首页 > 最新文献

Metabolomics最新文献

英文 中文
Sex-bias metabolism of fetal organs, and their relationship to the regulation of fetal brain-placental axis. 胎儿器官的性别代谢及其与胎儿脑-胎盘轴调节的关系。
IF 3.5 3区 医学 Q2 ENDOCRINOLOGY & METABOLISM Pub Date : 2024-11-04 DOI: 10.1007/s11306-024-02189-w
Shankar P Poudel, Susanta K Behura

Introduction: The placenta plays influential role in the fetal development of mammals. But how the metabolic need of the fetal organs is related to that of the placenta, and whether this relationship is influenced by the sex of the fetus remain poorly understood.

Objectives: This study used pigs to investigate metabolomic signatures of male and female fetal organs, and determine the relevance of gene expression of the placenta and brain to the metabolism of peripheral organs.

Methods: Untargeted metabolomics analysis was performed with the day-45 placenta, kidney, heart, liver, lung and brain of male and female pig fetuses to model sex differences in the metabolism of the peripheral organs relative to that of the brain and placenta. Transcriptomic analysis was performed to investigate the expression of metabolic genes in the placenta and fetal brain of both sexes.

Results: The results of this study show that the fetoplacental metabolic regulation was not only influenced by the fetal sex but also dependent on the metabolic requirement of  the individual organs of the fetus. Neural network modeling of metabolomics data revealed differential relationship of the metabolic changes of the peripheral organs with the placenta and fetal brain between males and females. RNA sequencing further showed that genes associated with the metabolism of the peripheral organs were differentially expressed in the placenta and fetal brain.

Conclusion: The findings of this study suggest a regulatory role of the fetal brain and placenta axis in the sex-bias metabolism of the peripheral organs.

简介胎盘在哺乳动物的胎儿发育过程中发挥着重要作用。但是,胎儿器官的代谢需求与胎盘的代谢需求之间的关系如何,以及这种关系是否受胎儿性别的影响,目前仍鲜为人知:本研究利用猪来研究雄性和雌性胎儿器官的代谢组学特征,并确定胎盘和大脑的基因表达与外周器官代谢的相关性:对雌雄猪胎儿第 45 天的胎盘、肾脏、心脏、肝脏、肺脏和大脑进行了非靶向代谢组学分析,以模拟外周器官代谢相对于大脑和胎盘代谢的性别差异。通过转录组分析,研究了雌雄胎盘和胎儿大脑中代谢基因的表达情况:研究结果表明,胎盘代谢调节不仅受胎儿性别的影响,还取决于胎儿各个器官的代谢需求。对代谢组学数据进行神经网络建模后发现,胎儿外周器官的代谢变化与胎盘和胎儿大脑的代谢变化之间存在差异。RNA测序进一步显示,与外周器官代谢相关的基因在胎盘和胎儿大脑中的表达存在差异:结论:本研究的结果表明,胎儿大脑和胎盘轴在外周器官的性别偏差代谢中起着调节作用。
{"title":"Sex-bias metabolism of fetal organs, and their relationship to the regulation of fetal brain-placental axis.","authors":"Shankar P Poudel, Susanta K Behura","doi":"10.1007/s11306-024-02189-w","DOIUrl":"10.1007/s11306-024-02189-w","url":null,"abstract":"<p><strong>Introduction: </strong>The placenta plays influential role in the fetal development of mammals. But how the metabolic need of the fetal organs is related to that of the placenta, and whether this relationship is influenced by the sex of the fetus remain poorly understood.</p><p><strong>Objectives: </strong>This study used pigs to investigate metabolomic signatures of male and female fetal organs, and determine the relevance of gene expression of the placenta and brain to the metabolism of peripheral organs.</p><p><strong>Methods: </strong>Untargeted metabolomics analysis was performed with the day-45 placenta, kidney, heart, liver, lung and brain of male and female pig fetuses to model sex differences in the metabolism of the peripheral organs relative to that of the brain and placenta. Transcriptomic analysis was performed to investigate the expression of metabolic genes in the placenta and fetal brain of both sexes.</p><p><strong>Results: </strong>The results of this study show that the fetoplacental metabolic regulation was not only influenced by the fetal sex but also dependent on the metabolic requirement of  the individual organs of the fetus. Neural network modeling of metabolomics data revealed differential relationship of the metabolic changes of the peripheral organs with the placenta and fetal brain between males and females. RNA sequencing further showed that genes associated with the metabolism of the peripheral organs were differentially expressed in the placenta and fetal brain.</p><p><strong>Conclusion: </strong>The findings of this study suggest a regulatory role of the fetal brain and placenta axis in the sex-bias metabolism of the peripheral organs.</p>","PeriodicalId":18506,"journal":{"name":"Metabolomics","volume":"20 6","pages":"126"},"PeriodicalIF":3.5,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142569058","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Identification of novel hypertension biomarkers using explainable AI and metabolomics. 利用可解释人工智能和代谢组学鉴定新型高血压生物标记物。
IF 3.5 3区 医学 Q2 ENDOCRINOLOGY & METABOLISM Pub Date : 2024-11-03 DOI: 10.1007/s11306-024-02182-3
Karthik Sekaran, Hatem Zayed

Background: The global incidence of hypertension, a condition of elevated blood pressure, is rising alarmingly. According to the World Health Organization's Qatar Hypertension Profile for 2023, around 33% of adults are affected by hypertension. This is a significant public health concern that can lead to serious health complications if left untreated. Metabolic dysfunction is a primary cause of hypertension. By studying key biomarkers, we can discover new treatments to improve the lives of those with high blood pressure.

Aims: This study aims to use explainable artificial intelligence (XAI) to interpret novel metabolite biosignatures linked to hypertension in Qatari Population.

Methods: The study utilized liquid chromatography-mass spectrometry (LC/MS) method to profile metabolites from biosamples of Qatari nationals diagnosed with stage 1 hypertension (n = 224) and controls (n = 554). Metabolon platform was used for the annotation of raw metabolite data generated during the process. A comprehensive series of analytical procedures, including data trimming, imputation, undersampling, feature selection, and biomarker discovery through explainable AI (XAI) models, were meticulously executed to ensure the accuracy and reliability of the results.

Results: Elevated Vanillylmandelic acid (VMA) levels are markedly associated with stage 1 hypertension compared to controls. Glycerophosphorylcholine (GPC), N-Stearoylsphingosine (d18:1/18:0)*, and glycine are critical metabolites for accurate hypertension prediction. The light gradient boosting model yielded superior results, underscoring the potential of our research in enhancing hypertension diagnosis and treatment. The model's classification metrics: accuracy (78.13%), precision (78.13%), recall (78.13%), F1-score (78.13%), and AUROC (83.88%) affirm its efficacy. SHapley Additive exPlanations (SHAP) further elucidate the metabolite markers, providing a deeper understanding of the disease's pathology.

Conclusion: This study identified novel metabolite biomarkers for precise hypertension diagnosis using XAI, enhancing early detection and intervention in the Qatari population.

背景:高血压是一种血压升高的病症,其全球发病率正在以惊人的速度上升。根据世界卫生组织的《2023 年卡塔尔高血压概况》,约有 33% 的成年人受到高血压的影响。这是一个重大的公共卫生问题,如果不及时治疗,会导致严重的健康并发症。代谢功能障碍是导致高血压的主要原因。通过研究关键的生物标志物,我们可以发现新的治疗方法,改善高血压患者的生活。研究目的:本研究旨在使用可解释人工智能(XAI)解释卡塔尔人口中与高血压有关的新型代谢物生物特征:该研究采用液相色谱-质谱法(LC/MS)对确诊为高血压 1 期的卡塔尔人(n = 224)和对照组(n = 554)的生物样本中的代谢物进行分析。Metabolon 平台用于注释过程中产生的原始代谢物数据。为确保结果的准确性和可靠性,研究人员精心执行了一系列综合分析程序,包括数据修剪、归因、低采样、特征选择以及通过可解释人工智能(XAI)模型发现生物标记物:结果:与对照组相比,香草酸(VMA)水平升高与一期高血压明显相关。甘油磷酸胆碱(GPC)、N-硬脂酰鞘氨醇(d18:1/18:0)*和甘氨酸是准确预测高血压的关键代谢物。光梯度提升模型取得了优异的结果,凸显了我们的研究在加强高血压诊断和治疗方面的潜力。该模型的分类指标:准确率(78.13%)、精确率(78.13%)、召回率(78.13%)、F1-分数(78.13%)和 AUROC(83.88%)证实了其有效性。SHapley Additive exPlanations(SHAP)进一步阐明了代谢物标志物,使人们对疾病的病理有了更深入的了解:本研究发现了新的代谢物生物标志物,可用于使用 XAI 对高血压进行精确诊断,从而加强对卡塔尔人群的早期检测和干预。
{"title":"Identification of novel hypertension biomarkers using explainable AI and metabolomics.","authors":"Karthik Sekaran, Hatem Zayed","doi":"10.1007/s11306-024-02182-3","DOIUrl":"10.1007/s11306-024-02182-3","url":null,"abstract":"<p><strong>Background: </strong>The global incidence of hypertension, a condition of elevated blood pressure, is rising alarmingly. According to the World Health Organization's Qatar Hypertension Profile for 2023, around 33% of adults are affected by hypertension. This is a significant public health concern that can lead to serious health complications if left untreated. Metabolic dysfunction is a primary cause of hypertension. By studying key biomarkers, we can discover new treatments to improve the lives of those with high blood pressure.</p><p><strong>Aims: </strong>This study aims to use explainable artificial intelligence (XAI) to interpret novel metabolite biosignatures linked to hypertension in Qatari Population.</p><p><strong>Methods: </strong>The study utilized liquid chromatography-mass spectrometry (LC/MS) method to profile metabolites from biosamples of Qatari nationals diagnosed with stage 1 hypertension (n = 224) and controls (n = 554). Metabolon platform was used for the annotation of raw metabolite data generated during the process. A comprehensive series of analytical procedures, including data trimming, imputation, undersampling, feature selection, and biomarker discovery through explainable AI (XAI) models, were meticulously executed to ensure the accuracy and reliability of the results.</p><p><strong>Results: </strong>Elevated Vanillylmandelic acid (VMA) levels are markedly associated with stage 1 hypertension compared to controls. Glycerophosphorylcholine (GPC), N-Stearoylsphingosine (d18:1/18:0)*, and glycine are critical metabolites for accurate hypertension prediction. The light gradient boosting model yielded superior results, underscoring the potential of our research in enhancing hypertension diagnosis and treatment. The model's classification metrics: accuracy (78.13%), precision (78.13%), recall (78.13%), F1-score (78.13%), and AUROC (83.88%) affirm its efficacy. SHapley Additive exPlanations (SHAP) further elucidate the metabolite markers, providing a deeper understanding of the disease's pathology.</p><p><strong>Conclusion: </strong>This study identified novel metabolite biomarkers for precise hypertension diagnosis using XAI, enhancing early detection and intervention in the Qatari population.</p>","PeriodicalId":18506,"journal":{"name":"Metabolomics","volume":"20 6","pages":"124"},"PeriodicalIF":3.5,"publicationDate":"2024-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11532322/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142569056","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Untargeted metabolomic profiling of small extracellular vesicles reveals potential new biomarkers for triple negative breast cancer. 细胞外小囊泡的非靶向代谢组学分析揭示了三阴性乳腺癌的潜在新生物标记物。
IF 3.5 3区 医学 Q2 ENDOCRINOLOGY & METABOLISM Pub Date : 2024-11-02 DOI: 10.1007/s11306-024-02191-2
Rochelle D'Mello, Nico Hüttmann, Zoran Minic, Maxim V Berezovski

Introduction: Breast Cancer (BC) is one of the most diagnosed malignancies among women and the second leading cause of cancer related death in North America. Triple Negative BC (TNBC), one of the most severe subtypes of BC, is extremely aggressive and has a higher chance of occurrence in women under 50 years of age. Due to a lack of regular mammographic testing in women under 50, many individuals with TNBC are diagnosed late which can decrease their survival rate. Currently, liquid biopsy is being investigated as a potentially less-invasive alternative to traditional breast tissue biopsy, but this approach is not completely reliable. Blood contains extracellular vesicles (EVs), which carry biomolecular cargo and play a role in BC progression and metastasis. Examination of small EVs could potentially yield metabolite biomarkers for early BC diagnosis.

Objective: We aim to study metabolites in small EVs to find biomarkers for BC diagnosis.

Methods: In this work, an untargeted nano-LC MS/MS metabolomics approach was used to analyze metabolites from small EVs derived from metastatic MDA-MB-231 and compare it with a non-cancerous MCF10A cell line.

Results: Two metabolites, LysoPC 22:6/0:0 and N-acetyl-L-Phenylalanine, unique to sEVs of MDA-MB-231, were identified, validated, and proposed as potential BC biomarkers.

Conclusion: Metabolites from sEVs may be used for BC diagnosis.

导言:乳腺癌(BC)是女性中确诊率最高的恶性肿瘤之一,也是北美癌症相关死亡的第二大原因。三阴性乳腺癌(TNBC)是乳腺癌中最严重的亚型之一,具有极强的侵袭性,在 50 岁以下女性中的发病率较高。由于 50 岁以下女性缺乏定期的乳腺 X 射线检查,许多 TNBC 患者的诊断时间较晚,这可能会降低她们的存活率。目前,液体活检作为传统乳腺组织活检的一种潜在微创替代方法正在接受研究,但这种方法并不完全可靠。血液中含有细胞外囊泡 (EV),它们携带生物分子货物,在乳腺癌的进展和转移中发挥着作用。对小EVs的研究有可能为早期诊断BC提供代谢物生物标志物:我们旨在研究小EVs中的代谢物,为诊断BC寻找生物标志物:在这项工作中,我们采用非靶向纳米液相色谱 MS/MS 代谢组学方法分析了转移性 MDA-MB-231 小 EVs 中的代谢物,并将其与非癌 MCF10A 细胞系进行了比较:结果:MDA-MB-231的sEVs中特有的两种代谢物LysoPC 22:6/0:0和N-乙酰-L-苯丙氨酸被鉴定、验证并被认为是潜在的BC生物标志物:结论:sEVs 中的代谢物可用于 BC 诊断。
{"title":"Untargeted metabolomic profiling of small extracellular vesicles reveals potential new biomarkers for triple negative breast cancer.","authors":"Rochelle D'Mello, Nico Hüttmann, Zoran Minic, Maxim V Berezovski","doi":"10.1007/s11306-024-02191-2","DOIUrl":"10.1007/s11306-024-02191-2","url":null,"abstract":"<p><strong>Introduction: </strong>Breast Cancer (BC) is one of the most diagnosed malignancies among women and the second leading cause of cancer related death in North America. Triple Negative BC (TNBC), one of the most severe subtypes of BC, is extremely aggressive and has a higher chance of occurrence in women under 50 years of age. Due to a lack of regular mammographic testing in women under 50, many individuals with TNBC are diagnosed late which can decrease their survival rate. Currently, liquid biopsy is being investigated as a potentially less-invasive alternative to traditional breast tissue biopsy, but this approach is not completely reliable. Blood contains extracellular vesicles (EVs), which carry biomolecular cargo and play a role in BC progression and metastasis. Examination of small EVs could potentially yield metabolite biomarkers for early BC diagnosis.</p><p><strong>Objective: </strong>We aim to study metabolites in small EVs to find biomarkers for BC diagnosis.</p><p><strong>Methods: </strong>In this work, an untargeted nano-LC MS/MS metabolomics approach was used to analyze metabolites from small EVs derived from metastatic MDA-MB-231 and compare it with a non-cancerous MCF10A cell line.</p><p><strong>Results: </strong>Two metabolites, LysoPC 22:6/0:0 and N-acetyl-L-Phenylalanine, unique to sEVs of MDA-MB-231, were identified, validated, and proposed as potential BC biomarkers.</p><p><strong>Conclusion: </strong>Metabolites from sEVs may be used for BC diagnosis.</p>","PeriodicalId":18506,"journal":{"name":"Metabolomics","volume":"20 6","pages":"123"},"PeriodicalIF":3.5,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142564767","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Association of urinary volatile organic compounds and chronic kidney disease in patients with diabetes: real-world evidence from the NHANES. 糖尿病患者尿液中挥发性有机化合物与慢性肾病的关系:来自 NHANES 的实际证据。
IF 3.5 3区 医学 Q2 ENDOCRINOLOGY & METABOLISM Pub Date : 2024-11-02 DOI: 10.1007/s11306-024-02188-x
Yu-Li Lin, Yi-Chien Yang

Background: Chronic kidney disease (CKD) is common in patients with diabetes mellitus (DM). Volatile organic compounds (VOCs) are widespread pollutants that may impact DM development.

Objective: This study aims to explore the association between urinary VOC metabolites and CKD in patients with DM.

Methods: Adult National Health and Nutrition Examination Survey (NHANES) 2011 to 2018 participants with DM were included in this study. CKD was defined as an estimated glomerular filtration rate (eGFR) < 60 mL/min/1.73 m2 or urine albumin-to-creatinine ratio (UACR) ≥ 30 mg/g. Multivariable regression models were used to analyze the associations between urinary VOC metabolites and CKD.

Results: A total of 1,295 participants with DM and a mean age of 59 years were included. After adjustment for demographic and clinical characteristics, elevated levels of N-acetyl-S-(2-carbamoylethyl)-L-cysteine (AAMA) (tertile 2: adjusted odds ratio (aOR)  =   1.81, 95% confidence interval (CI): 1.15-2.85, p  =  0.012), N-acetyl-S-(N-methylcarbamoyl)-L-cysteine (AMCC) (tertile 2: aOR   =  1.84, 95% CI: 1.10-3.08, p  =  0.021), DHBMA (tertile 3: aOR  =  1.93, 95% CI: 1.12-3.35, p  =   0.020), and phenylglyoxylic acid (PGA) (tertile 3: aOR   =  1.71, 95% CI: 1.11-2.63, p  =  0.017) were significantly associated with increased likelihood of CKD.

Conclusion: Specific urinary VOC metabolite levels are positively associated with an increased risk of CKD in patients with DM. These findings suggest that monitoring urinary VOC metabolites could be important for the prevention and management of CKD in this population. Future longitudinal studies should focus on establishing causality and elucidating the underlying mechanisms of these associations.

背景:慢性肾病(CKD)是糖尿病(DM)患者的常见病。挥发性有机化合物(VOC)是一种广泛存在的污染物,可能会影响糖尿病的发展:本研究旨在探讨 DM 患者尿液中挥发性有机化合物代谢物与 CKD 之间的关系:本研究纳入了 2011 年至 2018 年成人国家健康与营养调查(NHANES)中的 DM 患者。CKD定义为估计肾小球滤过率(eGFR)2或尿白蛋白与肌酐比值(UACR)≥30 mg/g。采用多变量回归模型分析尿液中挥发性有机化合物代谢物与慢性肾脏病之间的关系:结果:共纳入了 1295 名患有糖尿病的参与者,他们的平均年龄为 59 岁。在对人口统计学和临床特征进行调整后,N-乙酰-S-(2-氨基甲酰乙基)-L-半胱氨酸(AAMA)水平升高(三分层 2:调整后比值比 (aOR) = 1.81,95% 置信区间 (CI):1.15-2.85,p = 0.012)、N-乙酰-S-(N-甲基氨基甲酰基)-L-半胱氨酸(AMCC)水平升高(三分层 2:aOR = 1.84,95% CI:1.10-3.08,p = 0.021)、DHBMA(三分层 3:aOR = 1.93,95% CI:1.12-3.35,p = 0.020)和苯乙酸(PGA)(三分层 3:aOR = 1.71,95% CI:1.11-2.63,p = 0.017)与患 CKD 的可能性增加显著相关:结论:特定的尿挥发性有机化合物代谢物水平与糖尿病患者罹患慢性肾脏病的风险增加呈正相关。这些研究结果表明,监测尿液中的挥发性有机化合物代谢物对预防和管理这类人群的慢性肾脏病非常重要。未来的纵向研究应侧重于确定因果关系并阐明这些关联的内在机制。
{"title":"Association of urinary volatile organic compounds and chronic kidney disease in patients with diabetes: real-world evidence from the NHANES.","authors":"Yu-Li Lin, Yi-Chien Yang","doi":"10.1007/s11306-024-02188-x","DOIUrl":"10.1007/s11306-024-02188-x","url":null,"abstract":"<p><strong>Background: </strong>Chronic kidney disease (CKD) is common in patients with diabetes mellitus (DM). Volatile organic compounds (VOCs) are widespread pollutants that may impact DM development.</p><p><strong>Objective: </strong>This study aims to explore the association between urinary VOC metabolites and CKD in patients with DM.</p><p><strong>Methods: </strong>Adult National Health and Nutrition Examination Survey (NHANES) 2011 to 2018 participants with DM were included in this study. CKD was defined as an estimated glomerular filtration rate (eGFR) < 60 mL/min/1.73 m<sup>2</sup> or urine albumin-to-creatinine ratio (UACR) ≥ 30 mg/g. Multivariable regression models were used to analyze the associations between urinary VOC metabolites and CKD.</p><p><strong>Results: </strong>A total of 1,295 participants with DM and a mean age of 59 years were included. After adjustment for demographic and clinical characteristics, elevated levels of N-acetyl-S-(2-carbamoylethyl)-L-cysteine (AAMA) (tertile 2: adjusted odds ratio (aOR)  =   1.81, 95% confidence interval (CI): 1.15-2.85, p  =  0.012), N-acetyl-S-(N-methylcarbamoyl)-L-cysteine (AMCC) (tertile 2: aOR   =  1.84, 95% CI: 1.10-3.08, p  =  0.021), DHBMA (tertile 3: aOR  =  1.93, 95% CI: 1.12-3.35, p  =   0.020), and phenylglyoxylic acid (PGA) (tertile 3: aOR   =  1.71, 95% CI: 1.11-2.63, p  =  0.017) were significantly associated with increased likelihood of CKD.</p><p><strong>Conclusion: </strong>Specific urinary VOC metabolite levels are positively associated with an increased risk of CKD in patients with DM. These findings suggest that monitoring urinary VOC metabolites could be important for the prevention and management of CKD in this population. Future longitudinal studies should focus on establishing causality and elucidating the underlying mechanisms of these associations.</p>","PeriodicalId":18506,"journal":{"name":"Metabolomics","volume":"20 6","pages":"121"},"PeriodicalIF":3.5,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142564731","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Investigation of the reproducibility of the treatment efficacy of a commercial bio stimulant using metabolic profiling on flax. 利用亚麻代谢图谱研究商用生物刺激剂处理效果的可重复性。
IF 3.5 3区 医学 Q2 ENDOCRINOLOGY & METABOLISM Pub Date : 2024-11-02 DOI: 10.1007/s11306-024-02192-1
Kamar Hamade, Ophelie Fliniaux, Jean-Xavier Fontaine, Roland Molinié, Damien Herfurth, David Mathiron, Vivien Sarazin, Francois Mesnard

Introduction and objectives: Since the use of a bio stimulant should provide a response to a problem that depends on the production system implemented (crops, plant model, soil, climate, the farmer's practices…), the agricultural sector is facing concomitant challenges of choosing the best bio stimulant that suits their needs. Thus, understanding bio stimulant-plant interactions, at molecular level, using metabolomics approaches is a prerequisite, for the development of a bio stimulant, leading to an effective exploration and application of formulations in agriculture. AGRO-K®, is commercialized as a plant-based bio stimulant that improve vigor and enhance resistance to lodging in cereal crops. A recent previous untargeted metabolomics study has demonstrated the ability of this bio stimulant to improve wheat resistance to lodging, in real open-field conditions. However, the reproducibility of the impact of this bio stimulant in other filed crops is not yet investigated.

Methods: Therefore, the present study aimed to assess the changes in primary and secondary metabolites in the roots, stems, and leaves of fiber flax (Linum usitatissimum L), treated with the bio stimulant, using NMR and LC-MS-based untargeted metabolomics approach.

Results and conclusions: In addition to the previous result conducted in wheat, the present analysis seemed to show that this bio stimulant led to a similar pathway enhancement in flax. The pathways which seem to be reproducibly impacted are hydroxycinnamic acid amides (HCAAs), phenylpropanoids and flavonoids. Impacting these pathways enhance root growth and elongation and cell wall lignification, which can aid in preventing crop lodging. These results confirm that HCAAs, flavonoids, and phenylpropanoids could serve as signatory biomarkers of the impact of AGRO-K® on improving lodging resistance across various plant species.

引言和目标:由于生物刺激剂的使用应能解决取决于生产系统(作物、植物模式、土壤、气候、农民的做法......)的问题,因此农业部门在选择适合其需求的最佳生物刺激剂时面临着相应的挑战。因此,利用代谢组学方法在分子水平上了解生物刺激剂与植物之间的相互作用是开发生物刺激剂的先决条件,从而有效地探索和应用农业配方。AGRO-K® 是一种商业化的以植物为基础的生物刺激剂,可提高谷类作物的活力和抗倒伏能力。最近的一项非靶向代谢组学研究表明,这种生物刺激剂能够在真实的露地条件下提高小麦的抗倒伏能力。然而,这种生物刺激剂对其他备案作物影响的可重复性尚未得到研究:因此,本研究旨在使用基于 NMR 和 LC-MS 的非靶向代谢组学方法,评估经生物刺激剂处理的纤维亚麻(Linum usitatissimum L)根、茎和叶中初级和次级代谢物的变化:除了之前在小麦中得出的结果外,目前的分析似乎表明,这种生物刺激剂在亚麻中也导致了类似的途径增强。受影响的途径似乎是羟基肉桂酸酰胺(HCAAs)、苯丙酮类和黄酮类。影响这些途径可促进根系生长和伸长以及细胞壁木质化,从而有助于防止作物徒长。这些结果证实,HCAAs、类黄酮和苯丙酮可作为 AGRO-K® 对提高各种植物抗倒伏性影响的标志性生物标记。
{"title":"Investigation of the reproducibility of the treatment efficacy of a commercial bio stimulant using metabolic profiling on flax.","authors":"Kamar Hamade, Ophelie Fliniaux, Jean-Xavier Fontaine, Roland Molinié, Damien Herfurth, David Mathiron, Vivien Sarazin, Francois Mesnard","doi":"10.1007/s11306-024-02192-1","DOIUrl":"10.1007/s11306-024-02192-1","url":null,"abstract":"<p><strong>Introduction and objectives: </strong>Since the use of a bio stimulant should provide a response to a problem that depends on the production system implemented (crops, plant model, soil, climate, the farmer's practices…), the agricultural sector is facing concomitant challenges of choosing the best bio stimulant that suits their needs. Thus, understanding bio stimulant-plant interactions, at molecular level, using metabolomics approaches is a prerequisite, for the development of a bio stimulant, leading to an effective exploration and application of formulations in agriculture. AGRO-K®, is commercialized as a plant-based bio stimulant that improve vigor and enhance resistance to lodging in cereal crops. A recent previous untargeted metabolomics study has demonstrated the ability of this bio stimulant to improve wheat resistance to lodging, in real open-field conditions. However, the reproducibility of the impact of this bio stimulant in other filed crops is not yet investigated.</p><p><strong>Methods: </strong>Therefore, the present study aimed to assess the changes in primary and secondary metabolites in the roots, stems, and leaves of fiber flax (Linum usitatissimum L), treated with the bio stimulant, using NMR and LC-MS-based untargeted metabolomics approach.</p><p><strong>Results and conclusions: </strong>In addition to the previous result conducted in wheat, the present analysis seemed to show that this bio stimulant led to a similar pathway enhancement in flax. The pathways which seem to be reproducibly impacted are hydroxycinnamic acid amides (HCAAs), phenylpropanoids and flavonoids. Impacting these pathways enhance root growth and elongation and cell wall lignification, which can aid in preventing crop lodging. These results confirm that HCAAs, flavonoids, and phenylpropanoids could serve as signatory biomarkers of the impact of AGRO-K® on improving lodging resistance across various plant species.</p>","PeriodicalId":18506,"journal":{"name":"Metabolomics","volume":"20 6","pages":"122"},"PeriodicalIF":3.5,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11530474/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142564759","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Development of microflow ultra high performance liquid chromatography-mass spectrometry metabolomic assays for analysis of mammalian biofluids. 开发用于分析哺乳动物生物流体的微流超高效液相色谱-质谱法代谢组学测定。
IF 3.5 3区 医学 Q2 ENDOCRINOLOGY & METABOLISM Pub Date : 2024-10-25 DOI: 10.1007/s11306-024-02187-y
Annie J Harwood-Stamper, Caroline A Rowland, Warwick B Dunn

Introduction and objectives: The application of untargeted metabolomics assays using ultra high performance liquid chromatography-mass spectrometry (UHPLC-MS) to study metabolism in biological systems including humans is rapidly increasing. In some of these studies there is a requirement to collect and analyse low sample volumes of biofluids (e.g. tear fluid) or low cell and tissue mass samples (e.g. tissue needle biopsies). The application of microflow, capillary or nano liquid chromatography (≤ 1.0 mm column internal diameter (i.d.)) theoretically should accomplish a higher assay sensitivity compared to analytical liquid chromatography (2.1-5.0 mm column internal diameter). To date, there has been limited research into microflow UHPLC-MS assays that can be applied to study samples of low volume or mass.

Methods: This paper presents three complementary UHPLC-MS assays (aqueous C18 reversed-phase, lipidomics C18 reversed-phase and Hydrophilic Interaction Liquid Chromatography (HILIC)) applying 1.0 mm internal diameter columns for untargeted metabolomics. Human plasma and urine samples were applied for the method development, with porcine plasma, urine and tear fluid used for method assessment. Data were collected and compared for columns of the same length, stationary phase and stationary phase particle size but with two different column internal diameters (2.1 mm and 1.0 mm).

Results and conclusions: All three assays showed an increase in peak areas and peak widths when applying the 1.0 mm i.d. assays. HILIC assays provide an advantage at lower sample dilutions whereas for reversed phase (RP) assays there was no benefit added. This can be seen in the validation study where a much higher number of compounds were detected in the HILIC assay. RP assays were still appropriate for small volume samples with hundreds of compounds being detected. In summary, the 1.0 mm i.d. column assays are applicable for small volume samples where dilution is required during sample preparation.

引言和目的:利用超高效液相色谱-质谱联用技术(UHPLC-MS)进行非靶向代谢组学分析,以研究包括人类在内的生物系统中的新陈代谢的应用正在迅速增加。在其中一些研究中,需要收集和分析低样品量的生物流体(如泪液)或低细胞和组织质量的样品(如组织针活检)。与分析型液相色谱法(色谱柱内径 2.1-5.0 毫米)相比,应用微流、毛细管或纳米液相色谱法(色谱柱内径≤ 1.0 毫米)理论上应具有更高的检测灵敏度。迄今为止,对可用于研究低体积或低质量样品的微流超高压液相色谱-质谱检测方法的研究还很有限:本文介绍了三种互补的超高效液相色谱-质谱检测方法(水样 C18 反相、脂质组学 C18 反相和亲水作用液相色谱 (HILIC)),这些方法均采用内径为 1.0 毫米的色谱柱,用于非靶向代谢组学研究。人血浆和尿液样本用于方法开发,猪血浆、尿液和泪液样本用于方法评估。收集并比较了具有相同长度、固定相和固定相粒度但两种不同柱内径(2.1 毫米和 1.0 毫米)的色谱柱的数据:结果和结论:采用 1.0 毫米内径检测时,所有三种检测方法的峰面积和峰宽都有所增加。HILIC 检测法在较低样品稀释度时具有优势,而反相 (RP) 检测法则没有任何优势。这一点可以从验证研究中看出,HILIC 分析法检测到的化合物数量要多得多。RP 检测法仍然适用于检测数百种化合物的小容量样品。总之,1.0 mm 直径色谱柱检测法适用于样品制备过程中需要稀释的小容量样品。
{"title":"Development of microflow ultra high performance liquid chromatography-mass spectrometry metabolomic assays for analysis of mammalian biofluids.","authors":"Annie J Harwood-Stamper, Caroline A Rowland, Warwick B Dunn","doi":"10.1007/s11306-024-02187-y","DOIUrl":"10.1007/s11306-024-02187-y","url":null,"abstract":"<p><strong>Introduction and objectives: </strong>The application of untargeted metabolomics assays using ultra high performance liquid chromatography-mass spectrometry (UHPLC-MS) to study metabolism in biological systems including humans is rapidly increasing. In some of these studies there is a requirement to collect and analyse low sample volumes of biofluids (e.g. tear fluid) or low cell and tissue mass samples (e.g. tissue needle biopsies). The application of microflow, capillary or nano liquid chromatography (≤ 1.0 mm column internal diameter (i.d.)) theoretically should accomplish a higher assay sensitivity compared to analytical liquid chromatography (2.1-5.0 mm column internal diameter). To date, there has been limited research into microflow UHPLC-MS assays that can be applied to study samples of low volume or mass.</p><p><strong>Methods: </strong>This paper presents three complementary UHPLC-MS assays (aqueous C<sub>18</sub> reversed-phase, lipidomics C<sub>18</sub> reversed-phase and Hydrophilic Interaction Liquid Chromatography (HILIC)) applying 1.0 mm internal diameter columns for untargeted metabolomics. Human plasma and urine samples were applied for the method development, with porcine plasma, urine and tear fluid used for method assessment. Data were collected and compared for columns of the same length, stationary phase and stationary phase particle size but with two different column internal diameters (2.1 mm and 1.0 mm).</p><p><strong>Results and conclusions: </strong>All three assays showed an increase in peak areas and peak widths when applying the 1.0 mm i.d. assays. HILIC assays provide an advantage at lower sample dilutions whereas for reversed phase (RP) assays there was no benefit added. This can be seen in the validation study where a much higher number of compounds were detected in the HILIC assay. RP assays were still appropriate for small volume samples with hundreds of compounds being detected. In summary, the 1.0 mm i.d. column assays are applicable for small volume samples where dilution is required during sample preparation.</p>","PeriodicalId":18506,"journal":{"name":"Metabolomics","volume":"20 6","pages":"120"},"PeriodicalIF":3.5,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11511728/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142503633","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
BW312 Hordeum vulgare semi-dwarf mutant exhibits a shifted metabolic profile towards pathogen resistance. BW312 Hordeum vulgare 半矮小突变体表现出抗病原体转移的代谢特征。
IF 3.5 3区 医学 Q2 ENDOCRINOLOGY & METABOLISM Pub Date : 2024-10-22 DOI: 10.1007/s11306-024-02174-3
Richard Rigo, Julie Zumsteg, Hubert Schaller, Thierry Barchietto, Sergej Buchet, Dimitri Heintz, Claire Villette

Introduction: Plant hormonal mutants, which do not produce or are insensitive to hormones, are often affected in their growth and development, but other metabolic rearrangements might be involved. A trade-off between growth and stress response is necessary for the plant survival.

Objectives: Here, we explore the metabolic profile and the pathogen resistance of a brassinosteroid-insensitive Hordeum vulgare L. semi-dwarf mutant, BW312.

Methods: We investigate BW312 metabolism through a chemical enrichment analysis, confirming a shifted metabolic profile towards pathogen resistance. The effective pathogen resistance of the mutant was tested in presence of Pyrenophora teres and Fusarium graminearum.

Results: Four compound families were increased in the mutant (pyrrolidines, basic amino acids, alkaloids, monounsaturated fatty acids), while two compound families were decreased (pyrrolidinones, anthocyanins). Dipeptides were also altered (increased and decreased). BW312 displayed a better resistance to Pyrenophora teres in the earliest stage of infection with a 21.5% decrease of the lesion length 10 days after infection. BW312 also exhibited a reduced lesion length (43.3%) and a reduced browning of the lesions (55.5%) when exposed to Fusarium graminearum at the seedling stage.

Conclusion: The observed metabolomic shift strongly suggests that the BW312 semi-dwarf mutant is in a primed state, resulting in a standby state of alertness to pathogens.

导言:植物激素突变体不产生激素或对激素不敏感,通常会影响其生长和发育,但也可能涉及其他代谢重新排列。植物的生存需要在生长和胁迫反应之间做出权衡:在此,我们探讨了对黄铜类固醇不敏感的半矮小突变体 Hordeum vulgare L. BW312 的代谢概况和病原体抗性:我们通过化学富集分析研究了 BW312 的新陈代谢,证实其新陈代谢特征已转向抗病原性。在赤霉病菌和禾谷镰刀菌存在的情况下,测试了突变体对病原体的有效抗性:结果:突变体中的四个化合物家族(吡咯烷酮、碱性氨基酸、生物碱、单不饱和脂肪酸)有所增加,而两个化合物家族(吡咯烷酮、花青素)有所减少。二肽也发生了变化(增加和减少)。在感染初期,BW312 对赤霉病有更好的抗性,感染 10 天后,病斑长度减少了 21.5%。BW312 在幼苗期受到禾本科镰刀菌感染时,也表现出病害长度减少(43.3%)和病害褐变减少(55.5%):观察到的代谢组变化强烈表明,BW312 半矮小突变体处于引诱状态,导致其对病原体的警觉性处于待机状态。
{"title":"BW312 Hordeum vulgare semi-dwarf mutant exhibits a shifted metabolic profile towards pathogen resistance.","authors":"Richard Rigo, Julie Zumsteg, Hubert Schaller, Thierry Barchietto, Sergej Buchet, Dimitri Heintz, Claire Villette","doi":"10.1007/s11306-024-02174-3","DOIUrl":"10.1007/s11306-024-02174-3","url":null,"abstract":"<p><strong>Introduction: </strong>Plant hormonal mutants, which do not produce or are insensitive to hormones, are often affected in their growth and development, but other metabolic rearrangements might be involved. A trade-off between growth and stress response is necessary for the plant survival.</p><p><strong>Objectives: </strong>Here, we explore the metabolic profile and the pathogen resistance of a brassinosteroid-insensitive Hordeum vulgare L. semi-dwarf mutant, BW312.</p><p><strong>Methods: </strong>We investigate BW312 metabolism through a chemical enrichment analysis, confirming a shifted metabolic profile towards pathogen resistance. The effective pathogen resistance of the mutant was tested in presence of Pyrenophora teres and Fusarium graminearum.</p><p><strong>Results: </strong>Four compound families were increased in the mutant (pyrrolidines, basic amino acids, alkaloids, monounsaturated fatty acids), while two compound families were decreased (pyrrolidinones, anthocyanins). Dipeptides were also altered (increased and decreased). BW312 displayed a better resistance to Pyrenophora teres in the earliest stage of infection with a 21.5% decrease of the lesion length 10 days after infection. BW312 also exhibited a reduced lesion length (43.3%) and a reduced browning of the lesions (55.5%) when exposed to Fusarium graminearum at the seedling stage.</p><p><strong>Conclusion: </strong>The observed metabolomic shift strongly suggests that the BW312 semi-dwarf mutant is in a primed state, resulting in a standby state of alertness to pathogens.</p>","PeriodicalId":18506,"journal":{"name":"Metabolomics","volume":"20 6","pages":"119"},"PeriodicalIF":3.5,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142503632","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Serum metabolite signature of the modified Mediterranean-DASH intervention for neurodegenerative delay (MIND) diet. 改良地中海-DASH 神经退行性延迟干预饮食(MIND)的血清代谢物特征。
IF 3.5 3区 医学 Q2 ENDOCRINOLOGY & METABOLISM Pub Date : 2024-10-21 DOI: 10.1007/s11306-024-02184-1
Jiaqi Yang, Lauren Bernard, Kari E Wong, Bing Yu, Lyn M Steffen, Valerie K Sullivan, Casey M Rebholz

Introduction: There is a lack of biomarkers of clinically important diets, such as the Mediterranean-DASH Intervention for Neurodegenerative Delay (MIND) diet.

Objectives: Our study explored serum metabolites associated with adherence to the MIND diet.

Methods: In 3,908 Atherosclerosis Risk in Communities (ARIC) study participants, we calculated a modified MIND diet score based on a 66-item self-reported food frequency questionnaire (FFQ). The modified score did not include berries and olive oil, as these items were not assessed in the FFQ. We used multivariable linear regression models in 2 subgroups of ARIC study participants and meta-analyzed results using fixed effects regression to identify significant metabolites after Bonferroni correction. We also examined associations between these metabolites and food components of the modified MIND diet. C-statistics evaluated the prediction of high modified MIND diet adherence using significant metabolites beyond participant characteristics.

Results: Of 360 metabolites analyzed, 27 metabolites (15 positive, 12 negative) were significantly associated with the modified MIND diet score (lipids, n = 13; amino acids, n = 5; xenobiotics, n = 3; cofactors and vitamins, n = 3; carbohydrates n = 2; nucleotide n = 1). The top 4 metabolites that improved the prediction of high dietary adherence to the modified MIND diet were 7-methylxanthine, theobromine, docosahexaenoate (DHA), and 3-carboxy-4-methyl-5-propyl-2-furanpropanoate (CMPF).

Conclusion: Twenty-seven metabolomic markers were correlated with the modified MIND diet. The biomarkers, if further validated, could be useful to objectively assess adherence to the MIND diet.

简介:临床重要饮食(如地中海-DASH 神经退行性延迟干预(MIND)饮食)缺乏生物标志物:临床上缺乏重要饮食的生物标志物,如地中海-DASH 神经退行性延迟干预饮食(MIND):我们的研究探讨了与坚持 MIND 饮食相关的血清代谢物:在 3908 名社区动脉粥样硬化风险(ARIC)研究参与者中,我们根据 66 项自我报告的食物频率问卷(FFQ)计算出了修改后的 MIND 饮食评分。修改后的得分不包括浆果和橄榄油,因为这些项目没有在 FFQ 中进行评估。我们在 ARIC 研究参与者的 2 个亚组中使用了多变量线性回归模型,并使用固定效应回归对结果进行了元分析,以确定经过 Bonferroni 校正后的重要代谢物。我们还研究了这些代谢物与改良 MIND 饮食中的食物成分之间的关联。C统计量评估了利用参与者特征之外的重要代谢物对改良MIND饮食高依从性的预测:结果:在分析的 360 种代谢物中,27 种代谢物(15 种阳性,12 种阴性)与改良 MIND 饮食评分显著相关(脂类,n = 13;氨基酸,n = 5;异种生物,n = 3;辅因子和维生素,n = 3;碳水化合物,n = 2;核苷酸,n = 1)。能提高对改良 MIND 膳食高膳食依从性预测的前 4 种代谢物是 7-甲基黄嘌呤、可可碱、二十二碳六烯酸酯(DHA)和 3-羧基-4-甲基-5-丙基-2-呋喃丙酸酯(CMPF):有 27 个代谢组标记物与改良 MIND 饮食相关。这些生物标志物如能得到进一步验证,将有助于客观评估MIND饮食的坚持情况。
{"title":"Serum metabolite signature of the modified Mediterranean-DASH intervention for neurodegenerative delay (MIND) diet.","authors":"Jiaqi Yang, Lauren Bernard, Kari E Wong, Bing Yu, Lyn M Steffen, Valerie K Sullivan, Casey M Rebholz","doi":"10.1007/s11306-024-02184-1","DOIUrl":"10.1007/s11306-024-02184-1","url":null,"abstract":"<p><strong>Introduction: </strong>There is a lack of biomarkers of clinically important diets, such as the Mediterranean-DASH Intervention for Neurodegenerative Delay (MIND) diet.</p><p><strong>Objectives: </strong>Our study explored serum metabolites associated with adherence to the MIND diet.</p><p><strong>Methods: </strong>In 3,908 Atherosclerosis Risk in Communities (ARIC) study participants, we calculated a modified MIND diet score based on a 66-item self-reported food frequency questionnaire (FFQ). The modified score did not include berries and olive oil, as these items were not assessed in the FFQ. We used multivariable linear regression models in 2 subgroups of ARIC study participants and meta-analyzed results using fixed effects regression to identify significant metabolites after Bonferroni correction. We also examined associations between these metabolites and food components of the modified MIND diet. C-statistics evaluated the prediction of high modified MIND diet adherence using significant metabolites beyond participant characteristics.</p><p><strong>Results: </strong>Of 360 metabolites analyzed, 27 metabolites (15 positive, 12 negative) were significantly associated with the modified MIND diet score (lipids, n = 13; amino acids, n = 5; xenobiotics, n = 3; cofactors and vitamins, n = 3; carbohydrates n = 2; nucleotide n = 1). The top 4 metabolites that improved the prediction of high dietary adherence to the modified MIND diet were 7-methylxanthine, theobromine, docosahexaenoate (DHA), and 3-carboxy-4-methyl-5-propyl-2-furanpropanoate (CMPF).</p><p><strong>Conclusion: </strong>Twenty-seven metabolomic markers were correlated with the modified MIND diet. The biomarkers, if further validated, could be useful to objectively assess adherence to the MIND diet.</p>","PeriodicalId":18506,"journal":{"name":"Metabolomics","volume":"20 6","pages":"118"},"PeriodicalIF":3.5,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142469740","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dopaminergic neuron metabolism: relevance for understanding Parkinson's disease. 多巴胺能神经元代谢:了解帕金森病的相关性。
IF 3.5 3区 医学 Q2 ENDOCRINOLOGY & METABOLISM Pub Date : 2024-10-13 DOI: 10.1007/s11306-024-02181-4
Xóchitl Flores-Ponce, Iván Velasco

Background: Dopaminergic neurons from the substantia nigra pars compacta (SNc) have a higher susceptibility to aging-related degeneration, compared to midbrain dopaminergic cells present in the ventral tegmental area (VTA); the death of dopamine neurons in the SNc results in Parkinson´s disease (PD). In addition to increased loss by aging, dopaminergic neurons from the SNc are more prone to cell death when exposed to genetic or environmental factors, that either interfere with mitochondrial function, or cause an increase of oxidative stress. The oxidation of dopamine is a contributing source of reactive oxygen species (ROS), but this production is not enough to explain the differences in susceptibility to degeneration between SNc and VTA neurons.

Aim of review: In this review we aim to highlight the intrinsic differences between SNc and VTA dopamine neurons, in terms of gene expression, calcium oscillations, bioenergetics, and ROS responses. Also, to describe the changes in the pentose phosphate pathway and the induction of apoptosis in SNc neurons during aging, as related to the development of PD.

Key scientific concepts of review: Recent work showed that neurons from the SNc possess intrinsic characteristics that result in metabolic differences, related to their intricate morphology, that render them more susceptible to degeneration. In particular, these neurons have an elevated basal energy metabolism, that is required to fulfill the demands of the constant firing of action potentials, but at the same time, is associated to higher ROS production, compared to VTA cells. Finally, we discuss how mutations related to PD affect metabolic pathways, and the related mechanisms, as revealed by metabolomics.

背景:与存在于腹侧被盖区(VTA)的中脑多巴胺能细胞相比,来自黑质紧实旁(SNc)的多巴胺能神经元更容易发生与衰老相关的变性;SNc多巴胺能神经元的死亡会导致帕金森病(PD)。除了因衰老而增加损失外,当暴露于干扰线粒体功能或导致氧化应激增加的遗传或环境因素时,SNc 的多巴胺能神经元更容易发生细胞死亡。多巴胺的氧化是活性氧(ROS)的一个来源,但这种生成不足以解释SNc神经元和VTA神经元在易变性方面的差异:在这篇综述中,我们旨在突出 SNc 和 VTA 多巴胺神经元在基因表达、钙振荡、生物能和 ROS 反应方面的内在差异。此外,还阐述了衰老过程中磷酸戊糖通路的变化以及诱导SNc神经元凋亡与帕金森病发展的关系:最近的研究表明,SNc神经元具有内在特征,这些特征导致了与其错综复杂的形态有关的代谢差异,从而使它们更容易发生变性。特别是,与 VTA 细胞相比,这些神经元具有较高的基础能量代谢,这是满足动作电位持续发射的需要所必需的,但同时也与较高的 ROS 生成有关。最后,我们讨论了代谢组学揭示的与帕金森病有关的突变如何影响代谢途径及相关机制。
{"title":"Dopaminergic neuron metabolism: relevance for understanding Parkinson's disease.","authors":"Xóchitl Flores-Ponce, Iván Velasco","doi":"10.1007/s11306-024-02181-4","DOIUrl":"10.1007/s11306-024-02181-4","url":null,"abstract":"<p><strong>Background: </strong>Dopaminergic neurons from the substantia nigra pars compacta (SNc) have a higher susceptibility to aging-related degeneration, compared to midbrain dopaminergic cells present in the ventral tegmental area (VTA); the death of dopamine neurons in the SNc results in Parkinson´s disease (PD). In addition to increased loss by aging, dopaminergic neurons from the SNc are more prone to cell death when exposed to genetic or environmental factors, that either interfere with mitochondrial function, or cause an increase of oxidative stress. The oxidation of dopamine is a contributing source of reactive oxygen species (ROS), but this production is not enough to explain the differences in susceptibility to degeneration between SNc and VTA neurons.</p><p><strong>Aim of review: </strong>In this review we aim to highlight the intrinsic differences between SNc and VTA dopamine neurons, in terms of gene expression, calcium oscillations, bioenergetics, and ROS responses. Also, to describe the changes in the pentose phosphate pathway and the induction of apoptosis in SNc neurons during aging, as related to the development of PD.</p><p><strong>Key scientific concepts of review: </strong>Recent work showed that neurons from the SNc possess intrinsic characteristics that result in metabolic differences, related to their intricate morphology, that render them more susceptible to degeneration. In particular, these neurons have an elevated basal energy metabolism, that is required to fulfill the demands of the constant firing of action potentials, but at the same time, is associated to higher ROS production, compared to VTA cells. Finally, we discuss how mutations related to PD affect metabolic pathways, and the related mechanisms, as revealed by metabolomics.</p>","PeriodicalId":18506,"journal":{"name":"Metabolomics","volume":"20 6","pages":"116"},"PeriodicalIF":3.5,"publicationDate":"2024-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11471710/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142469737","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
EMBL-MCF 2.0: an LC-MS/MS method and corresponding library for high-confidence targeted and untargeted metabolomics using low-adsorption HILIC chromatography. EMBL-MCF 2.0:一种利用低吸附 HILIC 色谱进行高可信度靶向和非靶向代谢组学研究的 LC-MS/MS 方法和相应文库。
IF 3.5 3区 医学 Q2 ENDOCRINOLOGY & METABOLISM Pub Date : 2024-10-13 DOI: 10.1007/s11306-024-02176-1
Svitlana Dekina, Theodore Alexandrov, Bernhard Drotleff

Introduction: Over the past two decades, liquid chromatography-mass spectrometry (LC-MS)-based metabolomics has experienced significant growth, playing a crucial role in various scientific disciplines. However, despite these advance-ments, metabolite identification (MetID) remains a significant challenge. To address this, stringent MetID requirements were established, emphasizing the necessity of aligning experimental data with authentic reference standards using multiple criteria. Establishing dependable methods and corresponding libraries is crucial for instilling confidence in MetID and driving further progress in metabolomics.

Objective: The EMBL-MCF 2.0 LC-MS/MS method and public library was designed to facilitate both targeted and untargeted metabolomics with exclusive focus on endogenous, polar metabolites, which are known to be challenging to analyze due to their hydrophilic nature. By accompanying spectral data with robust retention times obtained from authentic standards and low-adsorption chromatography, high confidence MetID is achieved and accessible to the metabolomics community.

Methods: The library is built on hydrophilic interaction liquid chromatography (HILIC) and state-of-the-art low adsorption LC hardware. Both high-resolution tandem mass spectra and manually optimized multiple reaction monitoring (MRM) transitions were acquired on an Orbitrap Exploris 240 and a QTRAP 6500+, respectively.

Results: Implementation of biocompatible HILIC has facilitated the separation of isomeric metabolites with significant enhancements in both selectivity and sensitivity. The resulting library comprises a diverse collection of more than 250 biologically relevant metabolites. The methodology was successfully applied to investigate a variety of biological matrices, with exemplary findings showcased using murine plasma samples.

Conclusions: Our work has resulted in the development of the EMBL-MCF 2.0 library, a powerful resource for sensitive metabolomics analyses and high-confidence MetID. The library is freely accessible and available in the universal .msp file format under the CC-BY 4.0 license: mona.fiehnlab.ucdavis.edu https://mona.fiehnlab.ucdavis.edu/spectra/browse?query=exists(tags.text:%27EMBL-MCF_2.0_HRMS_Library%27) , EMBL-MCF 2.0 HRMS https://www.embl.org/groups/metabolomics/instrumentation-and-software/#MCF-library .

导言:过去二十年来,基于液相色谱-质谱联用技术(LC-MS)的代谢组学取得了长足的发展,在各个科学学科中发挥了至关重要的作用。然而,尽管取得了这些进展,代谢物鉴定(MetID)仍然是一项重大挑战。为解决这一问题,制定了严格的 MetID 要求,强调必须使用多种标准将实验数据与真实的参考标准进行比对。建立可靠的方法和相应的文库对于增强人们对 MetID 的信心和推动代谢组学的进一步发展至关重要:EMBL-MCF 2.0 LC-MS/MS 方法和公共文库旨在促进靶向和非靶向代谢组学的研究,重点关注内源性极性代谢物。通过将光谱数据与从真实标准品和低吸附色谱中获得的可靠保留时间相结合,实现了高置信度的 MetID,并可供代谢组学界使用:方法:文库建立在亲水相互作用液相色谱法(HILIC)和最先进的低吸附液相色谱法硬件基础上。高分辨率串联质谱和手动优化的多反应监测(MRM)跃迁分别在 Orbitrap Exploris 240 和 QTRAP 6500+ 上获得:结果:采用生物兼容的 HILIC 技术促进了异构代谢物的分离,并显著提高了选择性和灵敏度。由此产生的化合物库包括 250 多种生物相关代谢物。该方法已成功应用于多种生物基质的研究,其中小鼠血浆样本的研究结果堪称典范:我们的工作促成了 EMBL-MCF 2.0 库的开发,这是一个用于灵敏代谢组学分析和高置信度 MetID 的强大资源。在 CC-BY 4.0 许可下,该库以通用 .msp 文件格式免费提供:mona.fiehnlab.ucdavis.edu https://mona.fiehnlab.ucdavis.edu/spectra/browse?query=exists(tags.text:%27EMBL-MCF_2.0_HRMS_Library%27) , EMBL-MCF 2.0 HRMS https://www.embl.org/groups/metabolomics/instrumentation-and-software/#MCF-library 。
{"title":"EMBL-MCF 2.0: an LC-MS/MS method and corresponding library for high-confidence targeted and untargeted metabolomics using low-adsorption HILIC chromatography.","authors":"Svitlana Dekina, Theodore Alexandrov, Bernhard Drotleff","doi":"10.1007/s11306-024-02176-1","DOIUrl":"10.1007/s11306-024-02176-1","url":null,"abstract":"<p><strong>Introduction: </strong>Over the past two decades, liquid chromatography-mass spectrometry (LC-MS)-based metabolomics has experienced significant growth, playing a crucial role in various scientific disciplines. However, despite these advance-ments, metabolite identification (MetID) remains a significant challenge. To address this, stringent MetID requirements were established, emphasizing the necessity of aligning experimental data with authentic reference standards using multiple criteria. Establishing dependable methods and corresponding libraries is crucial for instilling confidence in MetID and driving further progress in metabolomics.</p><p><strong>Objective: </strong>The EMBL-MCF 2.0 LC-MS/MS method and public library was designed to facilitate both targeted and untargeted metabolomics with exclusive focus on endogenous, polar metabolites, which are known to be challenging to analyze due to their hydrophilic nature. By accompanying spectral data with robust retention times obtained from authentic standards and low-adsorption chromatography, high confidence MetID is achieved and accessible to the metabolomics community.</p><p><strong>Methods: </strong>The library is built on hydrophilic interaction liquid chromatography (HILIC) and state-of-the-art low adsorption LC hardware. Both high-resolution tandem mass spectra and manually optimized multiple reaction monitoring (MRM) transitions were acquired on an Orbitrap Exploris 240 and a QTRAP 6500+, respectively.</p><p><strong>Results: </strong>Implementation of biocompatible HILIC has facilitated the separation of isomeric metabolites with significant enhancements in both selectivity and sensitivity. The resulting library comprises a diverse collection of more than 250 biologically relevant metabolites. The methodology was successfully applied to investigate a variety of biological matrices, with exemplary findings showcased using murine plasma samples.</p><p><strong>Conclusions: </strong>Our work has resulted in the development of the EMBL-MCF 2.0 library, a powerful resource for sensitive metabolomics analyses and high-confidence MetID. The library is freely accessible and available in the universal .msp file format under the CC-BY 4.0 license: mona.fiehnlab.ucdavis.edu https://mona.fiehnlab.ucdavis.edu/spectra/browse?query=exists(tags.text:%27EMBL-MCF_2.0_HRMS_Library%27) , EMBL-MCF 2.0 HRMS https://www.embl.org/groups/metabolomics/instrumentation-and-software/#MCF-library .</p>","PeriodicalId":18506,"journal":{"name":"Metabolomics","volume":"20 6","pages":"114"},"PeriodicalIF":3.5,"publicationDate":"2024-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11471713/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142469738","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Metabolomics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1