首页 > 最新文献

Molecular and Cellular Biology最新文献

英文 中文
CircTTLL13 Promotes TMZ Resistance in Glioma via Modulating OLR1-Mediated Activation of the Wnt/β-Catenin Pathway. CircTTLL13 通过调节 OLR1 介导的 Wnt/β-Catenin 通路激活促进胶质瘤的 TMZ 抗性
IF 3.2 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2023-01-01 Epub Date: 2023-07-10 DOI: 10.1080/10985549.2023.2210032
Jun Li, Junfeng Ma, Shan Huang, Jun Li, Liang Zhou, Jiahua Sun, Lin Chen

Glioma, originating from neuroglial progenitor cells, is a type of intrinsic brain tumor with poor prognosis. temozolomide (TMZ) is the first-line chemotherapeutic agent for glioma. Exploring the mechanisms of circTTLL13 underlying TMZ resistance in glioma is of great significance to improve glioma treatment. Bioinformatics was adopted to identify target genes. The circular structure of circTTLL13 and its high expression in glioma cells were disclosed by quantitative real time-PCR (qRT-PCR) and PCR-agarose gel electrophoresis. Functional experiments proved that oxidized LDL receptor 1 (OLR1) promotes TMZ resistance of glioma cells. CircTTLL13 enhances TMZ resistance of glioma cells via modulating OLR1. Luciferase reporter, RNA-binding protein immunoprecipitation (RIP), RNA pulldown, mRNA stability, N6-methyladenosine (m6A) dot blot and RNA total m6A quantification assays were implemented, indicating that circTTLL13 stabilizes OLR1 mRNA via recruiting YTH N6-methyladenosine RNA binding protein 1 (YTHDF1) and promotes m6A methylation of OLR1 pre-mRNA through recruiting methyltransferase-like 3 (METTL3). TOP/FOP-flash reporter assay and western blot verified that circTTLL13 activates Wnt/β-catenin signaling pathway by regulating OLR1. CircTTLL13 promotes TMZ resistance in glioma through regulating OLR1-mediated Wnt/β-catenin pathway activation. This study offers an insight into the efficacy improvement of TMZ for glioma treatment.

胶质瘤起源于神经胶质祖细胞,是一种预后不良的内在性脑肿瘤,替莫唑胺(TMZ)是胶质瘤的一线化疗药物。探索脑胶质瘤TMZ耐药的circTTLL13机制对改善脑胶质瘤的治疗具有重要意义。研究人员采用生物信息学方法确定了靶基因。通过实时定量PCR(qRT-PCR)和PCR-琼脂糖凝胶电泳揭示了circTTLL13的环状结构及其在胶质瘤细胞中的高表达。功能实验证明,氧化低密度脂蛋白受体1(OLR1)可促进胶质瘤细胞对TMZ的耐药性。CircTTLL13 通过调节 OLR1 增强胶质瘤细胞对 TMZ 的耐药性。研究人员进行了荧光素酶报告、RNA结合蛋白免疫沉淀(RIP)、RNA pulldown、mRNA稳定性、N6-甲基腺苷(m6A)点印迹和RNA总m6A定量检测、结果表明,circTTLL13通过招募YTH N6-甲基腺苷RNA结合蛋白1(YTHDF1)稳定OLR1 mRNA,并通过招募甲基转移酶样3(METTL3)促进OLR1前mRNA的m6A甲基化。TOP/FOP-flash报告实验和Western印迹验证了circTTLL13通过调控OLR1激活了Wnt/β-catenin信号通路。CircTTLL13通过调节OLR1介导的Wnt/β-catenin通路激活,促进胶质瘤对TMZ的耐药性。这项研究为改善TMZ治疗胶质瘤的疗效提供了启示。
{"title":"Circ<i>TTLL13</i> Promotes TMZ Resistance in Glioma via Modulating <i>OLR1</i>-Mediated Activation of the Wnt/β-Catenin Pathway.","authors":"Jun Li, Junfeng Ma, Shan Huang, Jun Li, Liang Zhou, Jiahua Sun, Lin Chen","doi":"10.1080/10985549.2023.2210032","DOIUrl":"10.1080/10985549.2023.2210032","url":null,"abstract":"<p><p>Glioma, originating from neuroglial progenitor cells, is a type of intrinsic brain tumor with poor prognosis. temozolomide (TMZ) is the first-line chemotherapeutic agent for glioma. Exploring the mechanisms of circ<i>TTLL13</i> underlying TMZ resistance in glioma is of great significance to improve glioma treatment. Bioinformatics was adopted to identify target genes. The circular structure of circ<i>TTLL13</i> and its high expression in glioma cells were disclosed by quantitative real time-PCR (qRT-PCR) and PCR-agarose gel electrophoresis. Functional experiments proved that oxidized LDL receptor 1 (<i>OLR1</i>) promotes TMZ resistance of glioma cells. Circ<i>TTLL13</i> enhances TMZ resistance of glioma cells via modulating <i>OLR1</i>. Luciferase reporter, RNA-binding protein immunoprecipitation (RIP), RNA pulldown, mRNA stability, N6-methyladenosine (m<sup>6</sup>A) dot blot and RNA total m<sup>6</sup>A quantification assays were implemented, indicating that circ<i>TTLL13</i> stabilizes <i>OLR1</i> mRNA via recruiting YTH N6-methyladenosine RNA binding protein 1 (<i>YTHDF1</i>) and promotes m<sup>6</sup>A methylation of <i>OLR1</i> pre-mRNA through recruiting methyltransferase-like 3 (<i>METTL3</i>). TOP/FOP-flash reporter assay and western blot verified that circ<i>TTLL13</i> activates Wnt/β-catenin signaling pathway by regulating <i>OLR1</i>. Circ<i>TTLL13</i> promotes TMZ resistance in glioma through regulating <i>OLR1</i>-mediated Wnt/β-catenin pathway activation. This study offers an insight into the efficacy improvement of TMZ for glioma treatment.</p>","PeriodicalId":18658,"journal":{"name":"Molecular and Cellular Biology","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10348032/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9809223","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Receptor Recycling by Retromer. Retromer 的受体再循环。
IF 3.2 2区 生物学 Q2 Biochemistry, Genetics and Molecular Biology Pub Date : 2023-01-01 Epub Date: 2023-06-23 DOI: 10.1080/10985549.2023.2222053
Julian M Carosi, Donna Denton, Sharad Kumar, Timothy J Sargeant

The highly conserved retromer complex controls the fate of hundreds of receptors that pass through the endolysosomal system and is a central regulatory node for diverse metabolic programs. More than 20 years ago, retromer was discovered as an essential regulator of endosome-to-Golgi transport in yeast; since then, significant progress has been made to characterize how metazoan retromer components assemble to enable its engagement with endosomal membranes, where it sorts cargo receptors from endosomes to the trans-Golgi network or plasma membrane through recognition of sorting motifs in their cytoplasmic tails. In this review, we examine retromer regulation by exploring its assembled structure with an emphasis on how a range of adaptor proteins shape the process of receptor trafficking. Specifically, we focus on how retromer is recruited to endosomes, selects cargoes, and generates tubulovesicular carriers that deliver cargoes to target membranes. We also examine how cells adapt to distinct metabolic states by coordinating retromer expression and function. We contrast similarities and differences between retromer and its related complexes: retriever and commander/CCC, as well as their interplay in receptor trafficking. We elucidate how loss of retromer regulation is central to the pathology of various neurogenerative and metabolic diseases, as well as microbial infections, and highlight both opportunities and cautions for therapeutics that target retromer. Finally, with a focus on understanding the mechanisms that govern retromer regulation, we outline new directions for the field moving forward.

高度保守的 retromer 复合物控制着数百种通过内溶酶体系统的受体的命运,是各种代谢程序的核心调节节点。20 多年前,retromer 被发现是酵母内体到高尔基体转运的重要调控因子;从那时起,人们在研究元动物 retromer 成分如何组装以实现与内体膜的接触方面取得了重大进展,retromer 通过识别内体和高尔基体细胞质尾部的分拣图案,将货物受体从内体分拣到跨高尔基体网络或质膜。在这篇综述中,我们通过探讨 retromer 的组装结构来研究 retromer 的调控,重点是一系列适配蛋白如何影响受体的转运过程。具体来说,我们将重点关注 retromer 如何被招募到内体、选择货物并生成管泡载体将货物运送到目标膜。我们还研究了细胞如何通过协调 retromer 的表达和功能来适应不同的代谢状态。我们对比了 retromer 及其相关复合物:retriever 和 commander/CCC 的异同,以及它们在受体贩运中的相互作用。我们阐明了 retromer 失调如何成为各种神经退行性疾病、代谢性疾病以及微生物感染的病理核心,并强调了以 retromer 为靶点的疗法的机遇和注意事项。最后,我们以了解 retromer 的调控机制为重点,概述了该领域未来的新方向。
{"title":"Receptor Recycling by Retromer.","authors":"Julian M Carosi, Donna Denton, Sharad Kumar, Timothy J Sargeant","doi":"10.1080/10985549.2023.2222053","DOIUrl":"10.1080/10985549.2023.2222053","url":null,"abstract":"<p><p>The highly conserved retromer complex controls the fate of hundreds of receptors that pass through the endolysosomal system and is a central regulatory node for diverse metabolic programs. More than 20 years ago, retromer was discovered as an essential regulator of endosome-to-Golgi transport in yeast; since then, significant progress has been made to characterize how metazoan retromer components assemble to enable its engagement with endosomal membranes, where it sorts cargo receptors from endosomes to the <i>trans</i>-Golgi network or plasma membrane through recognition of sorting motifs in their cytoplasmic tails. In this review, we examine retromer regulation by exploring its assembled structure with an emphasis on how a range of adaptor proteins shape the process of receptor trafficking. Specifically, we focus on how retromer is recruited to endosomes, selects cargoes, and generates tubulovesicular carriers that deliver cargoes to target membranes. We also examine how cells adapt to distinct metabolic states by coordinating retromer expression and function. We contrast similarities and differences between retromer and its related complexes: retriever and commander/CCC, as well as their interplay in receptor trafficking. We elucidate how loss of retromer regulation is central to the pathology of various neurogenerative and metabolic diseases, as well as microbial infections, and highlight both opportunities and cautions for therapeutics that target retromer. Finally, with a focus on understanding the mechanisms that govern retromer regulation, we outline new directions for the field moving forward.</p>","PeriodicalId":18658,"journal":{"name":"Molecular and Cellular Biology","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10348044/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9799013","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correction. 修正。
IF 5.3 2区 生物学 Q2 Biochemistry, Genetics and Molecular Biology Pub Date : 2023-01-01 Epub Date: 2023-11-17 DOI: 10.1080/10985549.2023.2277100
{"title":"Correction.","authors":"","doi":"10.1080/10985549.2023.2277100","DOIUrl":"10.1080/10985549.2023.2277100","url":null,"abstract":"","PeriodicalId":18658,"journal":{"name":"Molecular and Cellular Biology","volume":null,"pages":null},"PeriodicalIF":5.3,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10761169/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89718849","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
DNA Damage-Induced, S-Phase Specific Phosphorylation of Orc6 is Critical for the Maintenance of Genome Stability. DNA 损伤诱导的 Orc6 S 期特异性磷酸化对维持基因组稳定性至关重要
IF 5.3 2区 生物学 Q2 Biochemistry, Genetics and Molecular Biology Pub Date : 2023-01-01 Epub Date: 2023-04-25 DOI: 10.1080/10985549.2023.2196204
Yo-Chuen Lin, Dazhen Liu, Arindam Chakraborty, Virgilia Macias, Eileen Brister, Jay Sonalkar, Linyuan Shen, Jaba Mitra, Taekjip Ha, Andre Kajdacsy-Balla, Kannanganattu V Prasanth, Supriya G Prasanth

The smallest subunit of the human Origin Recognition Complex, hOrc6, is required for DNA replication progression and plays an important role in mismatch repair (MMR) during S-phase. However, the molecular details of how hOrc6 regulates DNA replication and DNA damage response remain to be elucidated. Orc6 levels are elevated upon specific types of genotoxic stress, and it is phosphorylated at Thr229, predominantly during S-phase, in response to oxidative stress. Many repair pathways, including MMR, mediate oxidative DNA damage repair. Defects in MMR are linked to Lynch syndrome, predisposing patients to many cancers, including colorectal cancer. Orc6 levels are known to be elevated in colorectal cancers. Interestingly, tumor cells show reduced hOrc6-Thr229 phosphorylation compared to adjacent normal mucosa. Further, elevated expression of wild-type and the phospho-dead forms of Orc6 results in increased tumorigenicity, implying that in the absence of this "checkpoint" signal, cells proliferate unabated. Based on these results, we propose that DNA-damage-induced hOrc6-pThr229 phosphorylation during S-phase facilitates ATR signaling in the S-phase, halts fork progression, and enables assembly of repair factors to mediate efficient repair to prevent tumorigenesis. Our study provides novel insights into how hOrc6 regulates genome stability.

人类起源识别复合体(Origin Recognition Complex)的最小亚基 hOrc6 是 DNA 复制进展所必需的,并在 S 期错配修复(MMR)中发挥重要作用。然而,hOrc6如何调控DNA复制和DNA损伤反应的分子细节仍有待阐明。特定类型的基因毒性应激会导致 Orc6 水平升高,它主要在 S 期被磷酸化 Thr229,以应对氧化应激。包括 MMR 在内的许多修复途径介导氧化 DNA 损伤修复。MMR 缺陷与林奇综合征有关,使患者易患包括结直肠癌在内的多种癌症。众所周知,结直肠癌中的 Orc6 水平会升高。有趣的是,与邻近的正常粘膜相比,肿瘤细胞的 hOrc6-Thr229 磷酸化程度降低。此外,野生型 Orc6 和磷酸化死亡型 Orc6 的表达升高会导致致瘤性增加,这意味着在缺乏这种 "检查点 "信号的情况下,细胞的增殖会有增无减。基于这些结果,我们提出在S期DNA损伤诱导的hOrc6-pThr229磷酸化促进了S期的ATR信号转导,停止了分叉进程,并使修复因子组装起来,介导高效修复以防止肿瘤发生。我们的研究为了解 hOrc6 如何调控基因组稳定性提供了新的视角。
{"title":"DNA Damage-Induced, S-Phase Specific Phosphorylation of Orc6 is Critical for the Maintenance of Genome Stability.","authors":"Yo-Chuen Lin, Dazhen Liu, Arindam Chakraborty, Virgilia Macias, Eileen Brister, Jay Sonalkar, Linyuan Shen, Jaba Mitra, Taekjip Ha, Andre Kajdacsy-Balla, Kannanganattu V Prasanth, Supriya G Prasanth","doi":"10.1080/10985549.2023.2196204","DOIUrl":"10.1080/10985549.2023.2196204","url":null,"abstract":"<p><p>The smallest subunit of the human Origin Recognition Complex, hOrc6, is required for DNA replication progression and plays an important role in mismatch repair (MMR) during S-phase. However, the molecular details of how hOrc6 regulates DNA replication and DNA damage response remain to be elucidated. Orc6 levels are elevated upon specific types of genotoxic stress, and it is phosphorylated at Thr229, predominantly during S-phase, in response to oxidative stress. Many repair pathways, including MMR, mediate oxidative DNA damage repair. Defects in MMR are linked to Lynch syndrome, predisposing patients to many cancers, including colorectal cancer. Orc6 levels are known to be elevated in colorectal cancers. Interestingly, tumor cells show reduced hOrc6-Thr229 phosphorylation compared to adjacent normal mucosa. Further, elevated expression of wild-type and the phospho-dead forms of Orc6 results in increased tumorigenicity, implying that in the absence of this \"checkpoint\" signal, cells proliferate unabated. Based on these results, we propose that DNA-damage-induced hOrc6-pThr229 phosphorylation during S-phase facilitates ATR signaling in the S-phase, halts fork progression, and enables assembly of repair factors to mediate efficient repair to prevent tumorigenesis. Our study provides novel insights into how hOrc6 regulates genome stability.</p>","PeriodicalId":18658,"journal":{"name":"Molecular and Cellular Biology","volume":null,"pages":null},"PeriodicalIF":5.3,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10153009/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9827625","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
RNA Polymerase II Dependent Crosstalk between H4K16 Deacetylation and H3K56 Acetylation Promotes Transcription of Constitutively Expressed Genes. H4K16去乙酰化和H3K56乙酰化之间的RNA聚合酶II依赖性串扰促进组成表达基因的转录。
IF 3.2 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2023-01-01 Epub Date: 2023-11-17 DOI: 10.1080/10985549.2023.2270912
Preeti Khan, Priyabrata Singha, Ronita Nag Chaudhuri

Nucleosome dynamics in the coding region of a transcriptionally active locus is critical for understanding how RNA polymerase II progresses through the gene body. Histone acetylation and deacetylation critically influence nucleosome accessibility during DNA metabolic processes like transcription. Effect of such histone modifications is context and residue dependent. Rather than effect of individual histone residues, the network of modifications of several histone residues in combination generates a chromatin landscape that is conducive for transcription. Here we show that in Saccharomyces cerevisiae, crosstalk between deacetylation of the H4 N-terminal tail residue H4K16 and acetylation of the H3 core domain residue H3K56, promotes RNA polymerase II progression through the gene body. Results indicate that deacetylation of H4K16 precedes and in turn induces H3K56 acetylation. Effectively, recruitment of Rtt109, the HAT responsible for H3K56 acetylation is essentially dependent on H4K16 deacetylation. In Hos2 deletion strains, where H4K16 deacetylation is abolished, both H3K56 acetylation and RNA polymerase II recruitment gets significantly impaired. Notably, H4K16 deacetylation and H3K56 acetylation are found to be essentially dependent on active transcription. In summary, H4K16 deacetylation promotes H3K56 acetylation and the two modifications together work towards successful functioning of RNA polymerase II during active transcription.

转录活性基因座编码区的核小体动力学对于理解RNA聚合酶II如何在基因体内进行至关重要。组蛋白乙酰化和脱乙酰化在转录等DNA代谢过程中严重影响核小体的可及性。这种组蛋白修饰的作用是上下文和残基依赖性的。与单个组蛋白残基的影响不同,几个组蛋白残基加在一起的修饰网络产生了有利于转录的染色质景观。在这里,我们发现在酿酒酵母中,H4 N-末端尾部残基H4K16的脱乙酰化和H3核心结构域残基H3K56的乙酰化之间的串扰促进RNA聚合酶II通过基因体的进展。结果表明H4K16的去乙酰化先于H3K56的乙酰化,进而诱导H3K56乙酰化。实际上,负责H3K56乙酰化的HAT Rtt109的募集基本上依赖于H4K16脱乙酰化。在H4K16去乙酰化被消除的Hos2缺失菌株中,H3K56乙酰化和RNA聚合酶II募集都受到显著损害。值得注意的是,发现H4K16脱乙酰化和H3K56乙酰化基本上依赖于活性转录。总之,H4K16脱乙酰化促进H3K56乙酰化,这两种修饰共同作用于RNA聚合酶II在活性转录过程中的成功功能。
{"title":"RNA Polymerase II Dependent Crosstalk between H4K16 Deacetylation and H3K56 Acetylation Promotes Transcription of Constitutively Expressed Genes.","authors":"Preeti Khan, Priyabrata Singha, Ronita Nag Chaudhuri","doi":"10.1080/10985549.2023.2270912","DOIUrl":"10.1080/10985549.2023.2270912","url":null,"abstract":"<p><p>Nucleosome dynamics in the coding region of a transcriptionally active locus is critical for understanding how RNA polymerase II progresses through the gene body. Histone acetylation and deacetylation critically influence nucleosome accessibility during DNA metabolic processes like transcription. Effect of such histone modifications is context and residue dependent. Rather than effect of individual histone residues, the network of modifications of several histone residues in combination generates a chromatin landscape that is conducive for transcription. Here we show that in <i>Saccharomyces cerevisiae</i>, crosstalk between deacetylation of the H4 N-terminal tail residue H4K16 and acetylation of the H3 core domain residue H3K56, promotes RNA polymerase II progression through the gene body. Results indicate that deacetylation of H4K16 precedes and in turn induces H3K56 acetylation. Effectively, recruitment of Rtt109, the HAT responsible for H3K56 acetylation is essentially dependent on H4K16 deacetylation. In Hos2 deletion strains, where H4K16 deacetylation is abolished, both H3K56 acetylation and RNA polymerase II recruitment gets significantly impaired. Notably, H4K16 deacetylation and H3K56 acetylation are found to be essentially dependent on active transcription. In summary, H4K16 deacetylation promotes H3K56 acetylation and the two modifications together work towards successful functioning of RNA polymerase II during active transcription.</p>","PeriodicalId":18658,"journal":{"name":"Molecular and Cellular Biology","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10761024/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71483579","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Transcription-Driven Translocation of Cohesive and Non-Cohesive Cohesin In Vivo. 转录驱动的体内黏连蛋白和非黏连蛋白的转运
IF 3.2 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2023-01-01 Epub Date: 2023-05-13 DOI: 10.1080/10985549.2023.2199660
Melinda S Borrie, Paul M Kraycer, Marc R Gartenberg

Cohesin is a central architectural element of chromosomes that regulates numerous DNA-based events. The complex holds sister chromatids together until anaphase onset and organizes individual chromosomal DNAs into loops and self-associating domains. Purified cohesin diffuses along DNA in an ATP-independent manner but can be propelled by transcribing RNA polymerase. In conjunction with a cofactor, the complex also extrudes DNA loops in an ATP-dependent manner. In this study we examine transcription-driven translocation of cohesin under various conditions in yeast. To this end, obstacles of increasing size were tethered to DNA to act as roadblocks to complexes mobilized by an inducible gene. The obstacles were built from a GFP-lacI core fused to one or more mCherries. A chimera with four mCherries blocked cohesin passage in late G1. During M phase, the threshold barrier depended on the state of cohesion: non-cohesive complexes were also blocked by four mCherries whereas cohesive complexes were blocked by as few as three mCherries. Furthermore cohesive complexes that were stalled at obstacles, in turn, blocked the passage of non-cohesive complexes. That synthetic barriers capture mobilized cohesin demonstrates that transcription-driven complexes translocate processively in vivo. Together, this study reveals unexplored limitations to cohesin movement on chromosomes.

凝聚素是染色体的核心结构元素,它调节着许多基于 DNA 的事件。该复合物能将姐妹染色单体固定在一起,直到无丝分裂期开始,并将单个染色体 DNA 组织成环状和自结合域。纯化的凝聚素以不依赖于 ATP 的方式沿 DNA 扩散,但可由转录 RNA 聚合酶推动。与辅助因子结合后,该复合物还能以 ATP 依赖性方式挤出 DNA 环。在本研究中,我们研究了酵母在各种条件下由转录驱动的凝聚素转位。为此,我们在 DNA 上拴上了尺寸不断增大的障碍物,作为由诱导基因调动的复合体的路障。这些障碍物由一个或多个 mCherries 融合的 GFP-lacI 核心构成。带有四个 mCherries 的嵌合体在 G1 晚期阻断了凝聚素的通过。在 M 期,阈值障碍取决于内聚状态:非内聚复合物也会被四个 mCherries 阻断,而内聚复合物仅会被三个 mCherries 阻断。此外,停滞在障碍物上的内聚复合体反过来也会阻碍非内聚复合体的通过。合成障碍物能捕获被动员的凝聚素,这表明转录驱动的复合体在体内是以过程方式转移的。总之,这项研究揭示了凝聚素在染色体上运动的未探索限制。
{"title":"Transcription-Driven Translocation of Cohesive and Non-Cohesive Cohesin In Vivo.","authors":"Melinda S Borrie, Paul M Kraycer, Marc R Gartenberg","doi":"10.1080/10985549.2023.2199660","DOIUrl":"10.1080/10985549.2023.2199660","url":null,"abstract":"<p><p>Cohesin is a central architectural element of chromosomes that regulates numerous DNA-based events. The complex holds sister chromatids together until anaphase onset and organizes individual chromosomal DNAs into loops and self-associating domains. Purified cohesin diffuses along DNA in an ATP-independent manner but can be propelled by transcribing RNA polymerase. In conjunction with a cofactor, the complex also extrudes DNA loops in an ATP-dependent manner. In this study we examine transcription-driven translocation of cohesin under various conditions in yeast. To this end, obstacles of increasing size were tethered to DNA to act as roadblocks to complexes mobilized by an inducible gene. The obstacles were built from a GFP-lacI core fused to one or more mCherries. A chimera with four mCherries blocked cohesin passage in late G1. During M phase, the threshold barrier depended on the state of cohesion: non-cohesive complexes were also blocked by four mCherries whereas cohesive complexes were blocked by as few as three mCherries. Furthermore cohesive complexes that were stalled at obstacles, in turn, blocked the passage of non-cohesive complexes. That synthetic barriers capture mobilized cohesin demonstrates that transcription-driven complexes translocate processively in vivo. Together, this study reveals unexplored limitations to cohesin movement on chromosomes.</p>","PeriodicalId":18658,"journal":{"name":"Molecular and Cellular Biology","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/94/10/TMCB_43_2199660.PMC10251789.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10239775","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Scaffold Protein KATNIP Enhances CILK1 Control of Primary Cilia. 支架蛋白KATNIP增强原发性纤毛的CILK1控制。
IF 3.2 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2023-01-01 Epub Date: 2023-09-04 DOI: 10.1080/10985549.2023.2246870
Jacob S Turner, Ellie A McCabe, Kevin W Kuang, Casey D Gailey, David L Brautigan, Ana Limerick, Elena X Wang, Zheng Fu

The primary cilium functions as a cellular sensory organelle and signaling antenna that detects and transduces extracellular signals. Mutations in the human gene CILK1 (ciliogenesis associated kinase 1) cause abnormal cilia elongation and faulty Hedgehog signaling, associated with developmental disorders and epilepsy. CILK1 is a protein kinase that requires dual phosphorylation of its TDY motif for activation and its extended C-terminal intrinsically disordered region (IDR) mediates targeting to the basal body and substrate recognition. Proteomics previously identified katanin-interacting protein (KATNIP), also known as KIAA0556, as a CILK1 interacting partner. In this study we discovered that CILK1 colocalizes with KATNIP at the basal body and the CILK1 IDR is sufficient to mediate binding to KATNIP. Deletion analysis of KATNIP shows one of three domains of unknown function (DUF) is required for association with CILK1. KATNIP binding with CILK1 drastically elevated CILK1 protein levels and TDY phosphorylation in cells. This resulted in a profound increase in phosphorylation of known CILK1 substrates and suppression of cilia length. Thus, KATNIP functions as a regulatory subunit of CILK1 that potentiates its actions. This advances our understanding of the molecular basis of control of primary cilia.

初级纤毛作为细胞感觉细胞器和信号天线,检测和转导细胞外信号。人类基因CILK1(纤毛生成相关激酶1)的突变导致纤毛异常伸长和Hedgehog信号传导缺陷,与发育障碍和癫痫有关。CILK1是一种蛋白激酶,需要其TDY基序的双重磷酸化才能激活,其延伸的C末端固有无序区(IDR)介导靶向基体和底物识别。蛋白质组学先前鉴定了卡塔宁相互作用蛋白(KATNIP),也称为KIAA0556,作为CILK1相互作用伴侣。在这项研究中,我们发现CILK1在基体与KATNIP共定位,并且CILK1-IDR足以介导与KATNP的结合。KATNIP的缺失分析表明,与CILK1相关需要三个未知功能域之一(DUF)。KATNIP与CILK1的结合显著提高了细胞中CILK1蛋白水平和TDY磷酸化。这导致已知CILK1底物磷酸化的显著增加和纤毛长度的抑制。因此,KATNIP作为CILK1的调节亚单位发挥作用,增强其作用。这推进了我们对控制初级纤毛的分子基础的理解。
{"title":"The Scaffold Protein KATNIP Enhances CILK1 Control of Primary Cilia.","authors":"Jacob S Turner, Ellie A McCabe, Kevin W Kuang, Casey D Gailey, David L Brautigan, Ana Limerick, Elena X Wang, Zheng Fu","doi":"10.1080/10985549.2023.2246870","DOIUrl":"10.1080/10985549.2023.2246870","url":null,"abstract":"<p><p>The primary cilium functions as a cellular sensory organelle and signaling antenna that detects and transduces extracellular signals. Mutations in the human gene <i>CILK1</i> (ciliogenesis associated kinase 1) cause abnormal cilia elongation and faulty Hedgehog signaling, associated with developmental disorders and epilepsy. CILK1 is a protein kinase that requires dual phosphorylation of its TDY motif for activation and its extended C-terminal intrinsically disordered region (IDR) mediates targeting to the basal body and substrate recognition. Proteomics previously identified katanin-interacting protein (KATNIP), also known as KIAA0556, as a CILK1 interacting partner. In this study we discovered that CILK1 colocalizes with KATNIP at the basal body and the CILK1 IDR is sufficient to mediate binding to KATNIP. Deletion analysis of KATNIP shows one of three domains of unknown function (DUF) is required for association with CILK1. KATNIP binding with CILK1 drastically elevated CILK1 protein levels and TDY phosphorylation in cells. This resulted in a profound increase in phosphorylation of known CILK1 substrates and suppression of cilia length. Thus, KATNIP functions as a regulatory subunit of CILK1 that potentiates its actions. This advances our understanding of the molecular basis of control of primary cilia.</p>","PeriodicalId":18658,"journal":{"name":"Molecular and Cellular Biology","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10512882/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10297389","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Methyltransferase Inhibition Enables Tgfβ Driven Induction of CDKN2A and B in Cancer Cells. 甲基转移酶抑制可使 Tgfβ 在癌细胞中诱导 CDKN2A 和 B。
IF 5.3 2区 生物学 Q2 Biochemistry, Genetics and Molecular Biology Pub Date : 2023-01-01 DOI: 10.1080/10985549.2023.2186074
Yen-Ting Liu, Celeste Romero, Xue Xiao, Lei Guo, Xiaoyun Zhou, Mark A Applebaum, Lin Xu, Stephen X Skapek

CDKN2A/B deletion or silencing is common across human cancer, reinforcing the general importance of bypassing its tumor suppression in cancer formation or progression. In rhabdomyosarcoma (RMS) and neuroblastoma, two common childhood cancers, the three CDKN2A/B transcripts are independently expressed to varying degrees, but one, ARF, is uniformly silenced. Although TGFβ induces certain CDKN2A/B transcripts in HeLa cells, it was unable to do so in five tested RMS lines unless the cells were pretreated with a broadly acting methyltransferase inhibitor, DZNep, or one targeting EZH2. CDKN2A/B induction by TGFβ correlated with de novo appearance of three H3K27Ac peaks within a 20 kb cis element ∼150 kb proximal to CDKN2A/B. Deleting that segment prevented their induction by TGFβ but not a basal increase driven by methyltransferase inhibition alone. Expression of two CDKN2A/B transcripts was enhanced by dCas9/CRISPR activation targeting either the relevant promoter or the 20 kb cis elements, and this "precise" manipulation diminished RMS cell propagation in vitro. Our findings show crosstalk between methyltransferase inhibition and TGFβ-dependent activation of a remote enhancer to reverse CDKN2A/B silencing. Though focused on CDKN2A/B here, such crosstalk may apply to other TGFβ-responsive genes and perhaps govern this signaling protein's complex effects promoting or blocking cancer.

CDKN2A/B 基因缺失或沉默在人类癌症中很常见,这进一步说明了在癌症形成或发展过程中绕过其肿瘤抑制的普遍重要性。在横纹肌肉瘤(RMS)和神经母细胞瘤这两种常见的儿童癌症中,CDKN2A/B 的三个转录本在不同程度上独立表达,但其中一个转录本(ARF)被一致沉默。尽管TGFβ能诱导HeLa细胞中的某些CDKN2A/B转录本,但它却不能诱导五种受测的RMS细胞系,除非用作用广泛的甲基转移酶抑制剂DZNep或靶向EZH2的抑制剂对细胞进行预处理。TGFβ诱导CDKN2A/B与CDKN2A/B近端150 kb的20 kb顺式元件中出现的三个H3K27Ac峰相关。删除该片段可阻止 TGFβ 对它们的诱导,但不能阻止仅由甲基转移酶抑制所驱动的基础增加。针对相关启动子或 20 kb 顺式元件的 dCas9/CRISPR 激活增强了两个 CDKN2A/B 转录本的表达,这种 "精确 "操作减少了 RMS 细胞在体外的繁殖。我们的研究结果表明,甲基转移酶抑制与 TGFβ 依赖性激活远端增强子之间存在串联作用,可逆转 CDKN2A/B 的沉默。虽然这里的重点是 CDKN2A/B,但这种串扰可能适用于其他 TGFβ 响应基因,并可能控制这种信号蛋白促进或阻止癌症的复杂效应。
{"title":"Methyltransferase Inhibition Enables Tgf<b>β</b> Driven Induction of <i>CDKN2A</i> and <i>B</i> in Cancer Cells.","authors":"Yen-Ting Liu, Celeste Romero, Xue Xiao, Lei Guo, Xiaoyun Zhou, Mark A Applebaum, Lin Xu, Stephen X Skapek","doi":"10.1080/10985549.2023.2186074","DOIUrl":"10.1080/10985549.2023.2186074","url":null,"abstract":"<p><p><i>CDKN2A/B</i> deletion or silencing is common across human cancer, reinforcing the general importance of bypassing its tumor suppression in cancer formation or progression. In rhabdomyosarcoma (RMS) and neuroblastoma, two common childhood cancers, the three <i>CDKN2A/B</i> transcripts are independently expressed to varying degrees, but one, <i>ARF,</i> is uniformly silenced. Although TGFβ induces certain <i>CDKN2A/B</i> transcripts in HeLa cells, it was unable to do so in five tested RMS lines unless the cells were pretreated with a broadly acting methyltransferase inhibitor, DZNep, or one targeting EZH2. <i>CDKN2A/B</i> induction by TGFβ correlated with de novo appearance of three H3K27Ac peaks within a 20 kb <i>cis</i> element ∼150 kb proximal to <i>CDKN2A/B</i>. Deleting that segment prevented their induction by TGFβ but not a basal increase driven by methyltransferase inhibition alone. Expression of two <i>CDKN2A/B</i> transcripts was enhanced by dCas9/CRISPR activation targeting either the relevant promoter or the 20 kb <i>cis</i> elements, and this \"precise\" manipulation diminished RMS cell propagation in vitro. Our findings show crosstalk between methyltransferase inhibition and TGFβ-dependent activation of a remote enhancer to reverse <i>CDKN2A/B</i> silencing. Though focused on <i>CDKN2A/B</i> here, such crosstalk may apply to other TGFβ-responsive genes and perhaps govern this signaling protein's complex effects promoting or blocking cancer.</p>","PeriodicalId":18658,"journal":{"name":"Molecular and Cellular Biology","volume":null,"pages":null},"PeriodicalIF":5.3,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10038032/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9646911","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Degradation of CDK9 by Ubiquitin E3 Ligase STUB1 Regulates P-TEFb Level and Its Functions for Global Target Gene Expression within Mammalian Cells. 泛素E3连接酶STUB1对CDK9的降解调节P-TEFb水平及其在哺乳动物细胞内全局靶基因表达的功能。
IF 3.2 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2023-01-01 Epub Date: 2023-08-11 DOI: 10.1080/10985549.2023.2239694
Subham Basu, Arijit Nandy, Avik Ghosh, Dheerendra Pratap Mall, Debabrata Biswas

Positive transcription elongation factor b (P-TEFb) regulates expression of diverse sets of genes within mammalian cells that have implications in several human disease pathogeneses. However, mechanisms of functional regulation of P-TEFb complex through regulation of its stability are poorly known. In this study, we show an important role of C-terminus of Hsc70-interacting protein (CHIP aka STUB1) in regulation of overall level of CDK9 and thus P-TEFb complex within mammalian cells. STUB1 acts as a ubiquitin E3 ligase for proteasomal degradation of CDK9 involving N-terminal lysine 3 (K3) residue. Whereas, overexpression of STUB1 enhances, its knockdown reduces overall CDK9 degradation kinetics within mammalian cells. Interestingly, owing to the same region of binding within CDK9, CyclinT1 protects CDK9 from STUB1-mediated degradation. Factors that cooperatively bind with CyclinT1 to form functional complex also protects CDK9 from degradation by STUB1. Knockdown of STUB1 enhances CDK9 expression and thus P-TEFb complex formation that leads to global increase in RNA polymerase II CTD phosphorylation and transcriptional activation of diverse P-TEFb target genes. Thus, we describe an important functional role of STUB1 in regulation of transcription through modulation of overall level of P-TEFb complex formation within mammalian cells.

正转录延长因子b(P-TEFb)调节哺乳动物细胞内多种基因的表达,这些基因在几种人类疾病病因中具有意义。然而,通过调节P-TEFb复合物的稳定性来调节其功能的机制尚不清楚。在这项研究中,我们展示了Hsc70相互作用蛋白(CHIP aka STUB1)的C末端在哺乳动物细胞内CDK9的整体水平以及P-TEFb复合物的调节中的重要作用。STUB1作为泛素E3连接酶用于涉及N-末端赖氨酸3(K3)残基的CDK9的蛋白酶体降解。然而,STUB1的过表达增强,其敲低降低了哺乳动物细胞内CDK9的整体降解动力学。有趣的是,由于CDK9内具有相同的结合区,CyclinT1保护CDK9免受STUB1介导的降解。与CyclinT1协同结合形成功能复合物的因子也保护CDK9免受STUB1的降解。STUB1的敲除增强了CDK9的表达,从而增强了P-TEFb复合物的形成,这导致RNA聚合酶II CTD磷酸化的整体增加和不同P-TEFb-靶基因的转录激活。因此,我们描述了STUB1通过调节哺乳动物细胞内P-TEFb复合物形成的总体水平在转录调节中的重要功能作用。
{"title":"Degradation of CDK9 by Ubiquitin E3 Ligase STUB1 Regulates P-TEFb Level and Its Functions for Global Target Gene Expression within Mammalian Cells.","authors":"Subham Basu, Arijit Nandy, Avik Ghosh, Dheerendra Pratap Mall, Debabrata Biswas","doi":"10.1080/10985549.2023.2239694","DOIUrl":"10.1080/10985549.2023.2239694","url":null,"abstract":"<p><p>Positive transcription elongation factor b (P-TEFb) regulates expression of diverse sets of genes within mammalian cells that have implications in several human disease pathogeneses. However, mechanisms of functional regulation of P-TEFb complex through regulation of its stability are poorly known. In this study, we show an important role of C-terminus of Hsc70-interacting protein (CHIP aka STUB1) in regulation of overall level of CDK9 and thus P-TEFb complex within mammalian cells. STUB1 acts as a ubiquitin E3 ligase for proteasomal degradation of CDK9 involving N-terminal lysine 3 (K3) residue. Whereas, overexpression of STUB1 enhances, its knockdown reduces overall CDK9 degradation kinetics within mammalian cells. Interestingly, owing to the same region of binding within CDK9, CyclinT1 protects CDK9 from STUB1-mediated degradation. Factors that cooperatively bind with CyclinT1 to form functional complex also protects CDK9 from degradation by STUB1. Knockdown of STUB1 enhances CDK9 expression and thus P-TEFb complex formation that leads to global increase in RNA polymerase II CTD phosphorylation and transcriptional activation of diverse P-TEFb target genes. Thus, we describe an important functional role of STUB1 in regulation of transcription through modulation of overall level of P-TEFb complex formation within mammalian cells.</p>","PeriodicalId":18658,"journal":{"name":"Molecular and Cellular Biology","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10512928/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10294787","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fission Yeast TORC1 Promotes Cell Proliferation through Sfp1, a Transcription Factor Involved in Ribosome Biogenesis. 裂殖酵母 TORC1 通过参与核糖体生物发生的转录因子 Sfp1 促进细胞增殖
IF 3.2 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2023-01-01 Epub Date: 2023-12-20 DOI: 10.1080/10985549.2023.2282349
Yen Teng Tai, Tomoyuki Fukuda, Yuichi Morozumi, Hayato Hirai, Arisa H Oda, Yoshiaki Kamada, Yutaka Akikusa, Tomotake Kanki, Kunihiro Ohta, Kazuhiro Shiozaki

Target of rapamycin complex 1 (TORC1) is activated in response to nutrient availability and growth factors, promoting cellular anabolism and proliferation. To explore the mechanism of TORC1-mediated proliferation control, we performed a genetic screen in fission yeast and identified Sfp1, a zinc-finger transcription factor, as a multicopy suppressor of temperature-sensitive TORC1 mutants. Our observations suggest that TORC1 phosphorylates Sfp1 and protects Sfp1 from proteasomal degradation. Transcription analysis revealed that Sfp1 positively regulates genes involved in ribosome production together with two additional transcription factors, Ifh1/Crf1 and Fhl1. Ifh1 physically interacts with Fhl1, and the nuclear localization of Ifh1 is regulated in response to nutrient levels in a manner dependent on TORC1 and Sfp1. Taken together, our data suggest that the transcriptional regulation of the genes involved in ribosome biosynthesis by Sfp1, Ifh1, and Fhl1 is one of the key pathways through which nutrient-activated TORC1 promotes cell proliferation.

雷帕霉素靶点复合体 1(TORC1)在营养供应和生长因子的作用下被激活,促进细胞的合成代谢和增殖。为了探索 TORC1 介导的增殖控制机制,我们在裂殖酵母中进行了遗传筛选,发现锌指转录因子 Sfp1 是温度敏感的 TORC1 突变体的多拷贝抑制因子。我们的观察结果表明,TORC1使Sfp1磷酸化,并保护Sfp1免于蛋白酶体降解。转录分析表明,Sfp1 与另外两个转录因子(Ifh1/Crf1 和 Fhl1)一起正向调节参与核糖体生产的基因。Ifh1 与 Fhl1 有物理相互作用,Ifh1 的核定位受 TORC1 和 Sfp1 的调控,与营养水平有关。综上所述,我们的数据表明,Sfp1、Ifh1 和 Fhl1 对参与核糖体生物合成的基因的转录调控是营养激活的 TORC1 促进细胞增殖的关键途径之一。
{"title":"Fission Yeast TORC1 Promotes Cell Proliferation through Sfp1, a Transcription Factor Involved in Ribosome Biogenesis.","authors":"Yen Teng Tai, Tomoyuki Fukuda, Yuichi Morozumi, Hayato Hirai, Arisa H Oda, Yoshiaki Kamada, Yutaka Akikusa, Tomotake Kanki, Kunihiro Ohta, Kazuhiro Shiozaki","doi":"10.1080/10985549.2023.2282349","DOIUrl":"10.1080/10985549.2023.2282349","url":null,"abstract":"<p><p>Target of rapamycin complex 1 (TORC1) is activated in response to nutrient availability and growth factors, promoting cellular anabolism and proliferation. To explore the mechanism of TORC1-mediated proliferation control, we performed a genetic screen in fission yeast and identified Sfp1, a zinc-finger transcription factor, as a multicopy suppressor of temperature-sensitive TORC1 mutants. Our observations suggest that TORC1 phosphorylates Sfp1 and protects Sfp1 from proteasomal degradation. Transcription analysis revealed that Sfp1 positively regulates genes involved in ribosome production together with two additional transcription factors, Ifh1/Crf1 and Fhl1. Ifh1 physically interacts with Fhl1, and the nuclear localization of Ifh1 is regulated in response to nutrient levels in a manner dependent on TORC1 and Sfp1. Taken together, our data suggest that the transcriptional regulation of the genes involved in ribosome biosynthesis by Sfp1, Ifh1, and Fhl1 is one of the key pathways through which nutrient-activated TORC1 promotes cell proliferation.</p>","PeriodicalId":18658,"journal":{"name":"Molecular and Cellular Biology","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10761059/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138487994","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Molecular and Cellular Biology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1