Pub Date : 2024-01-01Epub Date: 2024-06-03DOI: 10.1080/10985549.2024.2353652
Jordan J Crameri, Catherine S Palmer, Tegan Stait, Thomas D Jackson, Matthew Lynch, Adriane Sinclair, Leah E Frajman, Alison G Compton, David Coman, David R Thorburn, Ann E Frazier, Diana Stojanovski
TIMM50 is a core subunit of the TIM23 complex, the mitochondrial inner membrane translocase responsible for the import of pre-sequence-containing precursors into the mitochondrial matrix and inner membrane. Here we describe a mitochondrial disease patient who is homozygous for a novel variant in TIMM50 and establish the first proteomic map of mitochondrial disease associated with TIMM50 dysfunction. We demonstrate that TIMM50 pathogenic variants reduce the levels and activity of endogenous TIM23 complex, which significantly impacts the mitochondrial proteome, resulting in a combined oxidative phosphorylation (OXPHOS) defect and changes to mitochondrial ultrastructure. Using proteomic data sets from TIMM50 patient fibroblasts and a TIMM50 HEK293 cell model of disease, we reveal that laterally released substrates imported via the TIM23SORT complex pathway are most sensitive to loss of TIMM50. Proteins involved in OXPHOS and mitochondrial ultrastructure are enriched in the TIM23SORT substrate pool, providing a biochemical mechanism for the specific defects in TIMM50-associated mitochondrial disease patients. These results highlight the power of using proteomics to elucidate molecular mechanisms of disease and uncovering novel features of fundamental biology, with the implication that human TIMM50 may have a more pronounced role in lateral insertion than previously understood.
{"title":"Reduced Protein Import via TIM23 SORT Drives Disease Pathology in TIMM50-Associated Mitochondrial Disease.","authors":"Jordan J Crameri, Catherine S Palmer, Tegan Stait, Thomas D Jackson, Matthew Lynch, Adriane Sinclair, Leah E Frajman, Alison G Compton, David Coman, David R Thorburn, Ann E Frazier, Diana Stojanovski","doi":"10.1080/10985549.2024.2353652","DOIUrl":"10.1080/10985549.2024.2353652","url":null,"abstract":"<p><p>TIMM50 is a core subunit of the TIM23 complex, the mitochondrial inner membrane translocase responsible for the import of pre-sequence-containing precursors into the mitochondrial matrix and inner membrane. Here we describe a mitochondrial disease patient who is homozygous for a novel variant in <i>TIMM50</i> and establish the first proteomic map of mitochondrial disease associated with TIMM50 dysfunction. We demonstrate that TIMM50 pathogenic variants reduce the levels and activity of endogenous TIM23 complex, which significantly impacts the mitochondrial proteome, resulting in a combined oxidative phosphorylation (OXPHOS) defect and changes to mitochondrial ultrastructure. Using proteomic data sets from TIMM50 patient fibroblasts and a TIMM50 HEK293 cell model of disease, we reveal that laterally released substrates imported via the TIM23<sup>SORT</sup> complex pathway are most sensitive to loss of TIMM50. Proteins involved in OXPHOS and mitochondrial ultrastructure are enriched in the TIM23<sup>SORT</sup> substrate pool, providing a biochemical mechanism for the specific defects in TIMM50-associated mitochondrial disease patients. These results highlight the power of using proteomics to elucidate molecular mechanisms of disease and uncovering novel features of fundamental biology, with the implication that human TIMM50 may have a more pronounced role in lateral insertion than previously understood.</p>","PeriodicalId":18658,"journal":{"name":"Molecular and Cellular Biology","volume":" ","pages":"226-244"},"PeriodicalIF":3.2,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11204040/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141200293","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01Epub Date: 2024-07-08DOI: 10.1080/10985549.2024.2366207
Ka Yee Fung, Eveline D de Geus, Le Ying, Helen Cumming, Nollaig Bourke, Samuel C Foster, Paul J Hertzog
Interferon epsilon (IFNε) is a unique type I interferon (IFN) that shows distinct constitutive expression in reproductive tract epithelium. Understanding how IFNε expression is regulated is critical for the mechanism of action in protecting the mucosa from infection. Combined computational and experimental investigation of the promoter of IFNε predicted transcription factor binding sites for the ETS family of transcription factors. We demonstrate here that Ifnε is regulated by Elf3, an epithelial restricted member of the ETS family. It is co-expressed with IFNε at the epithelium of uterus, lung and intestine, and we focused on regulation of IFNε expression in the uterus. Promoter reporter studies demonstrated that Elf3 was a strong driver of Ifnε expression; knockdown of Elf3 reduced expression levels of IFNε; Elf3 regulated Ifnε expression and chromatin immunoprecipitation (ChIP) confirmed the direct binding of Elf3 to the IFNε promoter. These data show that Elf3 is important in regulating protective mucosal immunity by driving constitutive expression of IFNε to protect mucosal tissues from infection in at least three organ systems.
{"title":"Expression of Interferon Epsilon in Mucosal Epithelium is Regulated by Elf3.","authors":"Ka Yee Fung, Eveline D de Geus, Le Ying, Helen Cumming, Nollaig Bourke, Samuel C Foster, Paul J Hertzog","doi":"10.1080/10985549.2024.2366207","DOIUrl":"10.1080/10985549.2024.2366207","url":null,"abstract":"<p><p>Interferon epsilon (IFNε) is a unique type I interferon (IFN) that shows distinct constitutive expression in reproductive tract epithelium. Understanding how IFNε expression is regulated is critical for the mechanism of action in protecting the mucosa from infection. Combined computational and experimental investigation of the promoter of IFNε predicted transcription factor binding sites for the ETS family of transcription factors. We demonstrate here that <i>Ifnε</i> is regulated by Elf3, an epithelial restricted member of the ETS family. It is co-expressed with IFNε at the epithelium of uterus, lung and intestine, and we focused on regulation of IFNε expression in the uterus. Promoter reporter studies demonstrated that Elf3 was a strong driver of <i>Ifnε</i> expression; knockdown of Elf3 reduced expression levels of IFNε; Elf3 regulated <i>Ifnε</i> expression and chromatin immunoprecipitation (ChIP) confirmed the direct binding of Elf3 to the IFNε promoter. These data show that Elf3 is important in regulating protective mucosal immunity by driving constitutive expression of IFNε to protect mucosal tissues from infection in at least three organ systems.</p>","PeriodicalId":18658,"journal":{"name":"Molecular and Cellular Biology","volume":" ","pages":"334-343"},"PeriodicalIF":3.2,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11296529/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141555189","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01Epub Date: 2024-03-14DOI: 10.1080/10985549.2024.2319731
Yasmin Dijkwel, Gene Hart-Smith, Sebastian Kurscheid, David J Tremethick
ANP32e, a chaperone of H2A.Z, is receiving increasing attention because of its association with cancer growth and progression. An unanswered question is whether ANP32e regulates H2A.Z dynamics during the cell cycle; this could have clear implications for the proliferation of cancer cells. We confirmed that ANP32e regulates the growth of human U2OS cancer cells and preferentially interacts with H2A.Z during the G1 phase of the cell cycle. Unexpectedly, ANP32e does not mediate the removal of H2A.Z from chromatin, is not a stable component of the p400 remodeling complex and is not strongly associated with chromatin. Instead, most ANP32e is in the cytoplasm. Here, ANP32e preferentially interacts with H2A.Z in the G1 phase in response to an increase in H2A.Z protein abundance and regulates its protein stability. This G1-specific interaction was also observed in the nucleoplasm but was unrelated to any change in H2A.Z abundance. These results challenge the idea that ANP32e regulates the abundance of H2A.Z in chromatin as part of a chromatin remodeling complex. We propose that ANP32e is a molecular chaperone that maintains the soluble pool of H2A.Z by regulating its protein stability and acting as a buffer in response to cell cycle-dependent changes in H2A.Z abundance.
{"title":"ANP32e Binds Histone H2A.Z in a Cell Cycle-Dependent Manner and Regulates Its Protein Stability in the Cytoplasm.","authors":"Yasmin Dijkwel, Gene Hart-Smith, Sebastian Kurscheid, David J Tremethick","doi":"10.1080/10985549.2024.2319731","DOIUrl":"10.1080/10985549.2024.2319731","url":null,"abstract":"<p><p>ANP32e, a chaperone of H2A.Z, is receiving increasing attention because of its association with cancer growth and progression. An unanswered question is whether ANP32e regulates H2A.Z dynamics during the cell cycle; this could have clear implications for the proliferation of cancer cells. We confirmed that ANP32e regulates the growth of human U2OS cancer cells and preferentially interacts with H2A.Z during the G1 phase of the cell cycle. Unexpectedly, ANP32e does not mediate the removal of H2A.Z from chromatin, is not a stable component of the p400 remodeling complex and is not strongly associated with chromatin. Instead, most ANP32e is in the cytoplasm. Here, ANP32e preferentially interacts with H2A.Z in the G1 phase in response to an increase in H2A.Z protein abundance and regulates its protein stability. This G1-specific interaction was also observed in the nucleoplasm but was unrelated to any change in H2A.Z abundance. These results challenge the idea that ANP32e regulates the abundance of H2A.Z in chromatin as part of a chromatin remodeling complex. We propose that ANP32e is a molecular chaperone that maintains the soluble pool of H2A.Z by regulating its protein stability and acting as a buffer in response to cell cycle-dependent changes in H2A.Z abundance.</p>","PeriodicalId":18658,"journal":{"name":"Molecular and Cellular Biology","volume":" ","pages":"72-85"},"PeriodicalIF":3.2,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10950284/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140120079","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01Epub Date: 2024-08-12DOI: 10.1080/10985549.2024.2383296
Eunbyul Ji, Poonam R Pandey, Jennifer L Martindale, Xiaoling Yang, Jen-Hao Yang, Dimitrios Tsitsipatis, Chang Hoon Shin, Yulan Piao, Jinshui Fan, Krystyna Mazan-Mamczarz, Nirad Banskota, Supriyo De, Myriam Gorospe
Myogenesis is a highly orchestrated process whereby muscle precursor cells, myoblasts, develop into muscle fibers to form skeletal muscle during embryogenesis and regenerate adult muscle. Here, we studied the RNA-binding protein FUS (fused in sarcoma), which has been implicated in muscular and neuromuscular pathologies but is poorly characterized in myogenesis. Given that FUS levels declined in human and mouse models of skeletal myogenesis, and that silencing FUS enhanced myogenesis, we hypothesized that FUS might be a repressor of myogenic differentiation. Interestingly, overexpression of FUS delayed myogenesis, accompanied by slower production of muscle differentiation markers. To identify the mechanisms through which FUS inhibits myogenesis, we uncovered RNA targets of FUS by ribonucleoprotein immunoprecipitation (RIP) followed by RNA-sequencing (RNA-seq) analysis. Stringent selection of the bound transcripts uncovered Tnnt1 mRNA, encoding troponin T1 (TNNT1), as a major effector of FUS influence on myogenesis. We found that in myoblasts, FUS retained Tnnt1 mRNA in the nucleus, preventing TNNT1 expression; however, reduction of FUS during myogenesis or by silencing FUS released Tnnt1 mRNA for export to the cytoplasm, enabling TNNT1 translation and promoting myogenesis. We propose that FUS inhibits myogenesis by suppressing TNNT1 expression through a mechanism of nuclear Tnnt1 mRNA retention.
{"title":"FUS-Mediated Inhibition of Myogenesis Elicited by Suppressing TNNT1 Production.","authors":"Eunbyul Ji, Poonam R Pandey, Jennifer L Martindale, Xiaoling Yang, Jen-Hao Yang, Dimitrios Tsitsipatis, Chang Hoon Shin, Yulan Piao, Jinshui Fan, Krystyna Mazan-Mamczarz, Nirad Banskota, Supriyo De, Myriam Gorospe","doi":"10.1080/10985549.2024.2383296","DOIUrl":"10.1080/10985549.2024.2383296","url":null,"abstract":"<p><p>Myogenesis is a highly orchestrated process whereby muscle precursor cells, myoblasts, develop into muscle fibers to form skeletal muscle during embryogenesis and regenerate adult muscle. Here, we studied the RNA-binding protein FUS (fused in sarcoma), which has been implicated in muscular and neuromuscular pathologies but is poorly characterized in myogenesis. Given that FUS levels declined in human and mouse models of skeletal myogenesis, and that silencing FUS enhanced myogenesis, we hypothesized that FUS might be a repressor of myogenic differentiation. Interestingly, overexpression of FUS delayed myogenesis, accompanied by slower production of muscle differentiation markers. To identify the mechanisms through which FUS inhibits myogenesis, we uncovered RNA targets of FUS by ribonucleoprotein immunoprecipitation (RIP) followed by RNA-sequencing (RNA-seq) analysis. Stringent selection of the bound transcripts uncovered <i>Tnnt1</i> mRNA, encoding troponin T1 (TNNT1), as a major effector of FUS influence on myogenesis. We found that in myoblasts, FUS retained <i>Tnnt1</i> mRNA in the nucleus, preventing TNNT1 expression; however, reduction of FUS during myogenesis or by silencing FUS released <i>Tnnt1</i> mRNA for export to the cytoplasm, enabling TNNT1 translation and promoting myogenesis. We propose that FUS inhibits myogenesis by suppressing TNNT1 expression through a mechanism of nuclear <i>Tnnt1</i> mRNA retention.</p>","PeriodicalId":18658,"journal":{"name":"Molecular and Cellular Biology","volume":" ","pages":"391-409"},"PeriodicalIF":3.2,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11376412/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141917111","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01Epub Date: 2024-09-28DOI: 10.1080/10985549.2024.2399766
Luca Ferrarese, Michael Koch, Artemis Baumann, Liliana Bento-Lopes, Daria Wüst, Ivan Berest, Manfred Kopf, Sabine Werner
Fibroblast growth factors (FGFs) are key orchestrators of development, tissue homeostasis and repair. FGF receptor (FGFR) deficiency in mouse keratinocytes causes an inflammatory skin phenotype with similarities to atopic dermatitis, but the human relevance is unclear. Therefore, we generated human keratinocytes with a CRISPR/Cas9-induced knockout of FGFR2. Loss of this receptor promoted the expression of interferon-stimulated genes and pro-inflammatory cytokines under homeostatic conditions and in particular in response to different inflammatory mediators. Expression of FGFR2 itself was strongly downregulated in cultured human keratinocytes exposed to various pro-inflammatory stimuli. This is relevant in vivo, because bioinformatics analysis of bulk and single-cell RNA-seq data showed strongly reduced expression of FGFR2 in lesional skin of atopic dermatitis patients, which likely aggravates the inflammatory phenotype. These results reveal a key function of FGFR2 in human keratinocytes in the suppression of inflammation and suggest a role of FGFR2 downregulation in the pathogenesis of atopic dermatitis and possibly other inflammatory diseases.
{"title":"Inflammatory Mediators Suppress FGFR2 Expression in Human Keratinocytes to Promote Inflammation.","authors":"Luca Ferrarese, Michael Koch, Artemis Baumann, Liliana Bento-Lopes, Daria Wüst, Ivan Berest, Manfred Kopf, Sabine Werner","doi":"10.1080/10985549.2024.2399766","DOIUrl":"10.1080/10985549.2024.2399766","url":null,"abstract":"<p><p>Fibroblast growth factors (FGFs) are key orchestrators of development, tissue homeostasis and repair. FGF receptor (FGFR) deficiency in mouse keratinocytes causes an inflammatory skin phenotype with similarities to atopic dermatitis, but the human relevance is unclear. Therefore, we generated human keratinocytes with a CRISPR/Cas9-induced knockout of <i>FGFR2</i>. Loss of this receptor promoted the expression of interferon-stimulated genes and pro-inflammatory cytokines under homeostatic conditions and in particular in response to different inflammatory mediators. Expression of FGFR2 itself was strongly downregulated in cultured human keratinocytes exposed to various pro-inflammatory stimuli. This is relevant <i>in vivo</i>, because bioinformatics analysis of bulk and single-cell RNA-seq data showed strongly reduced expression of <i>FGFR2</i> in lesional skin of atopic dermatitis patients, which likely aggravates the inflammatory phenotype. These results reveal a key function of FGFR2 in human keratinocytes in the suppression of inflammation and suggest a role of FGFR2 downregulation in the pathogenesis of atopic dermatitis and possibly other inflammatory diseases.</p>","PeriodicalId":18658,"journal":{"name":"Molecular and Cellular Biology","volume":" ","pages":"489-504"},"PeriodicalIF":3.2,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11529413/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142350049","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Smyd1, a member of the Smyd lysine methyltransferase family, plays an important role in myofibrillogenesis of skeletal and cardiac muscles. Loss of Smyd1b (a Smyd1 ortholog) function in zebrafish results in embryonic death from heart malfunction. smyd1b encodes two isoforms, Smyd1b_tv1 and Smyd1b_tv2, differing by 13 amino acids due to alternative splicing. While smyd1 alternative splicing is evolutionarily conserved, the isoform-specific expression and function of Smyd1b_tv1 and Smyd1b_tv2 remained unknown. Here we analyzed their expression and function in skeletal and cardiac muscles. Our analysis revealed expression of smyd1b_tv1 predominately in cardiac and smyd1b_tv2 in skeletal muscles. Using zebrafish models expressing only one isoform, we demonstrated that Smyd1b_tv1 is essential for cardiomyocyte differentiation and fish viability, whereas Smyd1b_tv2 is dispensable for heart development and fish survival. Cellular and biochemical analyses revealed that Smyd1b_tv1 differs from Smyd1b_tv2 in protein localization and binding with myosin chaperones. While Smyd1b_tv2 diffused in the cytosol of muscle cells, Smyd1b_tv1 was localized to M-lines and essential for sarcomere organization in cardiomyocytes. Co-IP analysis revealed a stronger binding of Smyd1b_tv1 with chaperones and cochaperones compared with Smyd1b_tv2. Collectively, these findings highlight the nonequivalence of Smyd1b isoforms in cardiomyocyte differentiation, emphasizing the critical role of Smyd1b_tv1 in cardiac function.
{"title":"Expression of Smyd1b_tv1 by Alternative Splicing in Cardiac Muscle is Critical for Sarcomere Organization in Cardiomyocytes and Heart Function.","authors":"Rui Xu, Siping Li, Chien-Ju Chien, Yongwang Zhong, Huanhuan Xiao, Shengyun Fang, Shaojun Du","doi":"10.1080/10985549.2024.2402660","DOIUrl":"10.1080/10985549.2024.2402660","url":null,"abstract":"<p><p>Smyd1, a member of the Smyd lysine methyltransferase family, plays an important role in myofibrillogenesis of skeletal and cardiac muscles. Loss of Smyd1b (a Smyd1 ortholog) function in zebrafish results in embryonic death from heart malfunction. <i>smyd1b</i> encodes two isoforms, Smyd1b_tv1 and Smyd1b_tv2, differing by 13 amino acids due to alternative splicing. While <i>smyd1</i> alternative splicing is evolutionarily conserved, the isoform-specific expression and function of Smyd1b_tv1 and Smyd1b_tv2 remained unknown. Here we analyzed their expression and function in skeletal and cardiac muscles. Our analysis revealed expression of <i>smyd1b_tv1</i> predominately in cardiac and <i>smyd1b_tv2</i> in skeletal muscles. Using zebrafish models expressing only one isoform, we demonstrated that Smyd1b_tv1 is essential for cardiomyocyte differentiation and fish viability, whereas Smyd1b_tv2 is dispensable for heart development and fish survival. Cellular and biochemical analyses revealed that Smyd1b_tv1 differs from Smyd1b_tv2 in protein localization and binding with myosin chaperones. While Smyd1b_tv2 diffused in the cytosol of muscle cells, Smyd1b_tv1 was localized to M-lines and essential for sarcomere organization in cardiomyocytes. Co-IP analysis revealed a stronger binding of Smyd1b_tv1 with chaperones and cochaperones compared with Smyd1b_tv2. Collectively, these findings highlight the nonequivalence of Smyd1b isoforms in cardiomyocyte differentiation, emphasizing the critical role of Smyd1b_tv1 in cardiac function.</p>","PeriodicalId":18658,"journal":{"name":"Molecular and Cellular Biology","volume":" ","pages":"543-561"},"PeriodicalIF":3.2,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11583600/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142350048","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01Epub Date: 2024-02-12DOI: 10.1080/10985549.2024.2307574
Katherine R Pasterczyk, Xiao Ling Li, Ragini Singh, Meira S Zibitt, Corrine Corrina R Hartford, Lorinc Pongor, Lisa M Jenkins, Yue Hu, Patrick X Zhao, Bruna R Muys, Suresh Kumar, Nitin Roper, Mirit I Aladjem, Yves Pommier, Ioannis Grammatikakis, Ashish Lal
Transcription factors play key roles in development and disease by controlling gene expression. Forkhead box A1 (FOXA1), is a pioneer transcription factor essential for mouse development and functions as an oncogene in prostate and breast cancer. In colorectal cancer (CRC), FOXA1 is significantly downregulated and high FOXA1 expression is associated with better prognosis, suggesting potential tumor suppressive functions. We therefore investigated the regulation of FOXA1 expression in CRC, focusing on well-differentiated CRC cells, where FOXA1 is robustly expressed. Genome-wide RNA stability assays identified FOXA1 as an unstable mRNA in CRC cells. We validated FOXA1 mRNA instability in multiple CRC cell lines and in patient-derived CRC organoids, and found that the FOXA1 3'UTR confers instability to the FOXA1 transcript. RNA pulldowns and mass spectrometry identified Staufen1 (STAU1) as a potential regulator of FOXA1 mRNA. Indeed, STAU1 knockdown resulted in increased FOXA1 mRNA and protein expression due to increased FOXA1 mRNA stability. Consistent with these data, RNA-seq following STAU1 knockdown in CRC cells revealed that FOXA1 targets were upregulated upon STAU1 knockdown. Collectively, this study uncovers a molecular mechanism by which FOXA1 is regulated in CRC cells and provides insights into our understanding of the complex mechanisms of gene regulation in cancer.
{"title":"Staufen1 Represses the FOXA1-Regulated Transcriptome by Destabilizing FOXA1 mRNA in Colorectal Cancer Cells.","authors":"Katherine R Pasterczyk, Xiao Ling Li, Ragini Singh, Meira S Zibitt, Corrine Corrina R Hartford, Lorinc Pongor, Lisa M Jenkins, Yue Hu, Patrick X Zhao, Bruna R Muys, Suresh Kumar, Nitin Roper, Mirit I Aladjem, Yves Pommier, Ioannis Grammatikakis, Ashish Lal","doi":"10.1080/10985549.2024.2307574","DOIUrl":"10.1080/10985549.2024.2307574","url":null,"abstract":"<p><p>Transcription factors play key roles in development and disease by controlling gene expression. Forkhead box A1 (FOXA1), is a pioneer transcription factor essential for mouse development and functions as an oncogene in prostate and breast cancer. In colorectal cancer (CRC), FOXA1 is significantly downregulated and high FOXA1 expression is associated with better prognosis, suggesting potential tumor suppressive functions. We therefore investigated the regulation of FOXA1 expression in CRC, focusing on well-differentiated CRC cells, where FOXA1 is robustly expressed. Genome-wide RNA stability assays identified FOXA1 as an unstable mRNA in CRC cells. We validated FOXA1 mRNA instability in multiple CRC cell lines and in patient-derived CRC organoids, and found that the FOXA1 3'UTR confers instability to the FOXA1 transcript. RNA pulldowns and mass spectrometry identified Staufen1 (STAU1) as a potential regulator of FOXA1 mRNA. Indeed, STAU1 knockdown resulted in increased FOXA1 mRNA and protein expression due to increased FOXA1 mRNA stability. Consistent with these data, RNA-seq following STAU1 knockdown in CRC cells revealed that FOXA1 targets were upregulated upon STAU1 knockdown. Collectively, this study uncovers a molecular mechanism by which FOXA1 is regulated in CRC cells and provides insights into our understanding of the complex mechanisms of gene regulation in cancer.</p>","PeriodicalId":18658,"journal":{"name":"Molecular and Cellular Biology","volume":" ","pages":"43-56"},"PeriodicalIF":3.2,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10950277/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139723241","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01Epub Date: 2024-03-23DOI: 10.1080/10985549.2024.2325527
Nan Yang, Yue Zhang, Peiyao Ren, Li Zhao, Danna Zheng, Lanjun Fu, Juan Jin
Although LncRNA AA465934 expression is reduced in high glucose (HG)-treated podocytes, its role in HG-mediated podocyte injury and diabetic nephropathy (DN) remains unknown. Herein, we investigated the role of AA465934 in HG-mediated podocyte injury and DN using a spontaneous type II diabetic nephropathy (T2DN) model. The model was created by injecting AA465934 overexpressed adeno-associated virus (AAV) or control into mice. The levels of renal function, proteinuria, renal structural lesions, and podocyte apoptosis were then examined. Furthermore, AA465934 and autophagy levels, as well as tristetraprolin (TTP) and high mobility group box 1 (HMGB1) expression changes were detected. We also observed podocyte injury and the binding ability of TTP to E3 ligase proviral insertion in murine lymphomas 2 (PIM2), AA465934, or HMGB1. According to the results, AA465934 improved DN progression and podocyte damage in T2DN mice. In addition, AA465934 bound to TTP and inhibited its degradation by blocking TTP-PIM2 binding. Notably, TTP knock-down blocked the ameliorating effects of AA465934 and TTP bound HMGB1 mRNA, reducing its expression. Overexpression of HMGB1 inhibited the ability of AA465934 and TTP to improve podocyte injury. Furthermore, AA465934 bound TTP, inhibiting TTP-PIM2 binding, thereby suppressing TTP degradation, downregulating HMGB1, and reversing autophagy downregulation, ultimately alleviating HG-mediated podocyte injury and DN. Based on these findings, we deduced that the AA465934/TTP/HMGB1/autophagy axis could be a therapeutic avenue for managing podocyte injury and DN.
{"title":"LncRNA AA465934 Improves Podocyte Injury by Promoting Tristetraprolin-Mediated HMGB1 DownRegulation in Diabetic Nephropathy.","authors":"Nan Yang, Yue Zhang, Peiyao Ren, Li Zhao, Danna Zheng, Lanjun Fu, Juan Jin","doi":"10.1080/10985549.2024.2325527","DOIUrl":"10.1080/10985549.2024.2325527","url":null,"abstract":"<p><p>Although LncRNA AA465934 expression is reduced in high glucose (HG)-treated podocytes, its role in HG-mediated podocyte injury and diabetic nephropathy (DN) remains unknown. Herein, we investigated the role of AA465934 in HG-mediated podocyte injury and DN using a spontaneous type II diabetic nephropathy (T2DN) model. The model was created by injecting AA465934 overexpressed adeno-associated virus (AAV) or control into mice. The levels of renal function, proteinuria, renal structural lesions, and podocyte apoptosis were then examined. Furthermore, AA465934 and autophagy levels, as well as tristetraprolin (TTP) and high mobility group box 1 (HMGB1) expression changes were detected. We also observed podocyte injury and the binding ability of TTP to E3 ligase proviral insertion in murine lymphomas 2 (PIM2), AA465934, or HMGB1. According to the results, AA465934 improved DN progression and podocyte damage in T2DN mice. In addition, AA465934 bound to TTP and inhibited its degradation by blocking TTP-PIM2 binding. Notably, TTP knock-down blocked the ameliorating effects of AA465934 and TTP bound HMGB1 mRNA, reducing its expression. Overexpression of HMGB1 inhibited the ability of AA465934 and TTP to improve podocyte injury. Furthermore, AA465934 bound TTP, inhibiting TTP-PIM2 binding, thereby suppressing TTP degradation, downregulating HMGB1, and reversing autophagy downregulation, ultimately alleviating HG-mediated podocyte injury and DN. Based on these findings, we deduced that the AA465934/TTP/HMGB1/autophagy axis could be a therapeutic avenue for managing podocyte injury and DN.</p>","PeriodicalId":18658,"journal":{"name":"Molecular and Cellular Biology","volume":" ","pages":"87-102"},"PeriodicalIF":3.2,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10986766/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140194168","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01Epub Date: 2024-05-23DOI: 10.1080/10985549.2024.2350543
Sakshi Khurana, Dileep Varma, Daniel R Foltz
Proper chromosome segregation is required to ensure chromosomal stability. The centromere (CEN) is a unique chromatin domain defined by CENP-A and is responsible for recruiting the kinetochore (KT) during mitosis, ultimately regulating microtubule spindle attachment and mitotic checkpoint function. Upregulation of many CEN/KT genes is commonly observed in cancer. Here, we show that although FOXM1 occupies promoters of many CEN/KT genes with MYBL2, FOXM1 overexpression alone is insufficient to drive the FOXM1-correlated transcriptional program. CENP-F is canonically an outer kinetochore component; however, it functions with FOXM1 to coregulate G2/M transcription and proper chromosome segregation. Loss of CENP-F results in altered chromatin accessibility at G2/M genes and reduced FOXM1-MBB complex formation. We show that coordinated CENP-FFOXM1 transcriptional regulation is a cancer-specific function. We observe a small subset of CEN/KT genes including CENP-C, that are not regulated by FOXM1. Upregulation of CENP-C in the context of CENP-A overexpression leads to increased chromosome missegregation and cell death suggesting that escape of CENP-C from FOXM1 regulation is a cancer survival mechanism. Together, we show that FOXM1 and CENP-F coordinately regulate G2/M genes, and this coordination is specific to a subset of genes to allow for maintenance of chromosome instability levels and subsequent cell survival.
{"title":"Contribution of CENP-F to FOXM1-Mediated Discordant Centromere and Kinetochore Transcriptional Regulation.","authors":"Sakshi Khurana, Dileep Varma, Daniel R Foltz","doi":"10.1080/10985549.2024.2350543","DOIUrl":"10.1080/10985549.2024.2350543","url":null,"abstract":"<p><p>Proper chromosome segregation is required to ensure chromosomal stability. The centromere (CEN) is a unique chromatin domain defined by CENP-A and is responsible for recruiting the kinetochore (KT) during mitosis, ultimately regulating microtubule spindle attachment and mitotic checkpoint function. Upregulation of many CEN/KT genes is commonly observed in cancer. Here, we show that although FOXM1 occupies promoters of many CEN/KT genes with MYBL2, FOXM1 overexpression alone is insufficient to drive the FOXM1-correlated transcriptional program. CENP-F is canonically an outer kinetochore component; however, it functions with FOXM1 to coregulate G2/M transcription and proper chromosome segregation. Loss of CENP-F results in altered chromatin accessibility at G2/M genes and reduced FOXM1-MBB complex formation. We show that coordinated CENP-FFOXM1 transcriptional regulation is a cancer-specific function. We observe a small subset of CEN/KT genes including CENP-C, that are not regulated by FOXM1. Upregulation of CENP-C in the context of CENP-A overexpression leads to increased chromosome missegregation and cell death suggesting that escape of CENP-C from FOXM1 regulation is a cancer survival mechanism. Together, we show that FOXM1 and CENP-F coordinately regulate G2/M genes, and this coordination is specific to a subset of genes to allow for maintenance of chromosome instability levels and subsequent cell survival.</p>","PeriodicalId":18658,"journal":{"name":"Molecular and Cellular Biology","volume":" ","pages":"209-225"},"PeriodicalIF":3.2,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11204039/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141081916","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01Epub Date: 2024-07-22DOI: 10.1080/10985549.2024.2378810
Rebecca J Brownlie, Robert J Salmond
Protein tyrosine phosphatases (PTPs) play central roles in the regulation of cell signaling, organismal development, cellular differentiation and proliferation, and cancer. In the immune system, PTPs regulate the activation, differentiation and effector function of lymphocytes and myeloid cells whilst single-nucleotide polymorphisms (SNPs) in PTP-encoding genes have been identified as risk factors for the development of autoimmunity. In this review we describe the roles for PTP nonreceptor type 22 (PTPN22) in the regulation of T lymphocyte signaling and activation in autoimmunity, infection and cancer. We summarize recent progress in our understanding of the regulation of PTPN22 activity, the impact of autoimmune disease-associated PTPN22 SNPs on T cell responses and describe approaches to harness PTPN22 as a target to improve T cell-based immunotherapies in cancer.
蛋白酪氨酸磷酸酶(PTPs)在细胞信号传导、生物体发育、细胞分化和增殖以及癌症的调控中发挥着核心作用。在免疫系统中,PTPs 调节淋巴细胞和骨髓细胞的活化、分化和效应功能,而 PTP 编码基因中的单核苷酸多态性(SNPs)已被确定为自身免疫病发病的风险因素。在这篇综述中,我们描述了 PTP 非受体 22 型(PTPN22)在自身免疫、感染和癌症中调节 T 淋巴细胞信号传导和活化的作用。我们总结了在了解 PTPN22 活性调控方面的最新进展、与自身免疫疾病相关的 PTPN22 SNPs 对 T 细胞反应的影响,并介绍了利用 PTPN22 作为靶点改善基于 T 细胞的癌症免疫疗法的方法。
{"title":"Regulation of T Cell Signaling and Immune Responses by PTPN22.","authors":"Rebecca J Brownlie, Robert J Salmond","doi":"10.1080/10985549.2024.2378810","DOIUrl":"10.1080/10985549.2024.2378810","url":null,"abstract":"<p><p>Protein tyrosine phosphatases (PTPs) play central roles in the regulation of cell signaling, organismal development, cellular differentiation and proliferation, and cancer. In the immune system, PTPs regulate the activation, differentiation and effector function of lymphocytes and myeloid cells whilst single-nucleotide polymorphisms (SNPs) in PTP-encoding genes have been identified as risk factors for the development of autoimmunity. In this review we describe the roles for PTP nonreceptor type 22 (PTPN22) in the regulation of T lymphocyte signaling and activation in autoimmunity, infection and cancer. We summarize recent progress in our understanding of the regulation of PTPN22 activity, the impact of autoimmune disease-associated <i>PTPN22</i> SNPs on T cell responses and describe approaches to harness PTPN22 as a target to improve T cell-based immunotherapies in cancer.</p>","PeriodicalId":18658,"journal":{"name":"Molecular and Cellular Biology","volume":" ","pages":"443-452"},"PeriodicalIF":3.2,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11486154/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141748592","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}