首页 > 最新文献

Microbiological reviews最新文献

英文 中文
Bacterial modulins: a novel class of virulence factors which cause host tissue pathology by inducing cytokine synthesis. 细菌调节素:一类通过诱导细胞因子合成引起宿主组织病理的新型毒力因子。
Pub Date : 1996-06-01 DOI: 10.1128/mr.60.2.316-341.1996
B Henderson, S Poole, M Wilson

Cytokines are a diverse group of proteins and glycoproteins which have potent and wide-ranging effects on eukaryotic cell function and are now recognized as important mediators of tissue pathology in infectious diseases. It is increasingly recognized that for many bacterial species, cytokine induction is a major virulence mechanism. Until recent years, the only bacterial component known to stimulate cytokine synthesis was lipopolysaccharide (LPS). It is only within the past decade that it has been clearly shown that many components associated with the bacterial cell wall, including proteins, glycoproteins, lipoproteins, carbohydrates, and lipids, have the capacity to stimulate mammalian cells to produce a diverse array of cytokines. It has been established that many of these cytokine-inducing molecules act by mechanisms distinct from that of LPS, and thus their activities are not due to LPS contamination. Bacteria produce a wide range of virulence factors which cause host tissue pathology, and these diverse factors have been grouped into four families: adhesins, aggressins, impedins, and invasins. We suggest that the array of bacterial cytokine-inducing molecules represents a new class of bacterial virulence factor, and, by analogy with the known virulence families, we suggest the term "modulin" to describe these molecules, because the action of cytokines is to modulate eukaryotic cell behavior. This review summarizes our current understanding of cytokine biology in relation to tissue homeostasis and disease and concisely reviews the current literature on the cytokine-inducing molecules produced by gram-negative and gram-positive bacteria, with an emphasis on the cellular mechanisms responsible for cytokine induction. We propose that modulins, by controlling the host immune and inflammatory responses, maintain the large commensal flora that all multicellular organisms support.

细胞因子是一组多样的蛋白质和糖蛋白,它们对真核细胞功能具有强大而广泛的影响,现在被认为是传染病组织病理的重要介质。人们越来越认识到,对许多细菌物种来说,细胞因子诱导是一种主要的毒力机制。直到最近几年,已知唯一能刺激细胞因子合成的细菌成分是脂多糖(LPS)。直到最近十年,人们才清楚地表明,与细菌细胞壁相关的许多成分,包括蛋白质、糖蛋白、脂蛋白、碳水化合物和脂质,具有刺激哺乳动物细胞产生多种细胞因子的能力。已经确定,许多这些细胞因子诱导分子的作用机制与LPS不同,因此它们的活性不是由于LPS污染。细菌产生一系列引起宿主组织病理的毒力因子,这些不同的毒力因子可分为四大类:粘附素、侵袭素、阻碍素和侵入素。我们认为,细菌细胞因子诱导分子阵列代表了一类新的细菌毒力因子,并且,通过类比已知的毒力家族,我们建议术语“调节蛋白”来描述这些分子,因为细胞因子的作用是调节真核细胞的行为。本文综述了目前我们对细胞因子生物学与组织稳态和疾病的关系的认识,并简要回顾了目前关于革兰氏阴性和革兰氏阳性细菌产生的细胞因子诱导分子的文献,重点介绍了细胞因子诱导的细胞机制。我们认为,调节素通过控制宿主免疫和炎症反应,维持所有多细胞生物支持的大型共生菌群。
{"title":"Bacterial modulins: a novel class of virulence factors which cause host tissue pathology by inducing cytokine synthesis.","authors":"B Henderson,&nbsp;S Poole,&nbsp;M Wilson","doi":"10.1128/mr.60.2.316-341.1996","DOIUrl":"https://doi.org/10.1128/mr.60.2.316-341.1996","url":null,"abstract":"<p><p>Cytokines are a diverse group of proteins and glycoproteins which have potent and wide-ranging effects on eukaryotic cell function and are now recognized as important mediators of tissue pathology in infectious diseases. It is increasingly recognized that for many bacterial species, cytokine induction is a major virulence mechanism. Until recent years, the only bacterial component known to stimulate cytokine synthesis was lipopolysaccharide (LPS). It is only within the past decade that it has been clearly shown that many components associated with the bacterial cell wall, including proteins, glycoproteins, lipoproteins, carbohydrates, and lipids, have the capacity to stimulate mammalian cells to produce a diverse array of cytokines. It has been established that many of these cytokine-inducing molecules act by mechanisms distinct from that of LPS, and thus their activities are not due to LPS contamination. Bacteria produce a wide range of virulence factors which cause host tissue pathology, and these diverse factors have been grouped into four families: adhesins, aggressins, impedins, and invasins. We suggest that the array of bacterial cytokine-inducing molecules represents a new class of bacterial virulence factor, and, by analogy with the known virulence families, we suggest the term \"modulin\" to describe these molecules, because the action of cytokines is to modulate eukaryotic cell behavior. This review summarizes our current understanding of cytokine biology in relation to tissue homeostasis and disease and concisely reviews the current literature on the cytokine-inducing molecules produced by gram-negative and gram-positive bacteria, with an emphasis on the cellular mechanisms responsible for cytokine induction. We propose that modulins, by controlling the host immune and inflammatory responses, maintain the large commensal flora that all multicellular organisms support.</p>","PeriodicalId":18499,"journal":{"name":"Microbiological reviews","volume":"60 2","pages":"316-41"},"PeriodicalIF":0.0,"publicationDate":"1996-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC239446/pdf/600316.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"19772644","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 12
Ribosome regulation by the nascent peptide. 新生肽对核糖体的调节。
Pub Date : 1996-06-01 DOI: 10.1128/MMBR.60.2.366-385.1996
P. S. Lovett, E. J. Rogers
Studies of bacterial and eukaryotic systems have identified two-gene operons in which the translation product of the upstream gene influences translation of the downstream gene. The upstream gene, referred to as a leader (gene) in bacterial systems or an upstream open reading frame (uORF) in eukaryotes, encodes a peptide that interferes with a function(s) of its translating ribosome. The peptides are therefore cis-acting negative regulators of translation. The inhibitory peptides typically consist of fewer than 25 residues and function prior to emergence from the ribosome. A biological role for this class of translation inhibitor is demonstrated in translation attenuation, a form or regulation that controls the inducible translation of the chloramphenicol resistance genes cat and cmlA in bacteria. Induction of cat or cmlA requires ribosome stalling at a particular codon in the leader region of the mRNA. Stalling destabilizes an adjacent, downstream mRNA secondary structure that normally sequesters the ribosome-binding site for the cat or cmlA coding regions. Genetic studies indicate that the nascent, leader-encoded peptide is the selector of the site of ribosome stalling in leader mRNA by cis interference with translation. Synthetic leader peptides inhibit ribosomal peptidyltransferase in vitro, leading to the prediction that this activity is the basis for stall site selection. Recent studies have shown that the leader peptides are rRNA-binding peptides with targets at the peptidyl transferase center of 23S rRNA. uORFs associated with several eukaryotic genes inhibit downstream translation. When inhibition depends on the specific codon sequence of the uORF, it has been proposed that the uORF-encoded nascent peptide prevents ribosome release from the mRNA at the uORF stop codon. This sets up a blockade to ribosome scanning which minimizes downstream translation. Segments within large proteins also appear to regulate ribosome activity in cis, although in most of the known examples the active amino acid sequences function after their emergence from the ribosome, cis control of translation by the nascent peptide is gene specific; nearly all such regulatory peptides exert no obvious trans effects in cells. The in vitro biochemical activities of the cat/cmla leader peptides on ribosomes and rRNA suggest a mechanism through which the nascent peptide can modify ribosome behavior. Other cis-acting regulatory peptides may involve more complex ribosomal interactions.
细菌和真核生物系统的研究已经确定了两个基因操纵子,其中上游基因的翻译产物影响下游基因的翻译。上游基因,在细菌系统中称为先导基因(基因),在真核生物中称为上游开放阅读框(uORF),编码一种干扰其翻译核糖体功能的肽。因此肽是顺式作用的翻译负调节因子。抑制肽通常由少于25个残基组成,并且在从核糖体中出现之前起作用。这类翻译抑制剂在翻译衰减中具有生物学作用,这是一种控制细菌中氯霉素抗性基因cat和cmlA诱导翻译的形式或调控。诱导cat或cmlA需要核糖体停留在mRNA前导区的特定密码子上。失速会破坏相邻的下游mRNA二级结构的稳定性,该二级结构通常会隔离cat或cmlA编码区的核糖体结合位点。遗传学研究表明,新生的先导体编码肽是通过顺式干扰翻译而在先导mRNA中选择核糖体停滞位点的选择器。人工合成的先导肽在体外抑制核糖体肽基转移酶,从而预测该活性是stall位点选择的基础。最近的研究表明,前导肽是rRNA结合肽,其靶点位于23S rRNA的肽基转移酶中心。与几种真核基因相关的uorf抑制下游翻译。当抑制依赖于uORF的特定密码子序列时,已经提出了uORF编码的新生肽阻止核糖体从uORF停止密码子处的mRNA释放。这设置了对核糖体扫描的封锁,使下游翻译最小化。大蛋白质内的片段似乎也以顺式方式调节核糖体的活性,尽管在大多数已知的例子中,活性氨基酸序列在从核糖体中出现后才起作用,但新生肽对翻译的顺式控制是基因特异性的;几乎所有这些调节肽在细胞中都没有明显的反式作用。cat/cmla前导肽对核糖体和rRNA的体外生化活性提示了新生肽改变核糖体行为的机制。其他顺式调节肽可能涉及更复杂的核糖体相互作用。
{"title":"Ribosome regulation by the nascent peptide.","authors":"P. S. Lovett, E. J. Rogers","doi":"10.1128/MMBR.60.2.366-385.1996","DOIUrl":"https://doi.org/10.1128/MMBR.60.2.366-385.1996","url":null,"abstract":"Studies of bacterial and eukaryotic systems have identified two-gene operons in which the translation product of the upstream gene influences translation of the downstream gene. The upstream gene, referred to as a leader (gene) in bacterial systems or an upstream open reading frame (uORF) in eukaryotes, encodes a peptide that interferes with a function(s) of its translating ribosome. The peptides are therefore cis-acting negative regulators of translation. The inhibitory peptides typically consist of fewer than 25 residues and function prior to emergence from the ribosome. A biological role for this class of translation inhibitor is demonstrated in translation attenuation, a form or regulation that controls the inducible translation of the chloramphenicol resistance genes cat and cmlA in bacteria. Induction of cat or cmlA requires ribosome stalling at a particular codon in the leader region of the mRNA. Stalling destabilizes an adjacent, downstream mRNA secondary structure that normally sequesters the ribosome-binding site for the cat or cmlA coding regions. Genetic studies indicate that the nascent, leader-encoded peptide is the selector of the site of ribosome stalling in leader mRNA by cis interference with translation. Synthetic leader peptides inhibit ribosomal peptidyltransferase in vitro, leading to the prediction that this activity is the basis for stall site selection. Recent studies have shown that the leader peptides are rRNA-binding peptides with targets at the peptidyl transferase center of 23S rRNA. uORFs associated with several eukaryotic genes inhibit downstream translation. When inhibition depends on the specific codon sequence of the uORF, it has been proposed that the uORF-encoded nascent peptide prevents ribosome release from the mRNA at the uORF stop codon. This sets up a blockade to ribosome scanning which minimizes downstream translation. Segments within large proteins also appear to regulate ribosome activity in cis, although in most of the known examples the active amino acid sequences function after their emergence from the ribosome, cis control of translation by the nascent peptide is gene specific; nearly all such regulatory peptides exert no obvious trans effects in cells. The in vitro biochemical activities of the cat/cmla leader peptides on ribosomes and rRNA suggest a mechanism through which the nascent peptide can modify ribosome behavior. Other cis-acting regulatory peptides may involve more complex ribosomal interactions.","PeriodicalId":18499,"journal":{"name":"Microbiological reviews","volume":"18 3","pages":"366-85"},"PeriodicalIF":0.0,"publicationDate":"1996-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91529192","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 202
Methanotrophic bacteria. Methanotrophic细菌。
Pub Date : 1996-06-01 DOI: 10.1128/mr.60.2.439-471.1996
R S Hanson, T E Hanson

Methane-utilizing bacteria (methanotrophs) are a diverse group of gram-negative bacteria that are related to other members of the Proteobacteria. These bacteria are classified into three groups based on the pathways used for assimilation of formaldehyde, the major source of cell carbon, and other physiological and morphological features. The type I and type X methanotrophs are found within the gamma subdivision of the Proteobacteria and employ the ribulose monophosphate pathway for formaldehyde assimilation, whereas type II methanotrophs, which employ the serine pathway for formaldehyde assimilation, form a coherent cluster within the beta subdivision of the Proteobacteria. Methanotrophic bacteria are ubiquitous. The growth of type II bacteria appears to be favored in environments that contain relatively high levels of methane, low levels of dissolved oxygen, and limiting concentrations of combined nitrogen and/or copper. Type I methanotrophs appear to be dominant in environments in which methane is limiting and combined nitrogen and copper levels are relatively high. These bacteria serve as biofilters for the oxidation of methane produced in anaerobic environments, and when oxygen is present in soils, atmospheric methane is oxidized. Their activities in nature are greatly influenced by agricultural practices and other human activities. Recent evidence indicates that naturally occurring, uncultured methanotrophs represent new genera. Methanotrophs that are capable of oxidizing methane at atmospheric levels exhibit methane oxidation kinetics different from those of methanotrophs available in pure cultures. A limited number of methanotrophs have the genetic capacity to synthesize a soluble methane monooxygenase which catalyzes the rapid oxidation of environmental pollutants including trichloroethylene.

利用甲烷的细菌(甲烷营养菌)是一种不同的革兰氏阴性细菌,与变形菌门的其他成员有关。根据吸收甲醛的途径、细胞碳的主要来源以及其他生理和形态特征,这些细菌被分为三组。I型和X型甲烷氧化菌存在于变形菌门的gamma分支中,采用单磷酸核酮糖途径进行甲醛同化,而II型甲烷氧化菌采用丝氨酸途径进行甲醛同化,在变形菌门的beta分支中形成一个一致的集群。甲烷营养细菌无处不在。II型细菌似乎在甲烷含量相对较高、溶解氧含量较低、氮和/或铜的组合浓度有限的环境中更容易生长。I型甲烷氧化菌似乎在甲烷受限、氮和铜组合水平相对较高的环境中占主导地位。这些细菌作为厌氧环境中产生的甲烷氧化的生物过滤器,当土壤中存在氧气时,大气中的甲烷被氧化。它们在自然界的活动受到农业实践和其他人类活动的极大影响。最近的证据表明,自然发生的,未经培养的甲烷氧化菌代表了新属。能够在大气水平氧化甲烷的甲烷氧化菌表现出与纯培养物中甲烷氧化菌不同的甲烷氧化动力学。有限数量的甲烷氧化菌具有合成可溶性甲烷单加氧酶的遗传能力,该酶能催化包括三氯乙烯在内的环境污染物的快速氧化。
{"title":"Methanotrophic bacteria.","authors":"R S Hanson,&nbsp;T E Hanson","doi":"10.1128/mr.60.2.439-471.1996","DOIUrl":"https://doi.org/10.1128/mr.60.2.439-471.1996","url":null,"abstract":"<p><p>Methane-utilizing bacteria (methanotrophs) are a diverse group of gram-negative bacteria that are related to other members of the Proteobacteria. These bacteria are classified into three groups based on the pathways used for assimilation of formaldehyde, the major source of cell carbon, and other physiological and morphological features. The type I and type X methanotrophs are found within the gamma subdivision of the Proteobacteria and employ the ribulose monophosphate pathway for formaldehyde assimilation, whereas type II methanotrophs, which employ the serine pathway for formaldehyde assimilation, form a coherent cluster within the beta subdivision of the Proteobacteria. Methanotrophic bacteria are ubiquitous. The growth of type II bacteria appears to be favored in environments that contain relatively high levels of methane, low levels of dissolved oxygen, and limiting concentrations of combined nitrogen and/or copper. Type I methanotrophs appear to be dominant in environments in which methane is limiting and combined nitrogen and copper levels are relatively high. These bacteria serve as biofilters for the oxidation of methane produced in anaerobic environments, and when oxygen is present in soils, atmospheric methane is oxidized. Their activities in nature are greatly influenced by agricultural practices and other human activities. Recent evidence indicates that naturally occurring, uncultured methanotrophs represent new genera. Methanotrophs that are capable of oxidizing methane at atmospheric levels exhibit methane oxidation kinetics different from those of methanotrophs available in pure cultures. A limited number of methanotrophs have the genetic capacity to synthesize a soluble methane monooxygenase which catalyzes the rapid oxidation of environmental pollutants including trichloroethylene.</p>","PeriodicalId":18499,"journal":{"name":"Microbiological reviews","volume":"60 2","pages":"439-71"},"PeriodicalIF":0.0,"publicationDate":"1996-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC239451/pdf/600439.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"19771851","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 362
Enteric bacterial toxins: mechanisms of action and linkage to intestinal secretion. 肠道细菌毒素:作用机制及其与肠道分泌的联系。
Pub Date : 1996-03-01 DOI: 10.1128/mr.60.1.167-215.1996
C L Sears, J B Kaper
{"title":"Enteric bacterial toxins: mechanisms of action and linkage to intestinal secretion.","authors":"C L Sears,&nbsp;J B Kaper","doi":"10.1128/mr.60.1.167-215.1996","DOIUrl":"https://doi.org/10.1128/mr.60.1.167-215.1996","url":null,"abstract":"","PeriodicalId":18499,"journal":{"name":"Microbiological reviews","volume":"60 1","pages":"167-215"},"PeriodicalIF":0.0,"publicationDate":"1996-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC239424/pdf/600167.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"19821029","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 24
Mechanisms and control of mRNA turnover in Saccharomyces cerevisiae. 酿酒酵母mRNA转换的机制及调控。
Pub Date : 1996-03-01 DOI: 10.1128/MMBR.60.1.233-249.1996
G. Caponigro, Roy Parker
INTRODUCTION 233 METHODS FOR STUDYING mRNA TURNOVER IN S. CEREVISIAE 234 Approach to Steady-State Labeling 234 Inhibition of Transcription by Using Drugs 234 Inhibition of Transcription by Using a Conditional Allele of RNA Polymerase II 234 Inhibition of Transcription by Using Regulated Promoters 235 Transcriptional Pulse-Chase: a Method for Examining Pathways of Decay 235 Identification of Intermediates in mRNA Decay 235 DETERMINANTS OF mRNA STABILITY IN S. CEREVISIAE 236 Specific Sequences Influence mRNA Half-Lives 236 Nonspecific Features of mRNAs Generally Do Not Influence mRNA Half-Lives 237 There is no correlation between mRNA length and stability 237 Ribosome protection cannot account for mRNA half-lives 237 Rare codons are not general determinants of mRNA stability 238 A COMMON PATHWAY OF mRNA DECAY 238 Deadenylation Precedes the Decay of Some Yeast mRNAs 238 Decapping and 5*-to-3* Exonucleolytic Digestion Follow Deadenylation of Some Yeast mRNAs 239 Deadenylation-Dependent Decapping Is a Common Pathway of mRNA Decay 239 Control of mRNA Half-Lives through the Deadenylation-Dependent Decapping Pathway 240 Control of mRNA deadenylation 240 (i) Poly(A)-binding protein influences deadenylation 240 (ii) Poly(A)-binding protein-dependent nuclease activity from S. cerevisiae 240 (iii) Other proteins possibly involved in deadenylation 240 (iv) Models of poly(A) shortening 240 (v) Terminal deadenylation is not a rate-determining step for 5*-to-3* decay 241 Control of mRNA decapping 241 (i) The Pab1p-poly(A) tail complex inhibits mRNA decapping 241 (ii) Control of decapping after deadenylation 242 (iii) Decapping activities from S. cerevisiae 242 (iv) Translation and mRNA decapping 242 ADDITIONAL PATHWAYS OF mRNA DECAY IN S. CEREVISIAE 243 3*-to-5* mRNA Decay 243 Endonucleolytic Cleavage of mRNAs 243 mRNA Surveillance: Rapid Deadenylation-Independent Decapping 243 Early nonsense codons trigger mRNA decapping 243 Recognition of early nonsense codons 244 (i) Specific sequences are required 3* of early nonsense codons 244 (ii) Specific upstream elements partially block nonsense codon-mediated decay 245 trans-Acting factors in nonsense codon-mediated mRNA decay 245 Where in the cell does recognition of an early nonsense codon occur? 246 REGULATED mRNA TURNOVER IN S. CEREVISIAE 246 CONCLUSIONS 246 REFERENCES 246
介绍233酿酒酵母mRNA周转研究方法234稳态标记方法234药物抑制转录234 RNA聚合酶II条件等位基因抑制转录234调控启动子抑制转录235转录脉冲追踪一种检测衰变途径的方法235 mRNA衰变中间产物的鉴定235葡萄球菌中mRNA稳定性的决定因素236特定序列影响mRNA半衰期236 mRNA的非特异性特征一般不影响mRNA半衰期237 mRNA长度和稳定性之间没有相关性237核糖体保护不能解释mRNA的半衰期237稀有密码子不是mRNA稳定性的一般决定因素238 mRNA衰变的共同途径238死基化在一些酵母mRNA衰变之前238脱盖和5*至3*的外核溶解后一些酵母mRNA发生死基化239死基化依赖性脱盖是mRNA衰变的常见途径239通过死基化依赖性脱盖途径控制mRNA半衰期240 mRNA死基化240 (i) Poly(a)结合蛋白影响死基化240 (ii)酵母中Poly(a)结合蛋白依赖的核酸酶活性240 (iii)其他蛋白可能参与死基化240 (iv) poly(A)缩短模式240 (v)末端死基化不是5*到3*衰变的速率决定步骤241 mRNA脱壳的控制241 (i) Pab1p-poly(A)尾部复合物抑制mRNA脱壳241 (ii)死基化后脱壳的控制242 (iii) S. cerevisiae的脱壳活性242 (iv)翻译和mRNA脱壳242 S. cerevisiae中mRNA衰变的其他途径243 3*到5* mRNA衰变243mRNAs 243 mRNA监测:快速去乙酰化非依赖性脱帽243早期无义密码子触发mRNA脱帽243识别早期无义密码子244 (i)需要特异性序列3*早期无义密码子244 (ii)特异性上游元件部分阻断无义密码子介导的衰变245无义密码子介导的mRNA衰变中的反式作用因子245在细胞中何处发生对早期无义密码子的识别?酿酒葡萄球菌的mRNA转换受到调控
{"title":"Mechanisms and control of mRNA turnover in Saccharomyces cerevisiae.","authors":"G. Caponigro, Roy Parker","doi":"10.1128/MMBR.60.1.233-249.1996","DOIUrl":"https://doi.org/10.1128/MMBR.60.1.233-249.1996","url":null,"abstract":"INTRODUCTION 233 METHODS FOR STUDYING mRNA TURNOVER IN S. CEREVISIAE 234 Approach to Steady-State Labeling 234 Inhibition of Transcription by Using Drugs 234 Inhibition of Transcription by Using a Conditional Allele of RNA Polymerase II 234 Inhibition of Transcription by Using Regulated Promoters 235 Transcriptional Pulse-Chase: a Method for Examining Pathways of Decay 235 Identification of Intermediates in mRNA Decay 235 DETERMINANTS OF mRNA STABILITY IN S. CEREVISIAE 236 Specific Sequences Influence mRNA Half-Lives 236 Nonspecific Features of mRNAs Generally Do Not Influence mRNA Half-Lives 237 There is no correlation between mRNA length and stability 237 Ribosome protection cannot account for mRNA half-lives 237 Rare codons are not general determinants of mRNA stability 238 A COMMON PATHWAY OF mRNA DECAY 238 Deadenylation Precedes the Decay of Some Yeast mRNAs 238 Decapping and 5*-to-3* Exonucleolytic Digestion Follow Deadenylation of Some Yeast mRNAs 239 Deadenylation-Dependent Decapping Is a Common Pathway of mRNA Decay 239 Control of mRNA Half-Lives through the Deadenylation-Dependent Decapping Pathway 240 Control of mRNA deadenylation 240 (i) Poly(A)-binding protein influences deadenylation 240 (ii) Poly(A)-binding protein-dependent nuclease activity from S. cerevisiae 240 (iii) Other proteins possibly involved in deadenylation 240 (iv) Models of poly(A) shortening 240 (v) Terminal deadenylation is not a rate-determining step for 5*-to-3* decay 241 Control of mRNA decapping 241 (i) The Pab1p-poly(A) tail complex inhibits mRNA decapping 241 (ii) Control of decapping after deadenylation 242 (iii) Decapping activities from S. cerevisiae 242 (iv) Translation and mRNA decapping 242 ADDITIONAL PATHWAYS OF mRNA DECAY IN S. CEREVISIAE 243 3*-to-5* mRNA Decay 243 Endonucleolytic Cleavage of mRNAs 243 mRNA Surveillance: Rapid Deadenylation-Independent Decapping 243 Early nonsense codons trigger mRNA decapping 243 Recognition of early nonsense codons 244 (i) Specific sequences are required 3* of early nonsense codons 244 (ii) Specific upstream elements partially block nonsense codon-mediated decay 245 trans-Acting factors in nonsense codon-mediated mRNA decay 245 Where in the cell does recognition of an early nonsense codon occur? 246 REGULATED mRNA TURNOVER IN S. CEREVISIAE 246 CONCLUSIONS 246 REFERENCES 246","PeriodicalId":18499,"journal":{"name":"Microbiological reviews","volume":"46 1","pages":"233-49"},"PeriodicalIF":0.0,"publicationDate":"1996-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74127720","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 248
Molecular biology of the symbiotic-pathogenic bacteria Xenorhabdus spp. and Photorhabdus spp. 共生致病菌Xenorhabdus spp.和光habdus spp.的分子生物学研究。
Pub Date : 1996-03-01 DOI: 10.1128/MMBR.60.1.21-43.1996
S. Forst, K. Nealson
INTRODUCTION 21 PHYLOGENY AND TAXONOMY 23 Phylogeny 23 Taxonomy 23 PATHOGENICITY 26 Xenorhabdus Pathogenicity 26 Photorhabdus Pathogenicity 28 CELL SURFACE PROPERTIES 28 Outer Membrane Proteins of X. nematophilus 29 Analysis of Fimbriae, Flagella, and Glycocalyx 30 MOLECULAR BIOLOGY 30 Genetic Approaches to the Study of Xenorhabdus and Photorhabdus spp. 30 Signal Transduction in X. nematophilus 31 Genes Sequenced in P. luminescens 33 ANTIBIOTICS, PIGMENTS, AND INHIBITORS 34 Antibiotics 34 Xenorhabdus antibiotics 34 Photorhabdus antibiotics 34 Pigments 35 Photorhabdus pigments 36 Xenorhabdus pigments 36 Inhibitors 36 SECRETED ENZYMES 36 CRYSTALLINE PROTEINS 37 Xenorhabdus Proteins 37 Photorhabdus Proteins 37 BIOLUMINESCENCE 37 PHASE VARIATION 39 CONCLUSIONS 40 ACKNOWLEDGMENTS 40 REFERENCES 40
21系统发育与分类23系统发育23分类23致病性26巨噬线虫致病性26光噬线虫致病性28细胞表面特性28嗜线虫外膜蛋白29菌毛、鞭毛和糖萼分析30分子生物学30巨噬线虫和光噬线虫研究的遗传方法30嗜线虫的信号转导31荧光线虫基因序列33抗生素、色素、和抑制剂抗生素、Xenorhabdus抗生素、Xenorhabdus抗生素、Xenorhabdus色素、Xenorhabdus色素、抑制剂、分泌酶、晶体蛋白、生物发光、相变化
{"title":"Molecular biology of the symbiotic-pathogenic bacteria Xenorhabdus spp. and Photorhabdus spp.","authors":"S. Forst, K. Nealson","doi":"10.1128/MMBR.60.1.21-43.1996","DOIUrl":"https://doi.org/10.1128/MMBR.60.1.21-43.1996","url":null,"abstract":"INTRODUCTION 21 PHYLOGENY AND TAXONOMY 23 Phylogeny 23 Taxonomy 23 PATHOGENICITY 26 Xenorhabdus Pathogenicity 26 Photorhabdus Pathogenicity 28 CELL SURFACE PROPERTIES 28 Outer Membrane Proteins of X. nematophilus 29 Analysis of Fimbriae, Flagella, and Glycocalyx 30 MOLECULAR BIOLOGY 30 Genetic Approaches to the Study of Xenorhabdus and Photorhabdus spp. 30 Signal Transduction in X. nematophilus 31 Genes Sequenced in P. luminescens 33 ANTIBIOTICS, PIGMENTS, AND INHIBITORS 34 Antibiotics 34 Xenorhabdus antibiotics 34 Photorhabdus antibiotics 34 Pigments 35 Photorhabdus pigments 36 Xenorhabdus pigments 36 Inhibitors 36 SECRETED ENZYMES 36 CRYSTALLINE PROTEINS 37 Xenorhabdus Proteins 37 Photorhabdus Proteins 37 BIOLUMINESCENCE 37 PHASE VARIATION 39 CONCLUSIONS 40 ACKNOWLEDGMENTS 40 REFERENCES 40","PeriodicalId":18499,"journal":{"name":"Microbiological reviews","volume":"26 1","pages":"21-43"},"PeriodicalIF":0.0,"publicationDate":"1996-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91161285","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 306
Significance of bacterial surface-active compounds in interaction of bacteria with interfaces. 细菌表面活性化合物在细菌与界面相互作用中的意义。
Pub Date : 1996-03-01 DOI: 10.1128/mr.60.1.151-166.1996
T R Neu
INTRODUCTION AND TERMINOLOGY .............................................................................................................151 TYPES OF BACTERIAL SACs.................................................................................................................................153 SYNTHETIC SACs AND BACTERIA......................................................................................................................154 In Solution ...............................................................................................................................................................154 Sodium dodecyl sulfate ......................................................................................................................................154 Quaternary ammonium compounds.................................................................................................................154 Various surfactants.............................................................................................................................................155 Immobilized on Surfaces .......................................................................................................................................155 Insolubilized quaternary ammonium compounds ..........................................................................................155 Insolubilized block copolymer surfactants ......................................................................................................155 Miscellaneous Effects .............................................................................................................................................156 BACTERIAL SACs AND BACTERIA ......................................................................................................................156 Physiological Roles .................................................................................................................................................156 Other Observations ................................................................................................................................................157 Applied Aspects of Bacterial SACs.......................................................................................................................157 SURFACE-ACTIVE APPROACH TO BACTERIAL ADHESION/DEADHESION............................................157 SIGNIFICANCE OF BACTERIAL SACs IN ADHESION TO INTERFACES ..................................................158 SACs Bound at the Bacterial Cell Surface .........................................................................................................158 Cell-bound biosurfactants..................................................................................................................................158 Cell-bound polymeric SACs....................................................................................................
{"title":"Significance of bacterial surface-active compounds in interaction of bacteria with interfaces.","authors":"T R Neu","doi":"10.1128/mr.60.1.151-166.1996","DOIUrl":"https://doi.org/10.1128/mr.60.1.151-166.1996","url":null,"abstract":"INTRODUCTION AND TERMINOLOGY .............................................................................................................151 TYPES OF BACTERIAL SACs.................................................................................................................................153 SYNTHETIC SACs AND BACTERIA......................................................................................................................154 In Solution ...............................................................................................................................................................154 Sodium dodecyl sulfate ......................................................................................................................................154 Quaternary ammonium compounds.................................................................................................................154 Various surfactants.............................................................................................................................................155 Immobilized on Surfaces .......................................................................................................................................155 Insolubilized quaternary ammonium compounds ..........................................................................................155 Insolubilized block copolymer surfactants ......................................................................................................155 Miscellaneous Effects .............................................................................................................................................156 BACTERIAL SACs AND BACTERIA ......................................................................................................................156 Physiological Roles .................................................................................................................................................156 Other Observations ................................................................................................................................................157 Applied Aspects of Bacterial SACs.......................................................................................................................157 SURFACE-ACTIVE APPROACH TO BACTERIAL ADHESION/DEADHESION............................................157 SIGNIFICANCE OF BACTERIAL SACs IN ADHESION TO INTERFACES ..................................................158 SACs Bound at the Bacterial Cell Surface .........................................................................................................158 Cell-bound biosurfactants..................................................................................................................................158 Cell-bound polymeric SACs....................................................................................................","PeriodicalId":18499,"journal":{"name":"Microbiological reviews","volume":"60 1","pages":"151-66"},"PeriodicalIF":0.0,"publicationDate":"1996-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC239423/pdf/600151.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"19821020","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 49
Programmed translational frameshifting. 程序化平移帧移。
Pub Date : 1996-03-01 DOI: 10.1128/mr.60.1.103-134.1996
P J Farabaugh
{"title":"Programmed translational frameshifting.","authors":"P J Farabaugh","doi":"10.1128/mr.60.1.103-134.1996","DOIUrl":"https://doi.org/10.1128/mr.60.1.103-134.1996","url":null,"abstract":"","PeriodicalId":18499,"journal":{"name":"Microbiological reviews","volume":"60 1","pages":"103-34"},"PeriodicalIF":0.0,"publicationDate":"1996-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC239420/pdf/600103.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"19821018","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 534
Genetic networks that regulate development in Dictyostelium cells. 调节盘形骨细胞发育的遗传网络。
Pub Date : 1996-03-01 DOI: 10.1128/mr.60.1.135-150.1996
W F Loomis
INTRODUCTION .......................................................................................................................................................135 AGGREGATION.........................................................................................................................................................135 Aggregation Gene Network ....................................................................................................................................137 POSTAGGREGATION...............................................................................................................................................138 Cell-Type-Specific Genes........................................................................................................................................138 Postaggregative Gene Network..............................................................................................................................139 CELL TYPE SPECIALIZATION..............................................................................................................................140 Network That Regulates Cell Type Specialization .............................................................................................141 CULMINATION..........................................................................................................................................................142 Network That Regulates Culmination .................................................................................................................145 NETWORKS OF NETWORKS.................................................................................................................................146 ACKNOWLEDGMENTS ...........................................................................................................................................147 REFERENCES ............................................................................................................................................................147
{"title":"Genetic networks that regulate development in Dictyostelium cells.","authors":"W F Loomis","doi":"10.1128/mr.60.1.135-150.1996","DOIUrl":"https://doi.org/10.1128/mr.60.1.135-150.1996","url":null,"abstract":"INTRODUCTION .......................................................................................................................................................135 AGGREGATION.........................................................................................................................................................135 Aggregation Gene Network ....................................................................................................................................137 POSTAGGREGATION...............................................................................................................................................138 Cell-Type-Specific Genes........................................................................................................................................138 Postaggregative Gene Network..............................................................................................................................139 CELL TYPE SPECIALIZATION..............................................................................................................................140 Network That Regulates Cell Type Specialization .............................................................................................141 CULMINATION..........................................................................................................................................................142 Network That Regulates Culmination .................................................................................................................145 NETWORKS OF NETWORKS.................................................................................................................................146 ACKNOWLEDGMENTS ...........................................................................................................................................147 REFERENCES ............................................................................................................................................................147","PeriodicalId":18499,"journal":{"name":"Microbiological reviews","volume":"60 1","pages":"135-50"},"PeriodicalIF":0.0,"publicationDate":"1996-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC239421/pdf/600135.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"19821019","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Recent advances in the social and developmental biology of the myxobacteria. 黏菌的社会和发育生物学的最新进展。
Pub Date : 1996-03-01 DOI: 10.1128/MMBR.60.1.70-102.1996
M. Dworkin
INTRODUCTION .........................................................................................................................................................71 MOLECULAR PHYLOGENY.....................................................................................................................................71 SIGNALING ..................................................................................................................................................................71 A Signal ......................................................................................................................................................................71 B Signal ......................................................................................................................................................................74 C Signal......................................................................................................................................................................74 D Signal......................................................................................................................................................................75 E Signal ......................................................................................................................................................................75 Summary of Signaling..............................................................................................................................................76 OTHER EXTRACELLULAR DEVELOPMENTAL FACTORS .............................................................................76 Glucosamine, Phospholipase, Glycerol, and Autocides .......................................................................................76 INITIATION SIGNAL..................................................................................................................................................77 EXTRACELLULAR APPENDAGES ..........................................................................................................................77 Pili...............................................................................................................................................................................77 Fibrils .........................................................................................................................................................................77 FRUITING BODY FORMATION ..............................................................................................................................79 Cell Density ...............................................................................................................................................................79 Role of Motility .........................................................................................................................................................79 Aggre
........................................................................................................................ 89年σ因子和蛋白激酶 ....................................................................................................................... 90年荡漾 ..................................................................................................................................................................... 90年能动性 ..................................................................................................................................................................... 91年类胡萝卜素和光线 .................................................................................................................................... 93年蛋白质分泌 .............................................................................................................................................. 93年抗生素 ............................................................................................................................................................... 95年MYXOSPORE形态发生 .......................................................................................................................... 96年甘油孢子 .................................................................................................................................................. 96年领土权 ....................................................................................................................................................... 96年数学建模 ................................................................................................................................ 97年MYXOSPORE发芽 ................................................................................................................................ 97年STIGMATELLA树蛙 ................................................................................................................................... 97年EUKARYOTE-LIKE粘细菌的特性 .................................................................................. 97年后记 .................................................................................................................................................................... 98年确认 ............................................................................................................................................. 98年引用 .............................................................................................................................................................. 98年
{"title":"Recent advances in the social and developmental biology of the myxobacteria.","authors":"M. Dworkin","doi":"10.1128/MMBR.60.1.70-102.1996","DOIUrl":"https://doi.org/10.1128/MMBR.60.1.70-102.1996","url":null,"abstract":"INTRODUCTION .........................................................................................................................................................71 MOLECULAR PHYLOGENY.....................................................................................................................................71 SIGNALING ..................................................................................................................................................................71 A Signal ......................................................................................................................................................................71 B Signal ......................................................................................................................................................................74 C Signal......................................................................................................................................................................74 D Signal......................................................................................................................................................................75 E Signal ......................................................................................................................................................................75 Summary of Signaling..............................................................................................................................................76 OTHER EXTRACELLULAR DEVELOPMENTAL FACTORS .............................................................................76 Glucosamine, Phospholipase, Glycerol, and Autocides .......................................................................................76 INITIATION SIGNAL..................................................................................................................................................77 EXTRACELLULAR APPENDAGES ..........................................................................................................................77 Pili...............................................................................................................................................................................77 Fibrils .........................................................................................................................................................................77 FRUITING BODY FORMATION ..............................................................................................................................79 Cell Density ...............................................................................................................................................................79 Role of Motility .........................................................................................................................................................79 Aggre","PeriodicalId":18499,"journal":{"name":"Microbiological reviews","volume":"4 1","pages":"70-102"},"PeriodicalIF":0.0,"publicationDate":"1996-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74574821","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 311
期刊
Microbiological reviews
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1