK293T. The membrane-engineered EV-AAV9 (mEV-AAV9) showed unique envelope composition alterations, including cholesterol enrichment and improved transduction efficiency in human AC16 cardiomyocytes by 1.5-fold compared to conventional EV-AAV9 and by 11-fold compared to non-enveloped AAV9. Robust in-vivo transduction four weeks after intraparenchymal administration of mEV-AAV9 was observed in the murine brain. This study shows promise in the potential of lipid metabolic engineering strategies to improve the efficiency and process development of enveloped gene delivery vectors.
{"title":"Metabolic engineering improves transduction efficiency and downstream vector isolation by altering the lipid composition of extracellular vesicle-enclosed AAV.","authors":"Paula Espinoza, Ming Cheng, Carrie Ng, Demitri de la Cruz, Elizabeth D Wasson, Deirdre M McCarthy, Pradeep G Bhide, Casey A Maguire, Miguel C Santoscoy","doi":"10.1016/j.ymben.2024.12.003","DOIUrl":"10.1016/j.ymben.2024.12.003","url":null,"abstract":"<p><p>Adeno-associated viruses (AAV) are promising vectors for gene therapy due to their efficacy in vivo. However, there is room for improvement to address key limitations such as the pre-existing immunity to AAV in patients, high-dose toxicity, and relatively low efficiency for some cell types. This study introduces a metabolic engineering approach, using knockout of the enzyme phosphatidylserine synthase 1 (PTDSS1) to increase the abundance of extracellular vesicle-enclosed AAV (EV-AAV) relative to free AAV in the supernatant of producer cells, simplifying downstream purification processes. The lipid-engineered HEK293T-ΔPTDSS1 cell line achieved a 42.7-fold enrichment of EV-AAV9 compared to free AAV9 in the supernatant. The rational genetic strategy also led to a 300-fold decrease of free AAV in supernatant compared to wild-type HEK293T. The membrane-engineered EV-AAV9 (mEV-AAV9) showed unique envelope composition alterations, including cholesterol enrichment and improved transduction efficiency in human AC16 cardiomyocytes by 1.5-fold compared to conventional EV-AAV9 and by 11-fold compared to non-enveloped AAV9. Robust in-vivo transduction four weeks after intraparenchymal administration of mEV-AAV9 was observed in the murine brain. This study shows promise in the potential of lipid metabolic engineering strategies to improve the efficiency and process development of enveloped gene delivery vectors.</p>","PeriodicalId":18483,"journal":{"name":"Metabolic engineering","volume":" ","pages":"40-49"},"PeriodicalIF":6.8,"publicationDate":"2024-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142801209","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-04DOI: 10.1016/j.ymben.2024.12.001
Mauro Torres, Ellie Hawke, Robyn Hoare, Rachel Scholey, Leon P Pybus, Alison Young, Andrew Hayes, Alan J Dickson
Lactate metabolism plays a critical role in mammalian cell bioprocessing, influencing cellular performance and productivity. The transition from lactate production to consumption, known as lactate metabolic shift, is highly beneficial and has been shown to extend culture lifespan and enhance productivity, yet its molecular drivers remain poorly understood. Here, we have explored the mechanisms that underpin this metabolic shift through two case studies, illustrating environmental- and genetic-driven factors. We characterised these study cases at process, metabolic and transcriptomic levels. Our findings indicate that glutamine depletion coincided with the timing of the lactate metabolic shift, significantly affecting cell growth, productivity and overall metabolism. Transcriptome analysis revealed dynamic regulation the ATF4 pathway, involved in the amino acid (starvation) response, where glutamine depletion activates ATF4 gene and its targets. Manipulating ATF4 expression through overexpression and knockdown experiments showed significant changes in metabolism of glutamine and lactate, impacting cellular performance. Overexpression of ATF4 increased cell growth and glutamine consumption, promoting a lactate metabolic shift. In contrast, ATF4 downregulation decreased cell proliferation and glutamine uptake, leading to production of lactate without any signs of lactate shift. These findings underscore a critical role for ATF4 in regulation of glutamine and lactate metabolism, related to phasic patterns of growth during CHO cell culture. This study offers unique insight into metabolic reprogramming during the lactate metabolic shift and the molecular drivers that determine cell status during culture.
{"title":"Deciphering molecular drivers of lactate metabolic shift in mammalian cell cultures.","authors":"Mauro Torres, Ellie Hawke, Robyn Hoare, Rachel Scholey, Leon P Pybus, Alison Young, Andrew Hayes, Alan J Dickson","doi":"10.1016/j.ymben.2024.12.001","DOIUrl":"10.1016/j.ymben.2024.12.001","url":null,"abstract":"<p><p>Lactate metabolism plays a critical role in mammalian cell bioprocessing, influencing cellular performance and productivity. The transition from lactate production to consumption, known as lactate metabolic shift, is highly beneficial and has been shown to extend culture lifespan and enhance productivity, yet its molecular drivers remain poorly understood. Here, we have explored the mechanisms that underpin this metabolic shift through two case studies, illustrating environmental- and genetic-driven factors. We characterised these study cases at process, metabolic and transcriptomic levels. Our findings indicate that glutamine depletion coincided with the timing of the lactate metabolic shift, significantly affecting cell growth, productivity and overall metabolism. Transcriptome analysis revealed dynamic regulation the ATF4 pathway, involved in the amino acid (starvation) response, where glutamine depletion activates ATF4 gene and its targets. Manipulating ATF4 expression through overexpression and knockdown experiments showed significant changes in metabolism of glutamine and lactate, impacting cellular performance. Overexpression of ATF4 increased cell growth and glutamine consumption, promoting a lactate metabolic shift. In contrast, ATF4 downregulation decreased cell proliferation and glutamine uptake, leading to production of lactate without any signs of lactate shift. These findings underscore a critical role for ATF4 in regulation of glutamine and lactate metabolism, related to phasic patterns of growth during CHO cell culture. This study offers unique insight into metabolic reprogramming during the lactate metabolic shift and the molecular drivers that determine cell status during culture.</p>","PeriodicalId":18483,"journal":{"name":"Metabolic engineering","volume":" ","pages":"25-39"},"PeriodicalIF":6.8,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142791593","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Production of recombinant proteins is regarded as an important breakthrough in the field of biomedicine and industrial biotechnology. Due to the complexity of the protein secretory pathway and its tight interaction with cellular metabolism, the application of traditional metabolic engineering tools to improve recombinant protein production faces major challenges. A systematic approach is required to generate novel design principles for superior protein secretion cell factories. Here, we applied a proteome-constrained genome-scale protein secretory model of the yeast Saccharomyces cerevisiae (pcSecYeast) to simulate α-amylase production under limited secretory capacity and predict gene targets for downregulation and upregulation to improve α-amylase production. The predicted targets were evaluated using high-throughput screening of specifically designed CRISPR interference/activation (CRISPRi/a) libraries and droplet microfluidics screening. From each library, 200 and 190 sorted clones, respectively, were manually verified. Out of them, 50% of predicted downregulation targets and 34.6% predicted upregulation targets were confirmed to improve α-amylase production. By simultaneously fine-tuning the expression of three genes in central carbon metabolism, i.e. LPD1, MDH1, and ACS1, we were able to increase the carbon flux in the fermentative pathway and α-amylase production. This study exemplifies how model-based predictions can be rapidly validated via a high-throughput screening approach. Our findings highlight novel engineering targets for cell factories and furthermore shed light on the connectivity between recombinant protein production and central carbon metabolism.
{"title":"Model-assisted CRISPRi/a library screening reveals central carbon metabolic targets for enhanced recombinant protein production in yeast.","authors":"Xin Chen, Feiran Li, Xiaowei Li, Maximilian Otto, Yu Chen, Verena Siewers","doi":"10.1016/j.ymben.2024.11.010","DOIUrl":"10.1016/j.ymben.2024.11.010","url":null,"abstract":"<p><p>Production of recombinant proteins is regarded as an important breakthrough in the field of biomedicine and industrial biotechnology. Due to the complexity of the protein secretory pathway and its tight interaction with cellular metabolism, the application of traditional metabolic engineering tools to improve recombinant protein production faces major challenges. A systematic approach is required to generate novel design principles for superior protein secretion cell factories. Here, we applied a proteome-constrained genome-scale protein secretory model of the yeast Saccharomyces cerevisiae (pcSecYeast) to simulate α-amylase production under limited secretory capacity and predict gene targets for downregulation and upregulation to improve α-amylase production. The predicted targets were evaluated using high-throughput screening of specifically designed CRISPR interference/activation (CRISPRi/a) libraries and droplet microfluidics screening. From each library, 200 and 190 sorted clones, respectively, were manually verified. Out of them, 50% of predicted downregulation targets and 34.6% predicted upregulation targets were confirmed to improve α-amylase production. By simultaneously fine-tuning the expression of three genes in central carbon metabolism, i.e. LPD1, MDH1, and ACS1, we were able to increase the carbon flux in the fermentative pathway and α-amylase production. This study exemplifies how model-based predictions can be rapidly validated via a high-throughput screening approach. Our findings highlight novel engineering targets for cell factories and furthermore shed light on the connectivity between recombinant protein production and central carbon metabolism.</p>","PeriodicalId":18483,"journal":{"name":"Metabolic engineering","volume":" ","pages":"1-13"},"PeriodicalIF":6.8,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142770364","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-26DOI: 10.1016/j.ymben.2024.11.013
Seo Hyeon Shin , Hye Yun Moon , Hae Eun Park , Gi Jeong Nam , Ju Hye Baek , Che Ok Jeon , Hyunwook Jung , Myeong Seok Cha , Sol Choi , Jeong Jun Han , Chen Yuan Hou , Chang Seo Park , Hyun Ah Kang
Sphingolipids are vital membrane components in in mammalian cells, plants, and various microbes. We aimed to explore and exploit the sphingolipid biosynthesis pathways in an oleaginous and dimorphic yeast Yarrowia lipolytica by constructing and characterizing mutant strains with specific gene deletions and integrating exogenous genes to enhance the production of long-chain bases (LCBs) and glucosylceramides (GlcCers). To block the fungal/plant-specific phytosphingosine (PHS) pathway, we deleted the SUR2 gene encoding a sphinganine C4-hydroxylase, resulting in a remarkably elevated secretory production of dihydrosphingosine (DHS) and sphingosine (So) without acetylation. The Y. lipolytica SUR2 deletion (Ylsur2Δ) strain displayed retarded growth, increased pseudohyphal formation and stress sensitivity, along with the altered profiles of inositolphosphate-containing ceramides, GlcCers, and sterols. The subsequent disruption of the SLD1 gene, encoding a fungal/plant-specific Δ8 sphingolipid desaturase, restored filamentous growth in the Ylsur2Δ strain to a yeast-type form and further increased the production of human-type GlcCers. Additional introduction of mouse alkaline ceramidase 1 (maCER1) into the Ylsur2Δsld1Δ double mutants considerably increased DHS and So production while decreasing GlcCers. The production yields of LCBs from the Ylsur2Δsld1Δ/maCER1 strain increased in proportion to the C/N ratio in the N-source optimized medium, leading to production of 1.4 g/L non-acetylated DHS at the 5 L fed-batch fermentation with glucose feeding. This study highlights the feasibility of using the engineered Y. lipolytica strains as a cell factory for valuable sphingolipid derivatives for pharmaceuticals, cosmeceuticals, and nutraceuticals.
{"title":"Elucidation and engineering of Sphingolipid biosynthesis pathway in Yarrowia lipolytica for enhanced production of human-type sphingoid bases and glucosylceramides","authors":"Seo Hyeon Shin , Hye Yun Moon , Hae Eun Park , Gi Jeong Nam , Ju Hye Baek , Che Ok Jeon , Hyunwook Jung , Myeong Seok Cha , Sol Choi , Jeong Jun Han , Chen Yuan Hou , Chang Seo Park , Hyun Ah Kang","doi":"10.1016/j.ymben.2024.11.013","DOIUrl":"10.1016/j.ymben.2024.11.013","url":null,"abstract":"<div><div>Sphingolipids are vital membrane components in in mammalian cells, plants, and various microbes. We aimed to explore and exploit the sphingolipid biosynthesis pathways in an oleaginous and dimorphic yeast <em>Yarrowia lipolytica</em> by constructing and characterizing mutant strains with specific gene deletions and integrating exogenous genes to enhance the production of long-chain bases (LCBs) and glucosylceramides (GlcCers). To block the fungal/plant-specific phytosphingosine (PHS) pathway, we deleted the <em>SUR2</em> gene encoding a sphinganine C4-hydroxylase, resulting in a remarkably elevated secretory production of dihydrosphingosine (DHS) and sphingosine (So) without acetylation. The <em>Y. lipolytica SUR2</em> deletion (<em>Ylsur2</em>Δ) strain displayed retarded growth, increased pseudohyphal formation and stress sensitivity, along with the altered profiles of inositolphosphate-containing ceramides, GlcCers, and sterols. The subsequent disruption of the <em>SLD1</em> gene, encoding a fungal/plant-specific Δ8 sphingolipid desaturase, restored filamentous growth in the <em>Ylsur2</em>Δ strain to a yeast-type form and further increased the production of human-type GlcCers. Additional introduction of mouse alkaline ceramidase 1 (<em>maCER1</em>) into the <em>Ylsur2</em>Δ<em>sld1</em>Δ double mutants considerably increased DHS and So production while decreasing GlcCers. The production yields of LCBs from the <em>Ylsur2</em>Δ<em>sld1</em>Δ/<em>maCER1</em> strain increased in proportion to the C/N ratio in the N-source optimized medium, leading to production of 1.4 g/L non-acetylated DHS at the 5 L fed-batch fermentation with glucose feeding. This study highlights the feasibility of using the engineered <em>Y. lipolytica</em> strains as a cell factory for valuable sphingolipid derivatives for pharmaceuticals, cosmeceuticals, and nutraceuticals.</div></div>","PeriodicalId":18483,"journal":{"name":"Metabolic engineering","volume":"87 ","pages":"Pages 68-85"},"PeriodicalIF":6.8,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142739900","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-25DOI: 10.1016/j.ymben.2024.11.011
Qingchen Li , Chenxi Li , Jie Zhong , Yukun Wang , Qinghua Yang , Bingmei Wang , Wenjin He , Jianzhong Huang , Shengyuan Lin , Feng Qi
N-methylserotonin (NMS) is a valuable indole alkaloid with therapeutic potential for psychiatric and neurological disorders, and it is used in health foods, cosmetics, and weight loss supplements. However, environmental challenges and low reaction efficiencies significantly hinder cost-effective, large-scale production of NMS in plants or through chemical synthesis. Herein, we have successfully engineered Escherichia coli strains to enhance NMS production from L-tryptophan using whole-cell catalysis. We developed multiple biosynthesis pathways incorporating modules for serotonin (5-hydroxytryptamine, 5-HT), tetrahydromonapterin (MH₄), and S-adenosylmethionine (SAM) synthesis. To enhance MH₄ availability, we employed a high-activity Bacillus subtilis FolE and minimized carbon flux loss through targeted gene knockouts in competitive metabolic pathways, improving 5-HT production. Additionally, we constructed a comprehensive SAM biosynthesis module to facilitate transmethylation by a selected N-methyltransferase fused with ProS2. These engineered modules were coexpressed in two plasmids within the optimized strain NMS-19, producing 128.6 mg/L of NMS in a 5-L bioreactor using fed-batch cultivation—a 92-fold increase over the original strain. This study introduces a viable strategy for NMS production and provides insights into the biosynthesis of SAM-dependent methylated tryptamine derivatives.
{"title":"Metabolic engineering of Escherichia coli for N-methylserotonin biosynthesis","authors":"Qingchen Li , Chenxi Li , Jie Zhong , Yukun Wang , Qinghua Yang , Bingmei Wang , Wenjin He , Jianzhong Huang , Shengyuan Lin , Feng Qi","doi":"10.1016/j.ymben.2024.11.011","DOIUrl":"10.1016/j.ymben.2024.11.011","url":null,"abstract":"<div><div>N-methylserotonin (NMS) is a valuable indole alkaloid with therapeutic potential for psychiatric and neurological disorders, and it is used in health foods, cosmetics, and weight loss supplements. However, environmental challenges and low reaction efficiencies significantly hinder cost-effective, large-scale production of NMS in plants or through chemical synthesis. Herein, we have successfully engineered <em>Escherichia coli</em> strains to enhance NMS production from L-tryptophan using whole-cell catalysis. We developed multiple biosynthesis pathways incorporating modules for serotonin (5-hydroxytryptamine, 5-HT), tetrahydromonapterin (MH₄), and S-adenosylmethionine (SAM) synthesis. To enhance MH₄ availability, we employed a high-activity <em>Bacillus subtilis</em> FolE and minimized carbon flux loss through targeted gene knockouts in competitive metabolic pathways, improving 5-HT production. Additionally, we constructed a comprehensive SAM biosynthesis module to facilitate transmethylation by a selected N-methyltransferase fused with ProS2. These engineered modules were coexpressed in two plasmids within the optimized strain NMS-19, producing 128.6 mg/L of NMS in a 5-L bioreactor using fed-batch cultivation—a 92-fold increase over the original strain. This study introduces a viable strategy for NMS production and provides insights into the biosynthesis of SAM-dependent methylated tryptamine derivatives.</div></div>","PeriodicalId":18483,"journal":{"name":"Metabolic engineering","volume":"87 ","pages":"Pages 49-59"},"PeriodicalIF":6.8,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142739903","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-22DOI: 10.1016/j.ymben.2024.11.008
Filipa Pereira, Morgan McCauley, Katherine Lev, Linnea Verhey-Henke, Alanna R Condren, Ralph J Harte, Jesus Galvez, David H Sherman
Plecomacrolides, such as concanamycins and bafilomycins, are potent and specific inhibitors of vacuolar-type ATPase. Concanamycins are 18-membered macrolides with promising therapeutic potential against multiple diseases, including viral infection, osteoporosis, and cancer. Due to the complexity of their total synthesis, the production of concanamycins is only achieved through microbial fermentation. However, the low titers of concanamycin A and its analogs in the native producing strains are a significant bottleneck for scale-up, robust structure-activity relationship studies, and drug development. To address this challenge, we designed a library of engineered Streptomyces strains for the overproduction of concanamycin A-C by combining the overexpression of target regulatory genes with the optimization of fermentation media. Integration of two endogenous regulators from the concanamycin biosynthetic gene cluster (cms) and one heterologous regulatory gene from the bafilomycin biosynthetic gene cluster significantly increased production of concanamycin A and its less abundant analog concanamycin B in Streptomyces eitanensis. The highest titers reported to date were observed in the engineered S. eitanensis DHS10676, which produced over 900 mg/L of concanamycin A and 300 mg/L of concanamycin B. Heterologous overexpression of the identified target regulatory genes across a panel of Streptomyces spp. harboring a putative concanamycin biosynthetic gene cluster confirmed its identity, and significantly improved concanamycin A production in all tested strains. Strain engineering, optimization of fermentation, and extraction purification protocols enabled swift access to these structurally complex plecomacrolides for semi-synthetic medicinal chemistry-based approaches. Together, this work established a platform for robust overproduction of concanamycin analogs across species.
Plecomacrolides(如康卡霉素和巴佛霉素)是空泡型 ATPase 的强效特异性抑制剂。康加霉素是一种 18 元大环内酯类药物,具有治疗多种疾病(包括病毒感染、骨质疏松症和癌症)的潜力。由于其总合成的复杂性,康康霉素只能通过微生物发酵来生产。然而,原生生产菌株中低滴度的康卡那霉素 A 及其类似物是扩大生产规模、进行稳健的结构-活性关系研究和药物开发的重要瓶颈。为了应对这一挑战,我们设计了一个工程化链霉菌菌株库,通过结合目标调控基因的过表达和发酵培养基的优化,来过量生产凹霉素。在埃坦链霉菌(Streptomyces eitanensis)的attB位点上整合了两个来自共霉素生物合成基因簇(cms)的内源调控基因和一个来自巴佛霉素生物合成基因簇的异源调控基因,显著提高了共霉素A及其低丰度类似物共霉素B的产量。对已确定的目标调控基因进行异源过表达后,在所有链霉菌属中都证实了其身份,并显著提高了所有测试菌株的康那霉素 A 产量。通过菌株工程、发酵优化和提取纯化协议,可以迅速获得这些结构复杂的多粘菌素,并用于基于半合成药物化学的方法。总之,这项工作建立了一个跨物种强力过量生产康加霉素类似物的平台。
{"title":"Optimized production of concanamycins using a rational metabolic engineering strategy.","authors":"Filipa Pereira, Morgan McCauley, Katherine Lev, Linnea Verhey-Henke, Alanna R Condren, Ralph J Harte, Jesus Galvez, David H Sherman","doi":"10.1016/j.ymben.2024.11.008","DOIUrl":"10.1016/j.ymben.2024.11.008","url":null,"abstract":"<p><p>Plecomacrolides, such as concanamycins and bafilomycins, are potent and specific inhibitors of vacuolar-type ATPase. Concanamycins are 18-membered macrolides with promising therapeutic potential against multiple diseases, including viral infection, osteoporosis, and cancer. Due to the complexity of their total synthesis, the production of concanamycins is only achieved through microbial fermentation. However, the low titers of concanamycin A and its analogs in the native producing strains are a significant bottleneck for scale-up, robust structure-activity relationship studies, and drug development. To address this challenge, we designed a library of engineered Streptomyces strains for the overproduction of concanamycin A-C by combining the overexpression of target regulatory genes with the optimization of fermentation media. Integration of two endogenous regulators from the concanamycin biosynthetic gene cluster (cms) and one heterologous regulatory gene from the bafilomycin biosynthetic gene cluster significantly increased production of concanamycin A and its less abundant analog concanamycin B in Streptomyces eitanensis. The highest titers reported to date were observed in the engineered S. eitanensis DHS10676, which produced over 900 mg/L of concanamycin A and 300 mg/L of concanamycin B. Heterologous overexpression of the identified target regulatory genes across a panel of Streptomyces spp. harboring a putative concanamycin biosynthetic gene cluster confirmed its identity, and significantly improved concanamycin A production in all tested strains. Strain engineering, optimization of fermentation, and extraction purification protocols enabled swift access to these structurally complex plecomacrolides for semi-synthetic medicinal chemistry-based approaches. Together, this work established a platform for robust overproduction of concanamycin analogs across species.</p>","PeriodicalId":18483,"journal":{"name":"Metabolic engineering","volume":" ","pages":"63-76"},"PeriodicalIF":6.8,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142710583","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-21DOI: 10.1016/j.ymben.2024.11.005
Jayanth Venkatarama Reddy , Sumit Kumar Singh , Thomas Leibiger , Kelvin H. Lee , Marianthi Ierapetritou , Eleftherios Terry Papoutsakis
Culture conditions have a profound impact on therapeutic protein production and glycosylation, a critical therapeutic-quality attribute, especially for monoclonal antibodies (mAbs). While the critical culture parameter of pH has been known since the early 1990s to affect protein glycosylation and production, detailed glycan and metabolic characterization and mechanistic understanding are critically lacking. Here, Chinese Hamster Ovary (CHO) cells were grown in bioreactors at pH 6.75, 7, and 7.25 (± 0.03) to examine how pH affects cell metabolism and site-specific N-linked glycosylation of the produced broadly neutralizing anti-HIV IgG1 mAb. VRC01 has N-linked glycosylation sites in both the Fc region and the Fab region, a situation not previously examined with respect to mAb glycosylation as affected by culture conditions. Using parsimonious Flux Balance Analysis (pFBA) and Flux Variability Analysis (FVA), we dissect and quantitate the impact of pH on cell growth, glucose/lactate metabolism, accumulation of the toxic metabolite ammonia, IgG production rates, and nonessential amino acid metabolism. pFBA revealed that beyond the established mechanism of glutamine conversion to glutamate, ammonia is also produced by the reaction converting serine to pyruvate, especially in the later phases of culture. pFBA also provided insights into the switch from ammonia production to consumption, notably due to depletion of glutamine, and consumption of glutamate and aspartate. We document that culture duration and pH alter the complex bimodal patterns (production/uptake) of several essential and non-essential amino acids. Site-specific N-linked glycan analysis using glycopeptide mapping demonstrated that pH significantly affects the glycosylation profiles of the two IgG1 sites. Fc region glycans were completely fucosylated but did not contain any sialylation. The Fab region glycans were not completely fucosylated but contained sialylated glycans. Bioreactor pH affected both the fucosylation and sialylation indexes in the Fab region and the galactosylation index of the Fc region. However, fucosylation in the Fc region was unaffected thus demonstrating that the effect of pH on site-specific N-linked glycosylation is complex.
{"title":"Flux balance analysis and peptide mapping elucidate the impact of bioreactor pH on Chinese hamster ovary (CHO) cell metabolism and N-linked glycosylation in the fab and Fc regions of the produced IgG","authors":"Jayanth Venkatarama Reddy , Sumit Kumar Singh , Thomas Leibiger , Kelvin H. Lee , Marianthi Ierapetritou , Eleftherios Terry Papoutsakis","doi":"10.1016/j.ymben.2024.11.005","DOIUrl":"10.1016/j.ymben.2024.11.005","url":null,"abstract":"<div><div>Culture conditions have a profound impact on therapeutic protein production and glycosylation, a critical therapeutic-quality attribute, especially for monoclonal antibodies (mAbs). While the critical culture parameter of pH has been known since the early 1990s to affect protein glycosylation and production, detailed glycan and metabolic characterization and mechanistic understanding are critically lacking. Here, Chinese Hamster Ovary (CHO) cells were grown in bioreactors at pH 6.75, 7, and 7.25 (± 0.03) to examine how pH affects cell metabolism and site-specific N-linked glycosylation of the produced broadly neutralizing anti-HIV IgG1 mAb. VRC01 has N-linked glycosylation sites in both the Fc region and the Fab region, a situation not previously examined with respect to mAb glycosylation as affected by culture conditions. Using parsimonious Flux Balance Analysis (pFBA) and Flux Variability Analysis (FVA), we dissect and quantitate the impact of pH on cell growth, glucose/lactate metabolism, accumulation of the toxic metabolite ammonia, IgG production rates, and nonessential amino acid metabolism. pFBA revealed that beyond the established mechanism of glutamine conversion to glutamate, ammonia is also produced by the reaction converting serine to pyruvate, especially in the later phases of culture. pFBA also provided insights into the switch from ammonia production to consumption, notably due to depletion of glutamine, and consumption of glutamate and aspartate. We document that culture duration and pH alter the complex bimodal patterns (production/uptake) of several essential and non-essential amino acids. Site-specific N-linked glycan analysis using glycopeptide mapping demonstrated that pH significantly affects the glycosylation profiles of the two IgG1 sites. Fc region glycans were completely fucosylated but did not contain any sialylation. The Fab region glycans were not completely fucosylated but contained sialylated glycans. Bioreactor pH affected both the fucosylation and sialylation indexes in the Fab region and the galactosylation index of the Fc region. However, fucosylation in the Fc region was unaffected thus demonstrating that the effect of pH on site-specific N-linked glycosylation is complex.</div></div>","PeriodicalId":18483,"journal":{"name":"Metabolic engineering","volume":"87 ","pages":"Pages 37-48"},"PeriodicalIF":6.8,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142692407","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-21DOI: 10.1016/j.ymben.2024.11.006
Zhengyang Xiao , Himadri B. Pakrasi , Yixin Chen , Yinjie J. Tang
Large language models (LLMs) can complete general scientific question-and-answer, yet they are constrained by their pretraining cut-off dates and lack the ability to provide specific, cited scientific knowledge. Here, we introduce Network for Knowledge Organization (NEKO), a workflow that uses LLM Qwen to extract knowledge through scientific literature text mining. When user inputs a keyword of interest, NEKO can generate knowledge graphs to link bioinformation entities and produce comprehensive summaries from PubMed search. NEKO significantly enhance LLM ability and has immediate applications in daily academic tasks such as education of young scientists, literature review, paper writing, experiment planning/troubleshooting, and new ideas/hypothesis generation. We exemplified this workflow's applicability through several case studies on yeast fermentation and cyanobacterial biorefinery. NEKO's output is more informative, specific, and actionable than GPT-4's zero-shot Q&A. NEKO offers flexible, lightweight local deployment options. NEKO democratizes artificial intelligence (AI) tools, making scientific foundation model more accessible to researchers without excessive computational power.
{"title":"Network for knowledge Organization (NEKO): An AI knowledge mining workflow for synthetic biology research","authors":"Zhengyang Xiao , Himadri B. Pakrasi , Yixin Chen , Yinjie J. Tang","doi":"10.1016/j.ymben.2024.11.006","DOIUrl":"10.1016/j.ymben.2024.11.006","url":null,"abstract":"<div><div>Large language models (LLMs) can complete general scientific question-and-answer, yet they are constrained by their pretraining cut-off dates and lack the ability to provide specific, cited scientific knowledge. Here, we introduce <u>Ne</u>twork for <u>K</u>nowledge <u>O</u>rganization (NEKO), a workflow that uses LLM Qwen to extract knowledge through scientific literature text mining. When user inputs a keyword of interest, NEKO can generate knowledge graphs to link bioinformation entities and produce comprehensive summaries from PubMed search. NEKO significantly enhance LLM ability and has immediate applications in daily academic tasks such as education of young scientists, literature review, paper writing, experiment planning/troubleshooting, and new ideas/hypothesis generation. We exemplified this workflow's applicability through several case studies on yeast fermentation and cyanobacterial biorefinery. NEKO's output is more informative, specific, and actionable than GPT-4's zero-shot Q&A. NEKO offers flexible, lightweight local deployment options. NEKO democratizes artificial intelligence (AI) tools, making scientific foundation model more accessible to researchers without excessive computational power.</div></div>","PeriodicalId":18483,"journal":{"name":"Metabolic engineering","volume":"87 ","pages":"Pages 60-67"},"PeriodicalIF":6.8,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142695637","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-19DOI: 10.1016/j.ymben.2024.11.009
Minhye Baek , Che Lin Kim , Su Hyun Kim , Karen Julie la Cour Karottki , Hooman Hefzi , Lise Marie Grav , Lasse Ebdrup Pedersen , Nathan E. Lewis , Jae Seong Lee , Gyun Min Lee
Chinese hamster ovary (CHO) cells, which are widely used for therapeutic protein production, have been genetically manipulated to enhance productivity. Nearly half of the genes in CHO cells are silenced, which are promising targets for CHO cell engineering. To identify novel gene targets among the silenced genes that can enhance productivity, we established a genome-wide clustered regularly interspaced short palindromic repeats activation (CRISPRa) screening platform for bispecific antibody (bsAb)-producing CHO (CHO-bsAb) cells with 110,979 guide RNAs (gRNAs) targeting 13,812 silenced genes using a virus-free recombinase-mediated cassette exchange-based gRNA integration method. Using this platform, we performed a fluorescence-activated cell sorting-based cold-capture assay to isolate cells with high fluorescence intensity, which is indicative of high specific bsAb productivity (qbsAb), and identified 90 significantly enriched genes. To verify the screening results, 14 high-scoring candidate genes were individually activated in CHO-bsAb cells via CRISPRa. Among these, 10 genes demonstrated enhanced fluorescence intensity of CHO-bsAb cells in the cold-capture assay when activated. Furthermore, the overexpression of the identified novel gene target Syce3 in CHO-bsAb cells resulted in a 1.4- to 1.9-fold increase in the maximum bsAb concentration, owing to improved qbsAb and specific growth rate. Thus, this virus-free CRISPRa screening platform is a potent tool for identifying novel engineering targets in CHO cells to improve bsAb production.
{"title":"Unraveling productivity-enhancing genes in Chinese hamster ovary cells via CRISPR activation screening using recombinase-mediated cassette exchange system","authors":"Minhye Baek , Che Lin Kim , Su Hyun Kim , Karen Julie la Cour Karottki , Hooman Hefzi , Lise Marie Grav , Lasse Ebdrup Pedersen , Nathan E. Lewis , Jae Seong Lee , Gyun Min Lee","doi":"10.1016/j.ymben.2024.11.009","DOIUrl":"10.1016/j.ymben.2024.11.009","url":null,"abstract":"<div><div>Chinese hamster ovary (CHO) cells, which are widely used for therapeutic protein production, have been genetically manipulated to enhance productivity. Nearly half of the genes in CHO cells are silenced, which are promising targets for CHO cell engineering. To identify novel gene targets among the silenced genes that can enhance productivity, we established a genome-wide clustered regularly interspaced short palindromic repeats activation (CRISPRa) screening platform for bispecific antibody (bsAb)-producing CHO (CHO-bsAb) cells with 110,979 guide RNAs (gRNAs) targeting 13,812 silenced genes using a virus-free recombinase-mediated cassette exchange-based gRNA integration method. Using this platform, we performed a fluorescence-activated cell sorting-based cold-capture assay to isolate cells with high fluorescence intensity, which is indicative of high specific bsAb productivity (<em>q</em><sub>bsAb</sub>), and identified 90 significantly enriched genes. To verify the screening results, 14 high-scoring candidate genes were individually activated in CHO-bsAb cells via CRISPRa. Among these, 10 genes demonstrated enhanced fluorescence intensity of CHO-bsAb cells in the cold-capture assay when activated. Furthermore, the overexpression of the identified novel gene target <em>Syce3</em> in CHO-bsAb cells resulted in a 1.4- to 1.9-fold increase in the maximum bsAb concentration, owing to improved <em>q</em><sub>bsAb</sub> and specific growth rate. Thus, this virus-free CRISPRa screening platform is a potent tool for identifying novel engineering targets in CHO cells to improve bsAb production.</div></div>","PeriodicalId":18483,"journal":{"name":"Metabolic engineering","volume":"87 ","pages":"Pages 11-20"},"PeriodicalIF":6.8,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142682278","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-13DOI: 10.1016/j.ymben.2024.11.003
Wen-Li Gao , Lie Ma , Meng-Han Li , Wei-Feng Xu , Chen-Fan Sun , Qing-Wei Zhao , Xin-Ai Chen , Zhong-Yuan Lyu , Yong-quan Li
We propose here that acylation modification of actinomycete proteins is a restrictive system that limits the excessive synthesis of secondary metabolites, its mechanism has not been clearly elucidated before. We used crotonylation as an example to investigate the acylation effect in the daptomycin biosynthesis by Streptomyces roseosporus. Our experiments revealed abundant crotonylation of numerous secondary metabolic enzymes in Streptomyces roseosporus, a daptomycin producer. DptE, which initiates daptomycin biosynthesis, is crotonylated at K454. We experimentally identified the corresponding DptE crotonyltransferase Kct1 and decrotonylase CobB. Further studies consistently confirmed that decrotonylation increases DptE activity. Decrotonylation functions like loosening a faucet knob, increasing substrate channel throughput and the initial flow of daptomycin biosynthesis. Moreover, DptE catalytic activity was enhanced via K454 and neighboring residues K184 and Q420 mutation, increasing daptomycin yield by 132%; daptomycin biosynthesis related metabolism activities also increased. Substrate channel prediction revealed 38% higher throughput for mutant DptE (K454I/K184Q/Q420N) than crotonylated DptE. Molecular dynamics (MD) simulations revealed significant increases in flexibility and substrate affinity of the mutant. In summary, we elucidated the faucet knob effect of DptE crotonylation on the initial flow of daptomycin biosynthesis and adopted decrotonylation to generate high-yield industrial strains.
{"title":"The faucet knob effect of DptE crotonylation on the initial flow of daptomycin biosynthesis","authors":"Wen-Li Gao , Lie Ma , Meng-Han Li , Wei-Feng Xu , Chen-Fan Sun , Qing-Wei Zhao , Xin-Ai Chen , Zhong-Yuan Lyu , Yong-quan Li","doi":"10.1016/j.ymben.2024.11.003","DOIUrl":"10.1016/j.ymben.2024.11.003","url":null,"abstract":"<div><div>We propose here that acylation modification of actinomycete proteins is a restrictive system that limits the excessive synthesis of secondary metabolites, its mechanism has not been clearly elucidated before. We used crotonylation as an example to investigate the acylation effect in the daptomycin biosynthesis by <em>Streptomyces roseosporus</em>. Our experiments revealed abundant crotonylation of numerous secondary metabolic enzymes in <em>Streptomyces roseosporus,</em> a daptomycin producer. DptE, which initiates daptomycin biosynthesis, is crotonylated at K454. We experimentally identified the corresponding DptE crotonyltransferase Kct1 and decrotonylase CobB. Further studies consistently confirmed that decrotonylation increases DptE activity. Decrotonylation functions like loosening a faucet knob, increasing substrate channel throughput and the initial flow of daptomycin biosynthesis. Moreover, DptE catalytic activity was enhanced via K454 and neighboring residues K184 and Q420 mutation, increasing daptomycin yield by 132%; daptomycin biosynthesis related metabolism activities also increased. Substrate channel prediction revealed 38% higher throughput for mutant DptE (K454I/K184Q/Q420N) than crotonylated DptE. Molecular dynamics (MD) simulations revealed significant increases in flexibility and substrate affinity of the mutant. In summary, we elucidated the faucet knob effect of DptE crotonylation on the initial flow of daptomycin biosynthesis and adopted decrotonylation to generate high-yield industrial strains.</div></div>","PeriodicalId":18483,"journal":{"name":"Metabolic engineering","volume":"87 ","pages":"Pages 1-10"},"PeriodicalIF":6.8,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142621734","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}