Over the past decade, Branhamella catarrhalis has emerged as an important human pathogen. The bacterium is a common cause of otitis media in children and of lower respiratory tract infections in adults with chronic obstructive pulmonary disease. B. catarrhalis is exclusively a human pathogen. It colonizes the respiratory tract of a small proportion of adults and a larger proportion of children. Studies involving restriction enzyme analysis of genomic DNA show that colonization is a dynamic process, with the human host eliminating and acquiring new strains frequently. The surface of B. catarrhalis contains outer membrane proteins, lipooligosaccharide, and pili. The genes which encode several outer membrane proteins have been cloned, and some of these proteins are being studied as potential vaccine antigens. Analysis of the immune response has been limited by the lack of an adequate animal model of B. catarrhalis infection. New information regarding outer membrane structure should guide studies of the human immune response to B. catarrhalis. Immunoassays which specifically detect antibodies to determinants exposed on the bacterial surface will elucidate the most relevant immune response. The recognition of B. catarrhalis as an important human pathogen has stimulated research on the epidemiology and surface structures of the bacterium. Future studies to understand the mechanisms of infection and to elucidate the human immune response to infection hold promise of developing new methods to treat and prevent infections caused by B. catarrhalis.
Studies of bacterial and eukaryotic systems have identified two-gene operons in which the translation product of the upstream gene influences translation of the downstream gene. The upstream gene, referred to as a leader (gene) in bacterial systems or an upstream open reading frame (uORF) in eukaryotes, encodes a peptide that interferes with a function(s) of its translating ribosome. The peptides are therefore cis-acting negative regulators of translation. The inhibitory peptides typically consist of fewer than 25 residues and function prior to emergence from the ribosome. A biological role for this class of translation inhibitor is demonstrated in translation attenuation, a form or regulation that controls the inducible translation of the chloramphenicol resistance genes cat and cmlA in bacteria. Induction of cat or cmlA requires ribosome stalling at a particular codon in the leader region of the mRNA. Stalling destabilizes an adjacent, downstream mRNA secondary structure that normally sequesters the ribosome-binding site for the cat or cmlA coding regions. Genetic studies indicate that the nascent, leader-encoded peptide is the selector of the site of ribosome stalling in leader mRNA by cis interference with translation. Synthetic leader peptides inhibit ribosomal peptidyltransferase in vitro, leading to the prediction that this activity is the basis for stall site selection. Recent studies have shown that the leader peptides are rRNA-binding peptides with targets at the peptidyl transferase center of 23S rRNA. uORFs associated with several eukaryotic genes inhibit downstream translation. When inhibition depends on the specific codon sequence of the uORF, it has been proposed that the uORF-encoded nascent peptide prevents ribosome release from the mRNA at the uORF stop codon. This sets up a blockade to ribosome scanning which minimizes downstream translation. Segments within large proteins also appear to regulate ribosome activity in cis, although in most of the known examples the active amino acid sequences function after their emergence from the ribosome, cis control of translation by the nascent peptide is gene specific; nearly all such regulatory peptides exert no obvious trans effects in cells. The in vitro biochemical activities of the cat/cmla leader peptides on ribosomes and rRNA suggest a mechanism through which the nascent peptide can modify ribosome behavior. Other cis-acting regulatory peptides may involve more complex ribosomal interactions.
Over the last 25 years, a much broader range of taxonomic studies of bacteria has gradually replaced the former reliance upon morphological, physiological, and biochemical characterization. This polyphasic taxonomy takes into account all available phenotypic and genotypic data and integrates them in a consensus type of classification, framed in a general phylogeny derived from 16S rRNA sequence analysis. In some cases, the consensus classification is a compromise containing a minimum of contradictions. It is thought that the more parameters that will become available in the future, the more polyphasic classification will gain stability. In this review, the practice of polyphasic taxonomy is discussed for four groups of bacteria chosen for their relevance, complexity, or both: the genera Xanthomonas and Campylobacter, the lactic acid bacteria, and the family Comamonadaceae. An evaluation of our present insights, the conclusions derived from it, and the perspectives of polyphasic taxonomy are discussed, emphasizing the keystone role of the species. Taxonomists did not succeed in standardizing species delimitation by using percent DNA hybridization values. Together with the absence of another "gold standard" for species definition, this has an enormous repercussion on bacterial taxonomy. This problem is faced in polyphasic taxonomy, which does not depend on a theory, a hypothesis, or a set of rules, presenting a pragmatic approach to a consensus type of taxonomy, integrating all available data maximally. In the future, polyphasic taxonomy will have to cope with (i) enormous amounts of data, (ii) large numbers of strains, and (iii) data fusion (data aggregation), which will demand efficient and centralized data storage. In the future, taxonomic studies will require collaborative efforts by specialized laboratories even more than now is the case. Whether these future developments will guarantee a more stable consensus classification remains an open question.
Glucose isomerase (GI) (D-xylose ketol-isomerase; EC. 5.3.1.5) catalyzes the reversible isomerization of D-glucose and D-xylose to D-fructose and D-xylulose, respectively. The enzyme has the largest market in the food industry because of its application in the production of high-fructose corn syrup (HFCS). HFCS, an equilibrium mixture of glucose and fructose, is 1.3 times sweeter than sucrose and serves as a sweetener for use by diabetics. Interconversion of xylose to xylulose by GI serves a nutritional requirement in saprophytic bacteria and has a potential application in the bioconversion of hemicellulose to ethanol. The enzyme is widely distributed in prokaryotes. Intensive research efforts are directed toward improving its suitability for industrial application. Development of microbial strains capable of utilizing xylan-containing raw materials for growth or screening for constitutive mutants of GI is expected to lead to discontinuation of the use of xylose as an inducer for the production of the enzyme. Elimination of Co2+ from the fermentation medium is desirable for avoiding health problems arising from human consumption of HFCS. Immobilization of GI provides an efficient means for its easy recovery and reuse and lowers the cost of its use. X-ray crystallographic and genetic engineering studies support a hydride shift mechanism for the action of GI. Cloning of GI in homologous as well as heterologous hosts has been carried out, with the prime aim of overproducing the enzyme and deciphering the genetic organization of individual genes (xylA, xylB, and xylR) in the xyl operon of different microorganisms. The organization of xylA and xylB seems to be highly conserved in all bacteria. The two genes are transcribed from the same strand in Escherichia coli and Bacillus and Lactobacillus species, whereas they are transcribed divergently on different strands in Streptomyces species. A comparison of the xylA sequences from several bacterial sources revealed the presence of two signature sequences, VXW(GP)GREG(YSTAE)E and (LIVM)EPKPX(EQ)P. The use of an inexpensive inducer in the fermentation medium devoid of Co2+ and redesigning of a tailor-made GI with increased thermostability, higher affinity for glucose, and lower pH optimum will contribute significantly to the development of an economically feasible commercial process for enzymatic isomerization of glucose to fructose. Manipulation of the GI gene by site-directed mutagenesis holds promise that a GI suitable for biotechnological applications will be produced in the foreseeable future.