Selase Torkornoo, Marc Bohner, Ingrid McCarroll, Baptiste Gault
The biocompatibility and resorption characteristics of β-tricalcium phosphate (β-TCP, Ca3(PO4)2) have made it a coveted alternative for bone grafts. However, the underlying mechanisms governing the biological interactions between β-tricalcium phosphate and osteoclasts remain elusive. It has been speculated that the composition at grain boundaries might vary and affect β-TCP resorption properties. Atom probe tomography (APT) offers a quantitative approach to assess the composition of the grain boundaries, and thus advance our comprehension of the biological responses within the microstructure and chemical composition at the nanoscale. The precise quantitative analysis of chemical composition remains a notable challenge in APT, primarily due to the influence of measurement conditions on compositional accuracy. In this study, we investigated the impact of laser pulse energy on the composition of β-TCP using APT, aiming for the most precise Ca:P ratio and consistent results across multiple analyses performed with different sets of analysis conditions and on two different instruments.
{"title":"Optimization of Parameters for Atom Probe Tomography Analysis of β-Tricalcium Phosphates.","authors":"Selase Torkornoo, Marc Bohner, Ingrid McCarroll, Baptiste Gault","doi":"10.1093/mam/ozae077","DOIUrl":"10.1093/mam/ozae077","url":null,"abstract":"<p><p>The biocompatibility and resorption characteristics of β-tricalcium phosphate (β-TCP, Ca3(PO4)2) have made it a coveted alternative for bone grafts. However, the underlying mechanisms governing the biological interactions between β-tricalcium phosphate and osteoclasts remain elusive. It has been speculated that the composition at grain boundaries might vary and affect β-TCP resorption properties. Atom probe tomography (APT) offers a quantitative approach to assess the composition of the grain boundaries, and thus advance our comprehension of the biological responses within the microstructure and chemical composition at the nanoscale. The precise quantitative analysis of chemical composition remains a notable challenge in APT, primarily due to the influence of measurement conditions on compositional accuracy. In this study, we investigated the impact of laser pulse energy on the composition of β-TCP using APT, aiming for the most precise Ca:P ratio and consistent results across multiple analyses performed with different sets of analysis conditions and on two different instruments.</p>","PeriodicalId":18625,"journal":{"name":"Microscopy and Microanalysis","volume":" ","pages":"1074-1082"},"PeriodicalIF":2.9,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142109384","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Dongjie Zhou, Song-Hee Lee, Xiao-Han Li, Ji-Dam Kim, Gyu-Hyun Lee, Jae-Min Sim, Xiang-Shun Cui
The levels of nicotinamide adenine dinucleotide (NADH) dehydrogenase [ubiquinone] iron-sulfur protein 2 (NDUFS2, a subunit of NADH dehydrogenase) decrease in aged tissues, and these reductions may be partly associated with age-related conditions such as Parkinson's disease. Aging leads to many mitochondrial defects, such as biogenesis disruption, dysfunction, defects in the mitochondrial membrane potential, and production of reactive oxygen species, that may be highly related to NDUFS2 expression. The relationship between NDUFS2 and postovulatory oocyte aging in pigs remains unknown. In this study, we investigated changes in NDUFS2 expression during postovulatory aging (POA). Furthermore, NDUFS2 was knocked down via dsRNA microinjection at the MII stage to evaluate the effects on mitochondrial-related processes during POA. The mRNA expression of NDUFS2 decreased significantly after 48-h aging compared with that in fresh oocytes. NDUFS2 knockdown (KD) significantly impaired the maintenance of oocyte morphology and blastocyst development of embryos after POA. The levels of PGC1α (mitochondrial biogenesis-related proteins) decreased significantly after NDUFS2 KD, while the level of GSNOR, a protein denitrosylase, was reduced by NDUFS2 KD after 48 h of aging. These data suggest that NDUFS2 is vital for maintaining the oocyte quality during POA in pigs.
{"title":"Decreased in Mitochondrial Complex I Subunit NDUFS2 Is Critical for Oocyte Quality During Postovulatory Aging in Pigs.","authors":"Dongjie Zhou, Song-Hee Lee, Xiao-Han Li, Ji-Dam Kim, Gyu-Hyun Lee, Jae-Min Sim, Xiang-Shun Cui","doi":"10.1093/mam/ozae079","DOIUrl":"10.1093/mam/ozae079","url":null,"abstract":"<p><p>The levels of nicotinamide adenine dinucleotide (NADH) dehydrogenase [ubiquinone] iron-sulfur protein 2 (NDUFS2, a subunit of NADH dehydrogenase) decrease in aged tissues, and these reductions may be partly associated with age-related conditions such as Parkinson's disease. Aging leads to many mitochondrial defects, such as biogenesis disruption, dysfunction, defects in the mitochondrial membrane potential, and production of reactive oxygen species, that may be highly related to NDUFS2 expression. The relationship between NDUFS2 and postovulatory oocyte aging in pigs remains unknown. In this study, we investigated changes in NDUFS2 expression during postovulatory aging (POA). Furthermore, NDUFS2 was knocked down via dsRNA microinjection at the MII stage to evaluate the effects on mitochondrial-related processes during POA. The mRNA expression of NDUFS2 decreased significantly after 48-h aging compared with that in fresh oocytes. NDUFS2 knockdown (KD) significantly impaired the maintenance of oocyte morphology and blastocyst development of embryos after POA. The levels of PGC1α (mitochondrial biogenesis-related proteins) decreased significantly after NDUFS2 KD, while the level of GSNOR, a protein denitrosylase, was reduced by NDUFS2 KD after 48 h of aging. These data suggest that NDUFS2 is vital for maintaining the oocyte quality during POA in pigs.</p>","PeriodicalId":18625,"journal":{"name":"Microscopy and Microanalysis","volume":" ","pages":"953-961"},"PeriodicalIF":2.9,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142120225","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Identifying clusters of solute atoms in a matrix of solvent atoms helps to understand precipitation phenomena in alloys, for example, during the age hardening of certain aluminum alloys. Atom probe tomography datasets can deliver such information, provided that appropriate cluster identification routines are available. We investigate algorithms based on the local composition of the neighborhood of solute atoms and compare them with traditional approaches based on the local solute number density, such as the maximum separation distance method. For an ideal solid solution, the pair correlation functions of the kth nearest solute atom in the coordination number representation are derived, and the percolation threshold and the size distribution of clusters are studied. A criterion for selecting optimal control parameters based on maximizing the phase separation by the degree of clustering is proposed for a two-phase system. A map of phase compositions accessible for cluster analysis is constructed. The coordination number approach reduces the influence of density variations commonly observed in atom probe tomography data. Finally, a practical cluster analysis technique applied to the early stages of aluminum alloy aging is described.
识别溶剂原子矩阵中的溶质原子簇有助于了解合金中的沉淀现象,例如某些铝合金在时效硬化过程中的沉淀现象。原子探针层析成像数据集可提供此类信息,前提是具备适当的原子团识别程序。我们研究了基于溶质原子邻域局部组成的算法,并将其与基于局部溶质数量密度的传统方法(如最大分离距离法)进行了比较。对于理想固溶体,我们推导出了配位数表示中第 k 个最近溶质原子的成对相关函数,并研究了渗流阈值和簇的大小分布。针对两相体系,提出了基于聚类程度最大化相分离的最佳控制参数选择标准。构建了可用于聚类分析的相组成图。配位数方法减少了原子探针断层扫描数据中常见的密度变化的影响。最后,介绍了一种应用于铝合金老化早期阶段的实用聚类分析技术。
{"title":"A Concept of Local Coordination Number for the Characterization of Solute Clusters within Atom Probe Tomography Data.","authors":"Mykola Lazarev, John Banhart","doi":"10.1093/mam/ozae074","DOIUrl":"10.1093/mam/ozae074","url":null,"abstract":"<p><p>Identifying clusters of solute atoms in a matrix of solvent atoms helps to understand precipitation phenomena in alloys, for example, during the age hardening of certain aluminum alloys. Atom probe tomography datasets can deliver such information, provided that appropriate cluster identification routines are available. We investigate algorithms based on the local composition of the neighborhood of solute atoms and compare them with traditional approaches based on the local solute number density, such as the maximum separation distance method. For an ideal solid solution, the pair correlation functions of the kth nearest solute atom in the coordination number representation are derived, and the percolation threshold and the size distribution of clusters are studied. A criterion for selecting optimal control parameters based on maximizing the phase separation by the degree of clustering is proposed for a two-phase system. A map of phase compositions accessible for cluster analysis is constructed. The coordination number approach reduces the influence of density variations commonly observed in atom probe tomography data. Finally, a practical cluster analysis technique applied to the early stages of aluminum alloy aging is described.</p>","PeriodicalId":18625,"journal":{"name":"Microscopy and Microanalysis","volume":" ","pages":"793-806"},"PeriodicalIF":2.9,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141897775","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
SiO2 aggregates in styrene-butadiene rubber (SBR) were observed using ptychographic X-ray computed tomography (PXCT). The rubber composites were illuminated with X-rays focused by total reflection focusing mirrors, and the ptychographic diffraction patterns were collected using a CITIUS detector in the range of -75° to +75° angle of incidence. The projection images of the rubber composites were reconstructed with a two-dimensional resolution of 76 nm, and no significant structural changes were observed during the PXCT measurements. A three-dimensional image of the rubber composite was reconstructed with an isotropic resolution of 98 nm. Segmentation of SiO2 from the SBR, based on a histogram analysis of the phase shift, revealed a fragmented network structure of interconnected SiO2 aggregates.
使用 X 射线计算机断层扫描(PXCT)观察丁苯橡胶(SBR)中的二氧化硅聚集体。用全反射聚焦镜聚焦的 X 射线照射橡胶复合材料,并使用 CITIUS 探测器在 -75° 至 +75° 入射角范围内收集分层衍射图样。重建的橡胶复合材料投影图像的二维分辨率为 76 nm,在 PXCT 测量过程中未观察到明显的结构变化。重建的橡胶复合材料三维图像的各向同性分辨率为 98 nm。根据相移直方图分析对 SBR 中的二氧化硅进行分割,发现二氧化硅聚集体相互连接,形成了零散的网络结构。
{"title":"Three-Dimensional Nanoscale Imaging of SiO2 Nanofiller in Styrene-Butadiene Rubber with High-Resolution and High-Sensitivity Ptychographic X-ray Computed Tomography.","authors":"Naru Okawa, Nozomu Ishiguro, Shuntaro Takazawa, Hideshi Uematsu, Yuhei Sasaki, Masaki Abe, Kyosuke Ozaki, Yoshiaki Honjo, Haruki Nishino, Yasumasa Joti, Takaki Hatsui, Yukio Takahashi","doi":"10.1093/mam/ozae094","DOIUrl":"10.1093/mam/ozae094","url":null,"abstract":"<p><p>SiO2 aggregates in styrene-butadiene rubber (SBR) were observed using ptychographic X-ray computed tomography (PXCT). The rubber composites were illuminated with X-rays focused by total reflection focusing mirrors, and the ptychographic diffraction patterns were collected using a CITIUS detector in the range of -75° to +75° angle of incidence. The projection images of the rubber composites were reconstructed with a two-dimensional resolution of 76 nm, and no significant structural changes were observed during the PXCT measurements. A three-dimensional image of the rubber composite was reconstructed with an isotropic resolution of 98 nm. Segmentation of SiO2 from the SBR, based on a histogram analysis of the phase shift, revealed a fragmented network structure of interconnected SiO2 aggregates.</p>","PeriodicalId":18625,"journal":{"name":"Microscopy and Microanalysis","volume":" ","pages":"836-843"},"PeriodicalIF":2.9,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142291237","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Heat shock proteins (HSPs) are induced in response to stressful stimuli and play an important role in cell repair and protection. This study, using immunohistochemistry, aimed to determine whether HSPs are induced in the cerebellum of rats subjected to hyperthermia during postnatal development (PND). The results showed that unlike HSP27 and HSP70, HSP60 and HSP90 were constitutively expressed in the cerebellum of rats. However, hyperthermia induced HSP27 in the white matter (WM) and HSP70 in the Bergmann glial cells, the internal granule layer (IGL), and the WM. In the WM, HSP27 induction was only observed on days PND20, PND25, and PND30, and HSP27 expression was higher on day PND30 compared with days PND20 and PND25 (p < 0.001). In the Bergmann glial cells, HSP70 induction was only observed on days PND5, PND10, and PND20, and HSP70 expression was greater on days PND5 and PND10 compared with day PND20 (p < 0.001). In the IGL and the WM, HSP70 expression was higher on days PND20, PND25, and PND30 compared with days PND5 and PND10 (p < 0.001). These findings indicate that unlike HSP60 and HSP90, HSP27 and HSP70 have different expression patterns in the cerebellum of rats after hyperthermia during PND.
{"title":"Induction of Heat Shock Proteins 27, 60, 70, and 90 in the Cerebellum of Rats After Hyperthermia During Postnatal Development.","authors":"Banu Kandil, Alev Gürol Bayraktaroglu","doi":"10.1093/mam/ozae075","DOIUrl":"10.1093/mam/ozae075","url":null,"abstract":"<p><p>Heat shock proteins (HSPs) are induced in response to stressful stimuli and play an important role in cell repair and protection. This study, using immunohistochemistry, aimed to determine whether HSPs are induced in the cerebellum of rats subjected to hyperthermia during postnatal development (PND). The results showed that unlike HSP27 and HSP70, HSP60 and HSP90 were constitutively expressed in the cerebellum of rats. However, hyperthermia induced HSP27 in the white matter (WM) and HSP70 in the Bergmann glial cells, the internal granule layer (IGL), and the WM. In the WM, HSP27 induction was only observed on days PND20, PND25, and PND30, and HSP27 expression was higher on day PND30 compared with days PND20 and PND25 (p < 0.001). In the Bergmann glial cells, HSP70 induction was only observed on days PND5, PND10, and PND20, and HSP70 expression was greater on days PND5 and PND10 compared with day PND20 (p < 0.001). In the IGL and the WM, HSP70 expression was higher on days PND20, PND25, and PND30 compared with days PND5 and PND10 (p < 0.001). These findings indicate that unlike HSP60 and HSP90, HSP27 and HSP70 have different expression patterns in the cerebellum of rats after hyperthermia during PND.</p>","PeriodicalId":18625,"journal":{"name":"Microscopy and Microanalysis","volume":" ","pages":"944-952"},"PeriodicalIF":2.9,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142073253","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abamectin is one of the most widely used pesticides due to its strong insecticidal and anthelmintic activities. Melatonin is a neurohormone with potent antioxidant, anti-apoptotic, and anti-inflammatory effects. This study aimed to investigate the potential ameliorative effects of melatonin against abamectin-induced testicular toxicity in rats. Twenty-four rats were divided into four groups: control group (1 mL/kg/day corn oil), melatonin-treated group (10 mg/kg/day), abamectin-treated group (0.5 mg/kg/day), and melatonin plus abamectin-treated group. Test substances were administered via oral gavage once daily for 28 days. While MDA and 8-OHdG levels increased in the testicular tissue of rats treated with abamectin, SOD, CAT, GPx, and GST enzyme activities decreased significantly. While interleukin-17 levels, TNF-α, and caspase3 expression increased in the testicular tissue, acetylcholinesterase activity decreased. At the same time, serum gonadotropins (luteinizing and follicle-stimulating hormones) and testosterone levels decreased. Light microscope examinations of testicular tissues revealed severe histopathological changes, such as atrophic hyalinized seminiferous tubules, basement membrane irregularity, degeneration, spermatogenic cell loss, and necrosis. Electron microscopy examinations revealed large vacuoles in Sertoli and spermatogenic cells, swelling and vacuolization in mitochondria, lysosomal structures, and increased pyknotic nuclei. In contrast, melatonin supplementation significantly ameliorated abamectin-induced testicular toxicity in rats through antioxidant, antiapoptotic, and anti-inflammatory mechanisms.
{"title":"Protective Role of Melatonin Against Abamectin-Induced Biochemical, Immunohistochemical, and Ultrastructural Alterations in the Testicular Tissues of Rats.","authors":"Caglar Adiguzel, Hatice Karaboduk, Meltem Uzunhisarcikli","doi":"10.1093/mam/ozae080","DOIUrl":"10.1093/mam/ozae080","url":null,"abstract":"<p><p>Abamectin is one of the most widely used pesticides due to its strong insecticidal and anthelmintic activities. Melatonin is a neurohormone with potent antioxidant, anti-apoptotic, and anti-inflammatory effects. This study aimed to investigate the potential ameliorative effects of melatonin against abamectin-induced testicular toxicity in rats. Twenty-four rats were divided into four groups: control group (1 mL/kg/day corn oil), melatonin-treated group (10 mg/kg/day), abamectin-treated group (0.5 mg/kg/day), and melatonin plus abamectin-treated group. Test substances were administered via oral gavage once daily for 28 days. While MDA and 8-OHdG levels increased in the testicular tissue of rats treated with abamectin, SOD, CAT, GPx, and GST enzyme activities decreased significantly. While interleukin-17 levels, TNF-α, and caspase3 expression increased in the testicular tissue, acetylcholinesterase activity decreased. At the same time, serum gonadotropins (luteinizing and follicle-stimulating hormones) and testosterone levels decreased. Light microscope examinations of testicular tissues revealed severe histopathological changes, such as atrophic hyalinized seminiferous tubules, basement membrane irregularity, degeneration, spermatogenic cell loss, and necrosis. Electron microscopy examinations revealed large vacuoles in Sertoli and spermatogenic cells, swelling and vacuolization in mitochondria, lysosomal structures, and increased pyknotic nuclei. In contrast, melatonin supplementation significantly ameliorated abamectin-induced testicular toxicity in rats through antioxidant, antiapoptotic, and anti-inflammatory mechanisms.</p>","PeriodicalId":18625,"journal":{"name":"Microscopy and Microanalysis","volume":" ","pages":"962-977"},"PeriodicalIF":2.9,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142073254","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
We present two new methods of processing data from backscattered electron signals in a scanning electron microscope to image grains and subgrains. The first combines data from multiple backscattered electron images acquired at different specimen geometries to (1) better reveal grain boundaries in recrystallized microstructures and (2) distinguish between recrystallized and unrecrystallized regions in partially recrystallized microstructures. The second utilizes spherical harmonic transform indexing of electron backscatter diffraction patterns to produce high angular resolution orientation data that enable the characterization of subgrains. Subgrains are produced during high-temperature plastic deformation and have boundary misorientation angles ranging from a few degrees down to a few hundredths of a degree. We also present an algorithm to automatically segment grains from combined backscattered electron image data or grains and subgrains from high angular resolution electron backscatter diffraction data. Together, these new techniques enable rapid measurements of individual grains and subgrains from large populations.
{"title":"Imaging and Segmenting Grains and Subgrains Using Backscattered Electron Techniques.","authors":"Thomas J Bennett, Eric M Taleff","doi":"10.1093/mam/ozae092","DOIUrl":"10.1093/mam/ozae092","url":null,"abstract":"<p><p>We present two new methods of processing data from backscattered electron signals in a scanning electron microscope to image grains and subgrains. The first combines data from multiple backscattered electron images acquired at different specimen geometries to (1) better reveal grain boundaries in recrystallized microstructures and (2) distinguish between recrystallized and unrecrystallized regions in partially recrystallized microstructures. The second utilizes spherical harmonic transform indexing of electron backscatter diffraction patterns to produce high angular resolution orientation data that enable the characterization of subgrains. Subgrains are produced during high-temperature plastic deformation and have boundary misorientation angles ranging from a few degrees down to a few hundredths of a degree. We also present an algorithm to automatically segment grains from combined backscattered electron image data or grains and subgrains from high angular resolution electron backscatter diffraction data. Together, these new techniques enable rapid measurements of individual grains and subgrains from large populations.</p>","PeriodicalId":18625,"journal":{"name":"Microscopy and Microanalysis","volume":" ","pages":"913-924"},"PeriodicalIF":2.9,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142350004","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Probe formation in scanning electron microscope (SEM) is often reduced to objective lens action modeling based on a point-spread function or Fourier transforms. In this study, we present the first complete wave optical modeling of the whole SEM column based on plane-by-plane propagation of the electron beam wavefunction without simplifying the optical system. We identify the challenges in plane-by-plane beam propagation and show how sampling limitations produce aliased results. Through a careful selection and combination of propagators, we have developed a general wave optical propagation method that is able to overcome the aliasing problem to achieve the appropriate probe widths. Using a two-step propagator, we show that it is possible to model the electron beam distribution throughout the column from the virtual source plane to the specimen plane. We also show that our results from the wave optical simulations are consistent with the geometrical theory of probe formation. Finally, as a direct application of this method, we demonstrated that the combined effect of aberrations in the condenser lens and the probe forming objective lens cannot be accurately represented using only the objective lens. Designing beam shaping experiments and studying the effect of partial coherence can be some novel applications.
{"title":"Wave Optical Modeling of the SEM Column From Source to Specimen.","authors":"Surya Kamal, Yongjian Zhou, Zizhou Gong","doi":"10.1093/mam/ozae072","DOIUrl":"10.1093/mam/ozae072","url":null,"abstract":"<p><p>Probe formation in scanning electron microscope (SEM) is often reduced to objective lens action modeling based on a point-spread function or Fourier transforms. In this study, we present the first complete wave optical modeling of the whole SEM column based on plane-by-plane propagation of the electron beam wavefunction without simplifying the optical system. We identify the challenges in plane-by-plane beam propagation and show how sampling limitations produce aliased results. Through a careful selection and combination of propagators, we have developed a general wave optical propagation method that is able to overcome the aliasing problem to achieve the appropriate probe widths. Using a two-step propagator, we show that it is possible to model the electron beam distribution throughout the column from the virtual source plane to the specimen plane. We also show that our results from the wave optical simulations are consistent with the geometrical theory of probe formation. Finally, as a direct application of this method, we demonstrated that the combined effect of aberrations in the condenser lens and the probe forming objective lens cannot be accurately represented using only the objective lens. Designing beam shaping experiments and studying the effect of partial coherence can be some novel applications.</p>","PeriodicalId":18625,"journal":{"name":"Microscopy and Microanalysis","volume":" ","pages":"866-877"},"PeriodicalIF":2.9,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142000391","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Rebekka I Stegmeyer, Malte Stasch, Daniel Olesker, Jonathan M Taylor, Thomas J Mitchell, Neveen A Hosny, Nils Kirschnick, Gunnar Spickermann, Dietmar Vestweber, Stefan Volkery
Intravital microscopy has emerged as a powerful imaging tool, which allows the visualization and precise understanding of rapid physiological processes at sites of inflammation in vivo, such as vascular permeability and leukocyte migration. Leukocyte interactions with the vascular endothelium can be characterized in the living organism in the murine cremaster muscle. Here, we present a microscopy technique using an Airy Beam Light Sheet microscope that has significant advantages over our previously used confocal microscopy systems. In comparison, the light sheet microscope offers near isotropic optical resolution and faster acquisition speed, while imaging a larger field of view. With less invasive surgery we can significantly reduce side effects such as bleeding, muscle twitching, and surgical inflammation. However, the increased acquisition speed requires exceptional tissue stability to avoid imaging artefacts. Since respiratory motion is transmitted to the tissue under investigation, we have developed a relocation algorithm that removes motion artefacts from our intravital microscopy images. Using these techniques, we are now able to obtain more detailed 3D time-lapse images of the cremaster vascular microcirculation, which allow us to observe the process of leukocyte emigration into the surrounding tissue with increased temporal resolution in comparison to our previous confocal approach.
{"title":"Intravital Microscopy With an Airy Beam Light Sheet Microscope Improves Temporal Resolution and Reduces Surgical Trauma.","authors":"Rebekka I Stegmeyer, Malte Stasch, Daniel Olesker, Jonathan M Taylor, Thomas J Mitchell, Neveen A Hosny, Nils Kirschnick, Gunnar Spickermann, Dietmar Vestweber, Stefan Volkery","doi":"10.1093/mam/ozae099","DOIUrl":"10.1093/mam/ozae099","url":null,"abstract":"<p><p>Intravital microscopy has emerged as a powerful imaging tool, which allows the visualization and precise understanding of rapid physiological processes at sites of inflammation in vivo, such as vascular permeability and leukocyte migration. Leukocyte interactions with the vascular endothelium can be characterized in the living organism in the murine cremaster muscle. Here, we present a microscopy technique using an Airy Beam Light Sheet microscope that has significant advantages over our previously used confocal microscopy systems. In comparison, the light sheet microscope offers near isotropic optical resolution and faster acquisition speed, while imaging a larger field of view. With less invasive surgery we can significantly reduce side effects such as bleeding, muscle twitching, and surgical inflammation. However, the increased acquisition speed requires exceptional tissue stability to avoid imaging artefacts. Since respiratory motion is transmitted to the tissue under investigation, we have developed a relocation algorithm that removes motion artefacts from our intravital microscopy images. Using these techniques, we are now able to obtain more detailed 3D time-lapse images of the cremaster vascular microcirculation, which allow us to observe the process of leukocyte emigration into the surrounding tissue with increased temporal resolution in comparison to our previous confocal approach.</p>","PeriodicalId":18625,"journal":{"name":"Microscopy and Microanalysis","volume":" ","pages":"925-943"},"PeriodicalIF":2.9,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142469918","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hidekazu Minami, Levi Tegg, Takanori Sato, Julie M Cairney
It is important to understand the carbide distribution around high-energy sites such as dislocations and grain boundaries in martensitic steels as they have a major influence on the alloy performance. The aim of this study is to characterize fine ε carbides precipitated in low-carbon lath martensitic steel using the ultrawide field-of-view (FoV) CAMECA Invizo 6000 atom probe. We demonstrate the advantages of the wide FoV and determine the optimum conditions for analysis, by comparing the results such as the background noise and the C++/C+ charge state ratio (CSR) between voltage-pulsed and laser-pulsed modes. Increasing the laser pulse energy decreased the background noise and the CSR, where 70 pJ laser pulse energy produced a comparable mass-to-charge ratio spectrum to that recorded in voltage-pulsed mode, with the bulk compositions of C, Si, and Mn closest to that measured using voltage-pulsed mode. Increasing laser pulse energies to above 300 pJ decreased the bulk carbon content, with a more diffuse distribution of carbon around the carbides. This paper outlines some of the important experimental considerations when performing quantitative study of carbide precipitation in low-carbon martensitic steels using the Invizo 6000, considerations that can also be applied to other ferrous and non-ferrous alloy systems.
{"title":"Characterization of Carbide Precipitation in Low-Carbon Martensitic Steels Using an Ultrawide Field-of-View 3D Atom Probe.","authors":"Hidekazu Minami, Levi Tegg, Takanori Sato, Julie M Cairney","doi":"10.1093/mam/ozae084","DOIUrl":"10.1093/mam/ozae084","url":null,"abstract":"<p><p>It is important to understand the carbide distribution around high-energy sites such as dislocations and grain boundaries in martensitic steels as they have a major influence on the alloy performance. The aim of this study is to characterize fine ε carbides precipitated in low-carbon lath martensitic steel using the ultrawide field-of-view (FoV) CAMECA Invizo 6000 atom probe. We demonstrate the advantages of the wide FoV and determine the optimum conditions for analysis, by comparing the results such as the background noise and the C++/C+ charge state ratio (CSR) between voltage-pulsed and laser-pulsed modes. Increasing the laser pulse energy decreased the background noise and the CSR, where 70 pJ laser pulse energy produced a comparable mass-to-charge ratio spectrum to that recorded in voltage-pulsed mode, with the bulk compositions of C, Si, and Mn closest to that measured using voltage-pulsed mode. Increasing laser pulse energies to above 300 pJ decreased the bulk carbon content, with a more diffuse distribution of carbon around the carbides. This paper outlines some of the important experimental considerations when performing quantitative study of carbide precipitation in low-carbon martensitic steels using the Invizo 6000, considerations that can also be applied to other ferrous and non-ferrous alloy systems.</p>","PeriodicalId":18625,"journal":{"name":"Microscopy and Microanalysis","volume":" ","pages":"825-835"},"PeriodicalIF":2.9,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142126179","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}