首页 > 最新文献

Metabolomics最新文献

英文 中文
Nutritional deuterium depletion and health: a scoping review. 营养氘耗竭与健康:范围界定综述。
IF 3.5 3区 医学 Q2 ENDOCRINOLOGY & METABOLISM Pub Date : 2024-10-13 DOI: 10.1007/s11306-024-02173-4
Nicole Korchinsky, Anne M Davis, László G Boros

Introduction: Large variations in fatty and amino acid natural 2H/1H ratios in reference with solvent water point to the active involvement of compartmental, inter- and intramolecular deuterium disequilibrium in adaptive biology. Yet, the human deutenome is an untapped area of energy metabolism and health in humans.

Objectives: The purpose of this scoping review is to examine health effects through deuterium homeostasis using deuterium-depleted water and/or a deuterium-depleted diet. We also aim to reveal health effects of nutritional, metabolic and exercise ketosis, i.e. complete mitochondrial fatty acid oxidation with the production of deuterium depleted (deupleted) metabolic water.

Methods: A protocol process approach was used to retrieve current research in deuterium depletion according to the preferred reporting items protocol for systematic reviews and meta-analyses, extension for scoping reviews with checklist (PRISMA-ScR).

Results: Fifteen research articles were used. All retrieved articles were heterogenous in nature and additional themes did not evolve. Deuterium depletion was found to have beneficial health effects in the following conditions: cancer prevention, cancer treatment, depression, diabetes, long-term memory, anti-aging, and sports performance. Deutenomics is actively pursued in drug research and there are biomarker roles attributed to large natural variations with adaptive significance in biology.

Conclusion: Even with limited data, consistent deuterium depletion can be seen across all conditions reviewed. More randomized control trials are recommended to confirm cause and effect for translationally and clinically informed integrative nutrition-based medical interventions.

导言:参照溶剂水,脂肪酸和氨基酸天然 2H/1H 比值的巨大变化表明,在适应性生物学中,区室、分子间和分子内氘不平衡的作用十分活跃。然而,人类氘组是人类能量代谢和健康的一个尚未开发的领域:本范围综述的目的是利用贫氘水和/或贫氘饮食研究氘平衡对健康的影响。我们还旨在揭示营养、代谢和运动性酮症(即线粒体脂肪酸完全氧化并产生贫氘代谢水)对健康的影响:方法:根据系统综述和荟萃分析的首选报告项目协议、范围界定综述扩展协议及核对表(PRISMA-ScR),采用协议流程法检索当前有关氘耗的研究:共使用了 15 篇研究文章。所有检索到的文章性质各异,没有形成新的主题。研究发现,氘消耗在以下方面对健康有益:癌症预防、癌症治疗、抑郁症、糖尿病、长期记忆、抗衰老和运动表现。氘组学在药物研究中得到积极探索,生物标志物的作用归因于生物学中具有适应意义的巨大自然变异:结论:即使数据有限,但在所审查的所有情况中都可以看到一致的氘耗竭。建议进行更多的随机对照试验,以确认以营养为基础的综合医疗干预措施在转化和临床上的因果关系。
{"title":"Nutritional deuterium depletion and health: a scoping review.","authors":"Nicole Korchinsky, Anne M Davis, László G Boros","doi":"10.1007/s11306-024-02173-4","DOIUrl":"10.1007/s11306-024-02173-4","url":null,"abstract":"<p><strong>Introduction: </strong>Large variations in fatty and amino acid natural <sup>2</sup>H/<sup>1</sup>H ratios in reference with solvent water point to the active involvement of compartmental, inter- and intramolecular deuterium disequilibrium in adaptive biology. Yet, the human deutenome is an untapped area of energy metabolism and health in humans.</p><p><strong>Objectives: </strong>The purpose of this scoping review is to examine health effects through deuterium homeostasis using deuterium-depleted water and/or a deuterium-depleted diet. We also aim to reveal health effects of nutritional, metabolic and exercise ketosis, i.e. complete mitochondrial fatty acid oxidation with the production of deuterium depleted (deupleted) metabolic water.</p><p><strong>Methods: </strong>A protocol process approach was used to retrieve current research in deuterium depletion according to the preferred reporting items protocol for systematic reviews and meta-analyses, extension for scoping reviews with checklist (PRISMA-ScR).</p><p><strong>Results: </strong>Fifteen research articles were used. All retrieved articles were heterogenous in nature and additional themes did not evolve. Deuterium depletion was found to have beneficial health effects in the following conditions: cancer prevention, cancer treatment, depression, diabetes, long-term memory, anti-aging, and sports performance. Deutenomics is actively pursued in drug research and there are biomarker roles attributed to large natural variations with adaptive significance in biology.</p><p><strong>Conclusion: </strong>Even with limited data, consistent deuterium depletion can be seen across all conditions reviewed. More randomized control trials are recommended to confirm cause and effect for translationally and clinically informed integrative nutrition-based medical interventions.</p>","PeriodicalId":18506,"journal":{"name":"Metabolomics","volume":"20 6","pages":"117"},"PeriodicalIF":3.5,"publicationDate":"2024-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11471703/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142469739","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Special collection devoted to the VIII "metabolomics circle" conference organized by the Polish metabolomics society. 波兰代谢组学学会组织的第八届 "代谢组学圈 "会议特辑。
IF 3.5 3区 医学 Q2 ENDOCRINOLOGY & METABOLISM Pub Date : 2024-10-13 DOI: 10.1007/s11306-024-02183-2
I Stanimirova, M Daszykowski
{"title":"Special collection devoted to the VIII \"metabolomics circle\" conference organized by the Polish metabolomics society.","authors":"I Stanimirova, M Daszykowski","doi":"10.1007/s11306-024-02183-2","DOIUrl":"10.1007/s11306-024-02183-2","url":null,"abstract":"","PeriodicalId":18506,"journal":{"name":"Metabolomics","volume":"20 6","pages":"115"},"PeriodicalIF":3.5,"publicationDate":"2024-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11471698/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142469741","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The human volatilome meets cancer diagnostics: past, present, and future of noninvasive applications. 人体挥发物与癌症诊断:无创应用的过去、现在和未来。
IF 3.5 3区 医学 Q2 ENDOCRINOLOGY & METABOLISM Pub Date : 2024-10-07 DOI: 10.1007/s11306-024-02180-5
João Marcos G Barbosa, Nelson R Antoniosi Filho

Background: Cancer is a significant public health problem, causing dozens of millions of deaths annually. New cancer screening programs are urgently needed for early cancer detection, as this approach can improve treatment outcomes and increase patient survival. The search for affordable, noninvasive, and highly accurate cancer detection methods revealed a valuable source of tumor-derived metabolites in the human metabolome through the exploration of volatile organic compounds (VOCs) in noninvasive biofluids.

Aim of review: This review discusses volatilomics-based approaches for cancer detection using noninvasive biomatrices (breath, saliva, skin secretions, urine, feces, and earwax). We presented the historical background, the latest approaches, and the required stages for clinical validation of volatilomics-based methods, which are still lacking in terms of making noninvasive methods available and widespread to the population. Furthermore, insights into the usefulness and challenges of volatilomics in clinical implementation steps for each biofluid are highlighted.

Key scientific concepts of review: We outline the methodologies for using noninvasive biomatrices with up-and-coming clinical applications in cancer diagnostics. Several challenges and advantages associated with the use of each biomatrix are discussed, aiming at encouraging the scientific community to strengthen efforts toward the necessary steps to speed up the clinical translation of volatile-based cancer detection methods, as well as discussing in favor of (i) hybrid applications (i.e., using more than one biomatrix) to describe metabolite modulations that can be "cancer volatile fingerprints" and (ii) in multi-omics approaches integrating genomics, transcriptomics, and proteomics into the volatilomic data, which might be a breakthrough for diagnostic purposes, onco-pathway assessment, and biomarker validations.

背景:癌症是一个重大的公共卫生问题,每年造成数千万人死亡。目前迫切需要新的癌症筛查计划来进行早期癌症检测,因为这种方法可以改善治疗效果,提高患者生存率。通过探索无创生物流体中的挥发性有机化合物(VOCs),寻找经济、无创、高精度的癌症检测方法,发现了人类代谢组中肿瘤衍生代谢物的宝贵来源:本综述讨论了基于挥发物组学的方法,利用非侵入性生物流体(呼吸、唾液、皮肤分泌物、尿液、粪便和耳屎)进行癌症检测。我们介绍了基于挥发物组学的方法的历史背景、最新方法和临床验证所需的阶段,在向大众提供和普及无创方法方面,这些方法仍然缺乏。此外,针对每种生物流体,重点介绍了挥发性物质组学在临床实施步骤中的实用性和挑战:我们概述了使用非侵入性生物指标的方法,这些生物指标在癌症诊断中的临床应用方兴未艾。我们讨论了与使用每种生物矩阵相关的若干挑战和优势,旨在鼓励科学界加强努力,采取必要步骤,加快基于挥发性物质的癌症检测方法的临床转化,并讨论支持 (i) 混合应用(即、使用一种以上的生物矩阵)来描述可作为 "癌症挥发物指纹 "的代谢物变化,以及(ii)将基因组学、转录组学和蛋白质组学整合到挥发物数据中的多组学方法,这可能是诊断目的、共通路评估和生物标记物验证方面的一个突破。
{"title":"The human volatilome meets cancer diagnostics: past, present, and future of noninvasive applications.","authors":"João Marcos G Barbosa, Nelson R Antoniosi Filho","doi":"10.1007/s11306-024-02180-5","DOIUrl":"10.1007/s11306-024-02180-5","url":null,"abstract":"<p><strong>Background: </strong>Cancer is a significant public health problem, causing dozens of millions of deaths annually. New cancer screening programs are urgently needed for early cancer detection, as this approach can improve treatment outcomes and increase patient survival. The search for affordable, noninvasive, and highly accurate cancer detection methods revealed a valuable source of tumor-derived metabolites in the human metabolome through the exploration of volatile organic compounds (VOCs) in noninvasive biofluids.</p><p><strong>Aim of review: </strong>This review discusses volatilomics-based approaches for cancer detection using noninvasive biomatrices (breath, saliva, skin secretions, urine, feces, and earwax). We presented the historical background, the latest approaches, and the required stages for clinical validation of volatilomics-based methods, which are still lacking in terms of making noninvasive methods available and widespread to the population. Furthermore, insights into the usefulness and challenges of volatilomics in clinical implementation steps for each biofluid are highlighted.</p><p><strong>Key scientific concepts of review: </strong>We outline the methodologies for using noninvasive biomatrices with up-and-coming clinical applications in cancer diagnostics. Several challenges and advantages associated with the use of each biomatrix are discussed, aiming at encouraging the scientific community to strengthen efforts toward the necessary steps to speed up the clinical translation of volatile-based cancer detection methods, as well as discussing in favor of (i) hybrid applications (i.e., using more than one biomatrix) to describe metabolite modulations that can be \"cancer volatile fingerprints\" and (ii) in multi-omics approaches integrating genomics, transcriptomics, and proteomics into the volatilomic data, which might be a breakthrough for diagnostic purposes, onco-pathway assessment, and biomarker validations.</p>","PeriodicalId":18506,"journal":{"name":"Metabolomics","volume":"20 5","pages":"113"},"PeriodicalIF":3.5,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142391719","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Infants with biliary atresia exhibit an altered amino acid profile in their newborn screening. 患有胆道闭锁的婴儿在新生儿筛查中表现出氨基酸谱的改变。
IF 3.5 3区 医学 Q2 ENDOCRINOLOGY & METABOLISM Pub Date : 2024-10-05 DOI: 10.1007/s11306-024-02175-2
Marie Uecker, Cornelia Prehn, Nils Janzen, Jerzy Adamski, Gertrud Vieten, Claus Petersen, Joachim F Kuebler, Omid Madadi-Sanjani, Christian Klemann

Introduction: Biliary atresia (BA) is a rare progressive neonatal cholangiopathy with unknown pathophysiology and time of onset. Newborn Screening (NBS) in Germany is routinely performed in the first days of life to identify rare congenital diseases utilizing dried blood spot (DBS) card analyses. Infants with biliary atresia (BA) are known to have altered amino acid profiles (AAP) at the time point of diagnosis, but it is unclear whether these alterations are present at the time point of NBS.

Objectives: We aimed to analyze amino acid profiles in NBS-DBS of infants with Biliary Atresia.

Methods: Original NBS-DBS cards of 41 infants who were later on diagnosed with BA were retrospectively obtained. NBS-DBS cards from healthy newborns (n = 40) served as controls. In some BA infants (n = 14) a second DBS card was obtained at time of Kasai surgery. AAP in DBS cards were analyzed by targeted metabolomics.

Results: DBS metabolomics in the NBS of at that time point seemingly healthy infants later diagnosed with BA revealed significantly higher levels of Methionine (14.6 ± 8.6 μmol/l), Histidine (23.5 ± 50.3 μmol/l), Threonine (123.9 ± 72.8 μmol/l) and Arginine (14.1 ± 11.8 μmol/l) compared to healthy controls (Met: 8.1 ± 2.6 μmol/l, His: 18.6 ± 10.1 μmol/l, Thr: 98.1 ± 34.3 μmol/l, Arg: 9.3 ± 6.6 μmol/l). Methionine, Arginine and Histidine showed a further increase at time point of Kasai procedure. No correlation between amino acid levels and clinical course was observed.

Conclusion: Our data demonstrate that BA patients exhibit an altered AAP within 72 h after birth, long before the infants become symptomatic. This supports the theory of a prenatal onset of the disease and, thus, the possibility of developing a sensitive and specific NBS. Methionine might be particularly relevant due to its involvement in glutathione metabolism. Further investigation of AAP in BA may help in understanding the underlying pathophysiology.

导言:胆道闭锁(BA)是一种罕见的进行性新生儿胆道病,其病理生理和发病时间尚不清楚。在德国,新生儿筛查(NBS)通常在婴儿出生后的头几天进行,利用干血斑卡(DBS)分析来确定罕见的先天性疾病。众所周知,患有胆道闭锁(BA)的婴儿在确诊时会出现氨基酸谱(AAP)改变,但目前还不清楚这些改变是否会在 NBS 时出现:我们旨在分析胆道闭锁婴儿 NBS-DBS 中的氨基酸谱:方法:我们回顾性地获得了41名后来被诊断为胆道闭锁的婴儿的原始NBS-DBS卡。健康新生儿(40 人)的 NBS-DBS 卡作为对照。一些 BA 婴儿(n = 14)在接受 Kasai 手术时获得了第二张 DBS 卡。通过靶向代谢组学分析 DBS 卡中的 AAP:结果:当时看似健康的婴儿后来被诊断为 BA,其 NBS 中的 DBS 代谢组学显示蛋氨酸(14.6 ± 8.6 μmol/l)、组氨酸(23.5 ± 50.3 μmol/l)、苏氨酸(123.9 ± 72.8 μmol/l)和精氨酸(14.1 ± 11.8 μmol/l)与健康对照组相比(Met:8.1 ± 2.6 μmol/l;His:18.6 ± 10.1 μmol/l;Thr:98.1 ± 34.3 μmol/l;Arg:9.3 ± 6.6 μmol/l)。甲硫氨酸、精氨酸和组氨酸在进行 Kasai 程序时进一步增加。氨基酸水平与临床病程无相关性:我们的数据表明,BA 患者在出生后 72 小时内,也就是在婴儿出现症状之前,AAP 就已经发生了改变。这支持了产前发病的理论,因此有可能开发出一种敏感而特异的 NBS。由于蛋氨酸参与谷胱甘肽的代谢,因此可能与该病特别相关。对 BA 中 AAP 的进一步研究可能有助于了解潜在的病理生理学。
{"title":"Infants with biliary atresia exhibit an altered amino acid profile in their newborn screening.","authors":"Marie Uecker, Cornelia Prehn, Nils Janzen, Jerzy Adamski, Gertrud Vieten, Claus Petersen, Joachim F Kuebler, Omid Madadi-Sanjani, Christian Klemann","doi":"10.1007/s11306-024-02175-2","DOIUrl":"10.1007/s11306-024-02175-2","url":null,"abstract":"<p><strong>Introduction: </strong>Biliary atresia (BA) is a rare progressive neonatal cholangiopathy with unknown pathophysiology and time of onset. Newborn Screening (NBS) in Germany is routinely performed in the first days of life to identify rare congenital diseases utilizing dried blood spot (DBS) card analyses. Infants with biliary atresia (BA) are known to have altered amino acid profiles (AAP) at the time point of diagnosis, but it is unclear whether these alterations are present at the time point of NBS.</p><p><strong>Objectives: </strong>We aimed to analyze amino acid profiles in NBS-DBS of infants with Biliary Atresia.</p><p><strong>Methods: </strong>Original NBS-DBS cards of 41 infants who were later on diagnosed with BA were retrospectively obtained. NBS-DBS cards from healthy newborns (n = 40) served as controls. In some BA infants (n = 14) a second DBS card was obtained at time of Kasai surgery. AAP in DBS cards were analyzed by targeted metabolomics.</p><p><strong>Results: </strong>DBS metabolomics in the NBS of at that time point seemingly healthy infants later diagnosed with BA revealed significantly higher levels of Methionine (14.6 ± 8.6 μmol/l), Histidine (23.5 ± 50.3 μmol/l), Threonine (123.9 ± 72.8 μmol/l) and Arginine (14.1 ± 11.8 μmol/l) compared to healthy controls (Met: 8.1 ± 2.6 μmol/l, His: 18.6 ± 10.1 μmol/l, Thr: 98.1 ± 34.3 μmol/l, Arg: 9.3 ± 6.6 μmol/l). Methionine, Arginine and Histidine showed a further increase at time point of Kasai procedure. No correlation between amino acid levels and clinical course was observed.</p><p><strong>Conclusion: </strong>Our data demonstrate that BA patients exhibit an altered AAP within 72 h after birth, long before the infants become symptomatic. This supports the theory of a prenatal onset of the disease and, thus, the possibility of developing a sensitive and specific NBS. Methionine might be particularly relevant due to its involvement in glutathione metabolism. Further investigation of AAP in BA may help in understanding the underlying pathophysiology.</p>","PeriodicalId":18506,"journal":{"name":"Metabolomics","volume":"20 5","pages":"109"},"PeriodicalIF":3.5,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11455667/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142378080","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exploring the circulating metabolome of sepsis: metabolomic and lipidomic profiles sampled in the ambulance. 探索败血症的循环代谢组:在救护车上采样的代谢组和脂质组图谱。
IF 3.5 3区 医学 Q2 ENDOCRINOLOGY & METABOLISM Pub Date : 2024-10-05 DOI: 10.1007/s11306-024-02172-5
Samira Salihovic, Daniel Eklund, Robert Kruse, Ulrika Wallgren, Tuulia Hyötyläinen, Eva Särndahl, Lisa Kurland

Background: Sepsis is defined as a dysfunctional host response to infection. The diverse clinical presentations of sepsis pose diagnostic challenges and there is a demand for enhanced diagnostic markers for sepsis as well as an understanding of the underlying pathological mechanisms involved in sepsis. From this perspective, metabolomics has emerged as a potentially valuable tool for aiding in the early identification of sepsis that could highlight key metabolic pathways and underlying pathological mechanisms.

Objective: The aim of this investigation is to explore the early metabolomic and lipidomic profiles in a prospective cohort where plasma samples (n = 138) were obtained during ambulance transport among patients with infection according to clinical judgement who subsequently developed sepsis, patients who developed non-septic infection, and symptomatic controls without an infection.

Methods: Multiplatform metabolomics and lipidomics were performed using UHPLC-MS/MS and UHPLC-QTOFMS. Uni- and multivariable analysis were used to identify metabolite profiles in sepsis vs symptomatic control and sepsis vs non-septic infection.

Results: Univariable analysis disclosed that out of the 457 annotated metabolites measured across three different platforms, 23 polar, 27 semipolar metabolites and 133 molecular lipids exhibited significant differences between patients who developed sepsis and symptomatic controls following correction for multiple testing. Furthermore, 84 metabolites remained significantly different between sepsis and symptomatic controls following adjustment for age, sex, and Charlson comorbidity score. Notably, no significant differences were identified in metabolites levels when comparing patients with sepsis and non-septic infection in univariable and multivariable analyses.

Conclusion: Overall, we found that the metabolome, including the lipidome, was decreased in patients experiencing infection and sepsis, with no significant differences between the two conditions. This finding indicates that the observed metabolic profiles are shared between both infection and sepsis, rather than being exclusive to sepsis alone.

背景:败血症被定义为宿主对感染的机能失调反应。败血症的临床表现多种多样,给诊断带来了挑战,因此需要增强败血症的诊断指标,并了解败血症的潜在病理机制。从这个角度来看,代谢组学已成为一种潜在的有价值的工具,可帮助早期识别脓毒症,突出关键的代谢途径和潜在的病理机制:本研究旨在探索一个前瞻性队列中的早期代谢组学和脂质组学特征,该队列在救护车运送过程中采集了根据临床判断感染并随后发展为败血症的患者、非化脓性感染患者和无症状对照组患者的血浆样本(n = 138):方法:使用 UHPLC-MS/MS 和 UHPLC-QTOFMS 进行多平台代谢组学和脂质组学研究。采用单变量和多变量分析确定败血症与无症状对照组、败血症与非败血症感染组的代谢物特征:单变量分析表明,在三个不同平台测定的 457 种注释代谢物中,23 种极性代谢物、27 种半极性代谢物和 133 种分子脂质在进行多重检验校正后,在脓毒症患者和症状对照组之间存在显著差异。此外,在对年龄、性别和 Charlson 合并症评分进行调整后,84 种代谢物在败血症患者和有症状的对照组之间仍存在显著差异。值得注意的是,在单变量和多变量分析中,比较败血症和非败血症感染患者的代谢物水平未发现明显差异:总体而言,我们发现感染和败血症患者的代谢组(包括脂质组)均有所下降,两种情况之间无明显差异。这一发现表明,所观察到的代谢特征是感染和败血症共有的,而不是败血症独有的。
{"title":"Exploring the circulating metabolome of sepsis: metabolomic and lipidomic profiles sampled in the ambulance.","authors":"Samira Salihovic, Daniel Eklund, Robert Kruse, Ulrika Wallgren, Tuulia Hyötyläinen, Eva Särndahl, Lisa Kurland","doi":"10.1007/s11306-024-02172-5","DOIUrl":"10.1007/s11306-024-02172-5","url":null,"abstract":"<p><strong>Background: </strong>Sepsis is defined as a dysfunctional host response to infection. The diverse clinical presentations of sepsis pose diagnostic challenges and there is a demand for enhanced diagnostic markers for sepsis as well as an understanding of the underlying pathological mechanisms involved in sepsis. From this perspective, metabolomics has emerged as a potentially valuable tool for aiding in the early identification of sepsis that could highlight key metabolic pathways and underlying pathological mechanisms.</p><p><strong>Objective: </strong>The aim of this investigation is to explore the early metabolomic and lipidomic profiles in a prospective cohort where plasma samples (n = 138) were obtained during ambulance transport among patients with infection according to clinical judgement who subsequently developed sepsis, patients who developed non-septic infection, and symptomatic controls without an infection.</p><p><strong>Methods: </strong>Multiplatform metabolomics and lipidomics were performed using UHPLC-MS/MS and UHPLC-QTOFMS. Uni- and multivariable analysis were used to identify metabolite profiles in sepsis vs symptomatic control and sepsis vs non-septic infection.</p><p><strong>Results: </strong>Univariable analysis disclosed that out of the 457 annotated metabolites measured across three different platforms, 23 polar, 27 semipolar metabolites and 133 molecular lipids exhibited significant differences between patients who developed sepsis and symptomatic controls following correction for multiple testing. Furthermore, 84 metabolites remained significantly different between sepsis and symptomatic controls following adjustment for age, sex, and Charlson comorbidity score. Notably, no significant differences were identified in metabolites levels when comparing patients with sepsis and non-septic infection in univariable and multivariable analyses.</p><p><strong>Conclusion: </strong>Overall, we found that the metabolome, including the lipidome, was decreased in patients experiencing infection and sepsis, with no significant differences between the two conditions. This finding indicates that the observed metabolic profiles are shared between both infection and sepsis, rather than being exclusive to sepsis alone.</p>","PeriodicalId":18506,"journal":{"name":"Metabolomics","volume":"20 5","pages":"111"},"PeriodicalIF":3.5,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11455889/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142378079","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Combination of low glucose and SCD1 inhibition impairs cancer metabolic plasticity and growth in MCF-7 cancer cells: a comprehensive metabolomic and lipidomic analysis. 低糖与 SCD1 抑制相结合损害 MCF-7 癌细胞的癌症代谢可塑性和生长:代谢组学和脂质组学综合分析。
IF 3.5 3区 医学 Q2 ENDOCRINOLOGY & METABOLISM Pub Date : 2024-10-05 DOI: 10.1007/s11306-024-02179-y
Wentao Zhu, John A Lusk, Vadim Pascua, Danijel Djukovic, Daniel Raftery

Background: Cancer cells exhibit remarkable metabolic plasticity, enabling them to adapt to fluctuating nutrient conditions. This study investigates the impact of a combination of low glucose levels and inhibition of stearoyl-CoA desaturase 1 (SCD1) using A939572 on cancer metabolic plasticity and growth.

Methods: A comprehensive metabolomic and lipidomic analysis was conducted to unravel the intricate changes in cellular metabolites and lipids. MCF-7 cells were subjected to low glucose conditions, and SCD1 was inhibited using A939572. The resulting alterations in metabolic pathways and lipid profiles were explored to elucidate the synergistic effects on cancer cell physiology.

Results: The combination of low glucose and A939572-induced SCD1 inhibition significantly impaired cancer cell metabolic plasticity. Metabolomic analysis highlighted shifts in key glycolytic and amino acid pathways, indicating the cells' struggle to adapt to restricted glucose availability. Lipidomic profiling revealed alterations in lipid composition, implying disruptions in membrane integrity and signaling cascades.

Conclusion: Our findings underscore the critical roles of glucose availability and SCD1 activity in sustaining cancer metabolic plasticity and growth. Simultaneously targeting these pathways emerges as a promising strategy to impede cancer progression. The comprehensive metabolomic and lipidomic analysis provides a detailed roadmap of molecular alterations induced by this combination treatment, that may help identify potential therapeutic targets.

背景:癌细胞表现出显著的代谢可塑性,使其能够适应波动的营养条件。本研究探讨了低葡萄糖水平和使用 A939572 抑制硬脂酰-CoA 去饱和酶 1(SCD1)对癌症代谢可塑性和生长的影响:方法:为了揭示细胞代谢物和脂质的复杂变化,我们进行了全面的代谢组学和脂质组学分析。将 MCF-7 细胞置于低糖条件下,使用 A939572 抑制 SCD1。研究人员探讨了由此引起的代谢途径和脂质谱的变化,以阐明对癌细胞生理机能的协同作用:结果:低糖与 A939572 诱导的 SCD1 抑制相结合,显著削弱了癌细胞的代谢可塑性。代谢组学分析突显了关键糖酵解和氨基酸通路的变化,表明细胞在努力适应受限的葡萄糖供应。脂质组分析揭示了脂质组成的改变,这意味着膜完整性和信号级联遭到破坏:我们的研究结果强调了葡萄糖供应和 SCD1 活性在维持癌症代谢可塑性和生长中的关键作用。同时靶向这些通路是阻止癌症进展的一种有前途的策略。全面的代谢组学和脂质组学分析为这种联合疗法所诱导的分子改变提供了详细的路线图,可能有助于确定潜在的治疗靶点。
{"title":"Combination of low glucose and SCD1 inhibition impairs cancer metabolic plasticity and growth in MCF-7 cancer cells: a comprehensive metabolomic and lipidomic analysis.","authors":"Wentao Zhu, John A Lusk, Vadim Pascua, Danijel Djukovic, Daniel Raftery","doi":"10.1007/s11306-024-02179-y","DOIUrl":"10.1007/s11306-024-02179-y","url":null,"abstract":"<p><strong>Background: </strong>Cancer cells exhibit remarkable metabolic plasticity, enabling them to adapt to fluctuating nutrient conditions. This study investigates the impact of a combination of low glucose levels and inhibition of stearoyl-CoA desaturase 1 (SCD1) using A939572 on cancer metabolic plasticity and growth.</p><p><strong>Methods: </strong>A comprehensive metabolomic and lipidomic analysis was conducted to unravel the intricate changes in cellular metabolites and lipids. MCF-7 cells were subjected to low glucose conditions, and SCD1 was inhibited using A939572. The resulting alterations in metabolic pathways and lipid profiles were explored to elucidate the synergistic effects on cancer cell physiology.</p><p><strong>Results: </strong>The combination of low glucose and A939572-induced SCD1 inhibition significantly impaired cancer cell metabolic plasticity. Metabolomic analysis highlighted shifts in key glycolytic and amino acid pathways, indicating the cells' struggle to adapt to restricted glucose availability. Lipidomic profiling revealed alterations in lipid composition, implying disruptions in membrane integrity and signaling cascades.</p><p><strong>Conclusion: </strong>Our findings underscore the critical roles of glucose availability and SCD1 activity in sustaining cancer metabolic plasticity and growth. Simultaneously targeting these pathways emerges as a promising strategy to impede cancer progression. The comprehensive metabolomic and lipidomic analysis provides a detailed roadmap of molecular alterations induced by this combination treatment, that may help identify potential therapeutic targets.</p>","PeriodicalId":18506,"journal":{"name":"Metabolomics","volume":"20 5","pages":"112"},"PeriodicalIF":3.5,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142378065","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of an acute session of intermittent exercise on trimethylamine N-oxide (TMAO) production following choline ingestion. 急性间歇运动对摄入胆碱后三甲胺 N-氧化物(TMAO)生成的影响。
IF 3.5 3区 医学 Q2 ENDOCRINOLOGY & METABOLISM Pub Date : 2024-10-05 DOI: 10.1007/s11306-024-02177-0
Marilyn L Y Ong, Christopher G Green, Samantha N Rowland, Katie Rider, Harry Sutcliffe, Mark P Funnell, Andrea Salzano, Liam M Heaney

Introduction: Trimethylamine N-oxide (TMAO) is a gut bacteria-dependent metabolite associated with poor cardiovascular health. Exercise is a known cardioprotective activity but the impact of an acute bout of exercise on TMAO production is unknown.

Objectives/methods: This study assessed choline-derived production of TMAO following a single bout of intermittent exercise in a young, healthy cohort.

Results: Choline supplemented after either exercise or a time-matched resting period demonstrated a similar increase in circulating TMAO across an 8-hour period.

Conclusion: This suggests that a single bout of intermittent exercise does not alter gut microbial metabolic behaviour and thus does not provide additional cardioprotective benefits related to blood levels of TMAO.

简介三甲胺 N-氧化物(TMAO)是一种依赖于肠道细菌的代谢物,与心血管健康状况不佳有关。运动是一种已知的心血管保护活动,但急性运动对 TMAO 生成的影响尚不清楚:本研究评估了在年轻健康人群中进行单次间歇运动后胆碱衍生的 TMAO 生成情况:结果:无论是在运动后还是在时间匹配的静止期后补充胆碱,循环中的 TMAO 在 8 小时内都有类似的增加:结论:这表明单次间歇运动不会改变肠道微生物的代谢行为,因此不会提供与血液中 TMAO 水平相关的额外心脏保护益处。
{"title":"Effect of an acute session of intermittent exercise on trimethylamine N-oxide (TMAO) production following choline ingestion.","authors":"Marilyn L Y Ong, Christopher G Green, Samantha N Rowland, Katie Rider, Harry Sutcliffe, Mark P Funnell, Andrea Salzano, Liam M Heaney","doi":"10.1007/s11306-024-02177-0","DOIUrl":"10.1007/s11306-024-02177-0","url":null,"abstract":"<p><strong>Introduction: </strong>Trimethylamine N-oxide (TMAO) is a gut bacteria-dependent metabolite associated with poor cardiovascular health. Exercise is a known cardioprotective activity but the impact of an acute bout of exercise on TMAO production is unknown.</p><p><strong>Objectives/methods: </strong>This study assessed choline-derived production of TMAO following a single bout of intermittent exercise in a young, healthy cohort.</p><p><strong>Results: </strong>Choline supplemented after either exercise or a time-matched resting period demonstrated a similar increase in circulating TMAO across an 8-hour period.</p><p><strong>Conclusion: </strong>This suggests that a single bout of intermittent exercise does not alter gut microbial metabolic behaviour and thus does not provide additional cardioprotective benefits related to blood levels of TMAO.</p>","PeriodicalId":18506,"journal":{"name":"Metabolomics","volume":"20 5","pages":"110"},"PeriodicalIF":3.5,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11455687/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142378066","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cognitive improvements linked to lysophosphatidylethanolamine after olanzapine treatment in drug-naïve first-episode schizophrenia. 对初次发病的精神分裂症患者进行奥氮平治疗后,认知能力的改善与溶血磷脂酰乙醇胺有关。
IF 3.5 3区 医学 Q2 ENDOCRINOLOGY & METABOLISM Pub Date : 2024-10-01 DOI: 10.1007/s11306-024-02171-6
Juanhua Li, Yuanguang Xu, Xin Wang, Caixing Liu, Zezhi Li, Meihong Xiu, Hongying Chen

Background: Cognitive impairments are a hallmark symptom of schizophrenia (SCZ). Phosphatidylethanolamine (PE) is the second most abundant phospholipid in mammalian cells, yet its role in cognitive deficits remains unexplored. The aim of this study was to investigate the association between plasma LysoPE and cognitive improvements following olanzapine monotherapy in drug-naïve first-episode (DNFE) SCZ patients.

Methods: Twenty-five female DNFE SCZ patients were treated with olanzapine for four weeks, and cognitive function was assessed using the Repeatable Battery for the Assessment of Neuropsychological Status (RBANS) at baseline and after the 4-week follow-up. Utilizing an untargeted ultra-performance liquid chromatography-mass spectrometry (UPLC-MS)-based metabolomics approach, we measured LysoPE concentrations.

Results: Significant improvements in immediate and delayed memory domains were observed post-treatment. We identified nine differential LysoPE species after olanzapine monotherapy, with increased concentrations for all LysoPE except LysoPE (22:6). Elevated LysoPE (22:1) concentration positively correlated with cognitive improvement in patients. Baseline LysoPE (16:1) emerged as a predictive factor for cognitive improvement following olanzapine monotherapy.

Conclusions: This study offers preliminary evidence for the involvement of LysoPE in cognitive improvements observed in drug-naïve first-episode SCZ patients after olanzapine treatment.

背景:认知障碍是精神分裂症(SCZ)的标志性症状。磷脂酰乙醇胺(PE)是哺乳动物细胞中含量第二高的磷脂,但它在认知障碍中的作用仍未得到研究。本研究旨在探讨血浆溶血磷脂酰乙醇胺(LysoPE)与药物治疗无效的首次发病(DNFE)SCZ患者接受奥氮平单药治疗后认知能力改善之间的关系:25名女性DNFE SCZ患者接受了为期四周的奥氮平治疗,并在基线和四周随访后使用神经心理状态评估可重复电池(RBANS)对认知功能进行了评估。我们采用基于非靶向超高效液相色谱-质谱联用仪(UPLC-MS)的代谢组学方法测量了LysoPE的浓度:结果:治疗后,即时记忆和延迟记忆领域均有显著改善。在奥氮平单药治疗后,我们发现了九种不同的 LysoPE,除了 LysoPE (22:6),其他 LysoPE 的浓度都有所增加。LysoPE(22:1)浓度的升高与患者认知能力的改善呈正相关。基线 LysoPE(16:1)是奥氮平单药治疗后认知改善的预测因素:本研究提供了初步证据,证明LysoPE参与了药物无效的首发SCZ患者在接受奥氮平治疗后认知能力的改善。
{"title":"Cognitive improvements linked to lysophosphatidylethanolamine after olanzapine treatment in drug-naïve first-episode schizophrenia.","authors":"Juanhua Li, Yuanguang Xu, Xin Wang, Caixing Liu, Zezhi Li, Meihong Xiu, Hongying Chen","doi":"10.1007/s11306-024-02171-6","DOIUrl":"10.1007/s11306-024-02171-6","url":null,"abstract":"<p><strong>Background: </strong>Cognitive impairments are a hallmark symptom of schizophrenia (SCZ). Phosphatidylethanolamine (PE) is the second most abundant phospholipid in mammalian cells, yet its role in cognitive deficits remains unexplored. The aim of this study was to investigate the association between plasma LysoPE and cognitive improvements following olanzapine monotherapy in drug-naïve first-episode (DNFE) SCZ patients.</p><p><strong>Methods: </strong>Twenty-five female DNFE SCZ patients were treated with olanzapine for four weeks, and cognitive function was assessed using the Repeatable Battery for the Assessment of Neuropsychological Status (RBANS) at baseline and after the 4-week follow-up. Utilizing an untargeted ultra-performance liquid chromatography-mass spectrometry (UPLC-MS)-based metabolomics approach, we measured LysoPE concentrations.</p><p><strong>Results: </strong>Significant improvements in immediate and delayed memory domains were observed post-treatment. We identified nine differential LysoPE species after olanzapine monotherapy, with increased concentrations for all LysoPE except LysoPE (22:6). Elevated LysoPE (22:1) concentration positively correlated with cognitive improvement in patients. Baseline LysoPE (16:1) emerged as a predictive factor for cognitive improvement following olanzapine monotherapy.</p><p><strong>Conclusions: </strong>This study offers preliminary evidence for the involvement of LysoPE in cognitive improvements observed in drug-naïve first-episode SCZ patients after olanzapine treatment.</p>","PeriodicalId":18506,"journal":{"name":"Metabolomics","volume":"20 5","pages":"108"},"PeriodicalIF":3.5,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142361772","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Intracellular metabolomic profiling of Picochlorum sp. under diurnal conditions mimicking outdoor light, temperature, and seasonal variations. 模拟室外光照、温度和季节变化的昼夜条件下 Picochlorum sp.
IF 3.5 3区 医学 Q2 ENDOCRINOLOGY & METABOLISM Pub Date : 2024-09-21 DOI: 10.1007/s11306-024-02170-7
Prem Pritam, Suvarna Manjre, Manish R Shukla, Meghna Srivastava, Charulata B Prasannan, Damini Jaiswal, Rose Davis, Santanu Dasgupta, Pramod P Wangikar

Introduction: This study focuses on metabolic profiling of a robust marine green algal strain Picochlorum sp. MCC39 that exhibits resilient growth under diverse outdoor open pond conditions. Given its potential for producing high-value chemicals through metabolic engineering, understanding its metabolic dynamics is crucial for pathway modification.

Objectives: This study primarily aimed to investigate the metabolic response of Picochlorum sp. to environmental changes. Unlike heterotrophs, algae are subject to diurnal light and temperature, which affect their growth rates and metabolism. Using an environmental photobioreactor (ePBR), we explored how the algal strain adapts to fluctuations in light intensities and temperature within a simulated pond environment.

Methods: We performed a reverse phase ion pairing-LC/MS-MS based metabolome profiling of the MCC39 strain cultivated in simulated pond conditions in ePBR. The experimental setup included diurnal and bi-seasonal variations in light intensities and temperature.

Results: The metabolome profile revealed significant differences in 85 metabolites, including amino acids, carboxylic acids, sugar phosphates, purines, pyrimidines, and dipeptides, which exhibited up to 25-fold change in relative concentration with diurnal variations. Seasonal variations also influenced the production of storage molecules, revealing a discernible pattern. The accumulation pattern of metabolites involved in cellular wall formation and energy generation indicated a well-coordinated initiation of photosynthesis and the Calvin cycle with the onset of light.

Conclusion: The results contribute to a deeper understanding of the adaptability and metabolic response of Picochlorum sp., laying the groundwork for future advancements in algal strain modification.

简介本研究的重点是对在室外露天池塘的各种条件下都能顽强生长的海洋绿藻菌株 Picochlorum sp.鉴于其具有通过代谢工程生产高价值化学品的潜力,了解其代谢动态对于途径改造至关重要:本研究的主要目的是调查 Picochlorum sp.与异养生物不同,藻类会受到昼夜光照和温度的影响,从而影响其生长速度和新陈代谢。利用环境光生物反应器(ePBR),我们探索了藻类如何适应模拟池塘环境中的光照强度和温度波动:我们在 ePBR 中对模拟池塘条件下培养的 MCC39 菌株进行了基于反相离子配对-LC/MS-MS 的代谢组分析。实验设置包括光照强度和温度的昼夜变化和双季变化:代谢组图谱显示,氨基酸、羧酸、糖磷酸盐、嘌呤、嘧啶和二肽等 85 种代谢物存在显著差异。季节变化也影响了储存分子的产生,并显示出明显的模式。参与细胞壁形成和能量生成的代谢物的积累模式表明,光合作用和卡尔文循环随着光照的开始而协调启动:这些结果有助于加深对 Picochlorum sp.
{"title":"Intracellular metabolomic profiling of Picochlorum sp. under diurnal conditions mimicking outdoor light, temperature, and seasonal variations.","authors":"Prem Pritam, Suvarna Manjre, Manish R Shukla, Meghna Srivastava, Charulata B Prasannan, Damini Jaiswal, Rose Davis, Santanu Dasgupta, Pramod P Wangikar","doi":"10.1007/s11306-024-02170-7","DOIUrl":"10.1007/s11306-024-02170-7","url":null,"abstract":"<p><strong>Introduction: </strong>This study focuses on metabolic profiling of a robust marine green algal strain Picochlorum sp. MCC39 that exhibits resilient growth under diverse outdoor open pond conditions. Given its potential for producing high-value chemicals through metabolic engineering, understanding its metabolic dynamics is crucial for pathway modification.</p><p><strong>Objectives: </strong>This study primarily aimed to investigate the metabolic response of Picochlorum sp. to environmental changes. Unlike heterotrophs, algae are subject to diurnal light and temperature, which affect their growth rates and metabolism. Using an environmental photobioreactor (ePBR), we explored how the algal strain adapts to fluctuations in light intensities and temperature within a simulated pond environment.</p><p><strong>Methods: </strong>We performed a reverse phase ion pairing-LC/MS-MS based metabolome profiling of the MCC39 strain cultivated in simulated pond conditions in ePBR. The experimental setup included diurnal and bi-seasonal variations in light intensities and temperature.</p><p><strong>Results: </strong>The metabolome profile revealed significant differences in 85 metabolites, including amino acids, carboxylic acids, sugar phosphates, purines, pyrimidines, and dipeptides, which exhibited up to 25-fold change in relative concentration with diurnal variations. Seasonal variations also influenced the production of storage molecules, revealing a discernible pattern. The accumulation pattern of metabolites involved in cellular wall formation and energy generation indicated a well-coordinated initiation of photosynthesis and the Calvin cycle with the onset of light.</p><p><strong>Conclusion: </strong>The results contribute to a deeper understanding of the adaptability and metabolic response of Picochlorum sp., laying the groundwork for future advancements in algal strain modification.</p>","PeriodicalId":18506,"journal":{"name":"Metabolomics","volume":"20 5","pages":"107"},"PeriodicalIF":3.5,"publicationDate":"2024-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142290896","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Navigating common pitfalls in metabolite identification and metabolomics bioinformatics. 在代谢物鉴别和代谢组学生物信息学中找到常见误区。
IF 3.5 3区 医学 Q2 ENDOCRINOLOGY & METABOLISM Pub Date : 2024-09-21 DOI: 10.1007/s11306-024-02167-2
Elva María Novoa-Del-Toro, Michael Witting

Background: Metabolomics, the systematic analysis of small molecules in a given biological system, emerged as a powerful tool for different research questions. Newer, better, and faster methods have increased the coverage of metabolites that can be detected and identified in a shorter amount of time, generating highly dense datasets. While technology for metabolomics is still advancing, another rapidly growing field is metabolomics data analysis including metabolite identification. Within the next years, there will be a high demand for bioinformaticians and data scientists capable of analyzing metabolomics data as well as chemists capable of using in-silico tools for metabolite identification. However, metabolomics is often not included in bioinformatics curricula, nor does analytical chemistry address the challenges associated with advanced in-silico tools.

Aim of review: In this educational review, we briefly summarize some key concepts and pitfalls we have encountered in a collaboration between a bioinformatician (originally not trained for metabolomics) and an analytical chemist. We identified that many misunderstandings arise from differences in knowledge about metabolite annotation and identification, and the proper use of bioinformatics approaches for these tasks. We hope that this article helps other bioinformaticians (as well as other scientists) entering the field of metabolomics bioinformatics, especially for metabolite identification, to quickly learn the necessary concepts for a successful collaboration with analytical chemists.

Key scientific concepts of review: We summarize important concepts related to LC-MS/MS based non-targeted metabolomics and compare them with other data types bioinformaticians are potentially familiar with. Drawing these parallels will help foster the learning of key aspects of metabolomics.

背景:代谢组学是对特定生物系统中的小分子进行系统分析的方法,是解决不同研究问题的有力工具。更新、更好、更快的方法扩大了代谢物的覆盖范围,可以在更短的时间内检测和鉴定代谢物,从而生成高密度的数据集。在代谢组学技术不断进步的同时,另一个快速发展的领域是代谢组学数据分析,包括代谢物鉴定。在未来几年内,对能够分析代谢组学数据的生物信息学家和数据科学家,以及能够使用室内工具进行代谢物鉴定的化学家的需求将非常大。然而,代谢组学往往没有被纳入生物信息学课程,分析化学也没有解决与先进的硅学工具相关的挑战:在这篇教育综述中,我们简要总结了生物信息学家(最初未接受过代谢组学方面的培训)和分析化学家合作过程中遇到的一些关键概念和陷阱。我们发现,许多误解都源于对代谢物注释和鉴定以及在这些任务中正确使用生物信息学方法的认识不同。我们希望这篇文章能帮助其他生物信息学家(以及其他科学家)进入代谢组学生物信息学领域,特别是代谢物鉴定领域,快速了解与分析化学家成功合作的必要概念:我们总结了与基于 LC-MS/MS 的非靶向代谢组学相关的重要概念,并将其与生物信息学家可能熟悉的其他数据类型进行了比较。这些相似之处将有助于促进对代谢组学关键方面的学习。
{"title":"Navigating common pitfalls in metabolite identification and metabolomics bioinformatics.","authors":"Elva María Novoa-Del-Toro, Michael Witting","doi":"10.1007/s11306-024-02167-2","DOIUrl":"10.1007/s11306-024-02167-2","url":null,"abstract":"<p><strong>Background: </strong>Metabolomics, the systematic analysis of small molecules in a given biological system, emerged as a powerful tool for different research questions. Newer, better, and faster methods have increased the coverage of metabolites that can be detected and identified in a shorter amount of time, generating highly dense datasets. While technology for metabolomics is still advancing, another rapidly growing field is metabolomics data analysis including metabolite identification. Within the next years, there will be a high demand for bioinformaticians and data scientists capable of analyzing metabolomics data as well as chemists capable of using in-silico tools for metabolite identification. However, metabolomics is often not included in bioinformatics curricula, nor does analytical chemistry address the challenges associated with advanced in-silico tools.</p><p><strong>Aim of review: </strong>In this educational review, we briefly summarize some key concepts and pitfalls we have encountered in a collaboration between a bioinformatician (originally not trained for metabolomics) and an analytical chemist. We identified that many misunderstandings arise from differences in knowledge about metabolite annotation and identification, and the proper use of bioinformatics approaches for these tasks. We hope that this article helps other bioinformaticians (as well as other scientists) entering the field of metabolomics bioinformatics, especially for metabolite identification, to quickly learn the necessary concepts for a successful collaboration with analytical chemists.</p><p><strong>Key scientific concepts of review: </strong>We summarize important concepts related to LC-MS/MS based non-targeted metabolomics and compare them with other data types bioinformaticians are potentially familiar with. Drawing these parallels will help foster the learning of key aspects of metabolomics.</p>","PeriodicalId":18506,"journal":{"name":"Metabolomics","volume":"20 5","pages":"103"},"PeriodicalIF":3.5,"publicationDate":"2024-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11416380/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142290877","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Metabolomics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1