Pub Date : 2025-01-01Epub Date: 2025-06-22DOI: 10.1080/10985549.2025.2519158
Anna E Enneking, Marc M Khorey, Laura E Edgington-Mitchell
While the cysteine proteases legumain and cathepsins have traditionally been known as "lysosomal" proteases, there is increasing evidence to suggest that they also contribute to a wide range of extralysosomal processes, including in the nucleus. This review aims to provide a comprehensive overview of the current knowledge regarding the translocation of these proteases to the nucleus and their functions on arrival. We discuss possible mechanisms for transporting these proteases to the nucleus, including the presence of a nuclear localization signal sequence or hitchhiking on other proteins that possess this sequence. This transport requires the proteases to first reach the cytosol, which may occur via direct cytosolic translation of truncated proteases or downstream of lysosomal membrane permeabilization. We also discuss the evidence for functions of these proteases upon arrival to the nucleus, including cell cycle progression, cell differentiation, cell death, immune regulation, and epigenetic regulation. As protease substrate profiling methods continue to improve, it is anticipated that many new nuclear substrates and interacting partners will be identified to reveal additional functions for nuclear proteases.
{"title":"Nuclear Roles for Canonically Lysosomal Proteases.","authors":"Anna E Enneking, Marc M Khorey, Laura E Edgington-Mitchell","doi":"10.1080/10985549.2025.2519158","DOIUrl":"10.1080/10985549.2025.2519158","url":null,"abstract":"<p><p>While the cysteine proteases legumain and cathepsins have traditionally been known as \"lysosomal\" proteases, there is increasing evidence to suggest that they also contribute to a wide range of extralysosomal processes, including in the nucleus. This review aims to provide a comprehensive overview of the current knowledge regarding the translocation of these proteases to the nucleus and their functions on arrival. We discuss possible mechanisms for transporting these proteases to the nucleus, including the presence of a nuclear localization signal sequence or hitchhiking on other proteins that possess this sequence. This transport requires the proteases to first reach the cytosol, which may occur via direct cytosolic translation of truncated proteases or downstream of lysosomal membrane permeabilization. We also discuss the evidence for functions of these proteases upon arrival to the nucleus, including cell cycle progression, cell differentiation, cell death, immune regulation, and epigenetic regulation. As protease substrate profiling methods continue to improve, it is anticipated that many new nuclear substrates and interacting partners will be identified to reveal additional functions for nuclear proteases.</p>","PeriodicalId":18658,"journal":{"name":"Molecular and Cellular Biology","volume":" ","pages":"343-352"},"PeriodicalIF":2.7,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144369067","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-01Epub Date: 2025-09-10DOI: 10.1080/10985549.2025.2553648
Tohru Fujiwara, Hideo Harigae
Erythropoiesis, i.e., process of red blood cell (RBC) production, is highly dependent on iron, with 60-70% of the total body iron incorporated into hemoglobin. Iron homeostasis is tightly regulated, given that both iron overload and deficiency can impair RBC development and function. Iron-loading anemias, such as sideroblastic anemia and thalassemia, are associated with ineffective erythropoiesis and systemic iron overload. Recent studies also highlight the role of ferroptosis, i.e., iron-dependent cell death, in erythroid failure under conditions of iron overload. Transcriptional repressor BTB and CNC homology 1 (BACH1), which is regulated by intracellular heme, is a potential key mediator of ferroptosis. In iron deficiency, limited iron availability impairs heme and globin biosynthesis, mitochondrial function, and erythropoietin responsiveness, while also inducing widespread changes in gene expression through DNA methylation, all of which contribute to dysregulated erythropoiesis. Under iron deficiency, BACH1 plays a critical role in maintaining the balance between heme and globin by suppressing globin gene expression, thereby preventing the aggregation of toxic non-heme globin. This review summarizes the current understanding of the mechanisms by which iron imbalance contributes to erythropoietic failure and highlights BACH1 as a potential integrative regulator in the pathophysiology of anemia in both iron-overload and iron-deficient states.
{"title":"Molecular Insights into the Pathophysiology of Dysregulated Erythropoiesis: The Crucial Role of Iron Homeostasis.","authors":"Tohru Fujiwara, Hideo Harigae","doi":"10.1080/10985549.2025.2553648","DOIUrl":"10.1080/10985549.2025.2553648","url":null,"abstract":"<p><p>Erythropoiesis, i.e., process of red blood cell (RBC) production, is highly dependent on iron, with 60-70% of the total body iron incorporated into hemoglobin. Iron homeostasis is tightly regulated, given that both iron overload and deficiency can impair RBC development and function. Iron-loading anemias, such as sideroblastic anemia and thalassemia, are associated with ineffective erythropoiesis and systemic iron overload. Recent studies also highlight the role of ferroptosis, i.e., iron-dependent cell death, in erythroid failure under conditions of iron overload. Transcriptional repressor BTB and CNC homology 1 (BACH1), which is regulated by intracellular heme, is a potential key mediator of ferroptosis. In iron deficiency, limited iron availability impairs heme and globin biosynthesis, mitochondrial function, and erythropoietin responsiveness, while also inducing widespread changes in gene expression through DNA methylation, all of which contribute to dysregulated erythropoiesis. Under iron deficiency, BACH1 plays a critical role in maintaining the balance between heme and globin by suppressing globin gene expression, thereby preventing the aggregation of toxic non-heme globin. This review summarizes the current understanding of the mechanisms by which iron imbalance contributes to erythropoietic failure and highlights BACH1 as a potential integrative regulator in the pathophysiology of anemia in both iron-overload and iron-deficient states.</p>","PeriodicalId":18658,"journal":{"name":"Molecular and Cellular Biology","volume":" ","pages":"547-560"},"PeriodicalIF":2.7,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145030057","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-01Epub Date: 2025-09-18DOI: 10.1080/10985549.2025.2553650
Monika Yadav, Samriddhi Sharma, S R Rajalekshmi, Nidhi Bhasin, Jeanne Yimdjo, Karl Pfeifer, Madhulika Srivastava
CTCF is a multifunctional protein that mediates long-range cis-DNA interactions in mammalian genomes. Chromatin architecture governs spatial and functional interactions of gene regulatory elements at various loci and is impacted by the ability of CTCF to restrict cohesin complex dependent chromatin extrusion. In addition, at antigen receptor loci, long-range interactions facilitate spatial proximity of gene segments for VDJ recombination that generates functional genes encoding immunoglobulins and T-cell receptors in developing lymphocytes. To investigate the role of CTCF in VDJ recombination, we mutated CTCF binding sites (CBS) of murine Tcrb locus. Our analysis revealed that CBS interspersed in the domain encompassing variable gene segments (Vb) are not redundant. They exhibit independent but additive effects on dynamic chromatin organization leading to distinct VDJ recombination profiles in CBS mutants depending on positions of mutated CBS relative to Vb segments. Further, inversion of a single CBS drastically altered the chromatin loop organization and VDJ recombination profile. Our results demonstrate the critical importance of chromatin extrusion for generation of chromatin loops for VDJ recombination and underscore its dynamic impediment by CTCF binding at specific points within Vb segment domain to be essential to diversify the usage of Vb segments for VDJ recombination at Tcrb locus.
{"title":"Site Specific and Orientation Dependent CTCF Binding Determines VDJ Recombination at Murine <i>Tcrb</i> Locus.","authors":"Monika Yadav, Samriddhi Sharma, S R Rajalekshmi, Nidhi Bhasin, Jeanne Yimdjo, Karl Pfeifer, Madhulika Srivastava","doi":"10.1080/10985549.2025.2553650","DOIUrl":"10.1080/10985549.2025.2553650","url":null,"abstract":"<p><p>CTCF is a multifunctional protein that mediates long-range <i>cis</i>-DNA interactions in mammalian genomes. Chromatin architecture governs spatial and functional interactions of gene regulatory elements at various loci and is impacted by the ability of CTCF to restrict cohesin complex dependent chromatin extrusion. In addition, at antigen receptor loci, long-range interactions facilitate spatial proximity of gene segments for VDJ recombination that generates functional genes encoding immunoglobulins and T-cell receptors in developing lymphocytes. To investigate the role of CTCF in VDJ recombination, we mutated CTCF binding sites (CBS) of murine <i>Tcrb</i> locus. Our analysis revealed that CBS interspersed in the domain encompassing variable gene segments (Vb) are not redundant. They exhibit independent but additive effects on dynamic chromatin organization leading to distinct VDJ recombination profiles in CBS mutants depending on positions of mutated CBS relative to Vb segments. Further, inversion of a single CBS drastically altered the chromatin loop organization and VDJ recombination profile. Our results demonstrate the critical importance of chromatin extrusion for generation of chromatin loops for VDJ recombination and underscore its dynamic impediment by CTCF binding at specific points within Vb segment domain to be essential to diversify the usage of Vb segments for VDJ recombination at <i>Tcrb</i> locus.</p>","PeriodicalId":18658,"journal":{"name":"Molecular and Cellular Biology","volume":" ","pages":"530-546"},"PeriodicalIF":2.7,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145081065","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-01Epub Date: 2025-02-24DOI: 10.1080/10985549.2025.2451279
Alexandra Mazharian, Yotis A Senis
Platelets, or thrombocytes are anucleate cell fragments of megakaryocytes (MKs) that are highly reactive to sites of vascular injury and implicated in many pathologies. However, the molecular mechanisms regulating the number and activity of platelets in the circulation remain undefined. The primary outstanding question remains what is the triggering mechanism of platelet production, or thrombopoiesis? Putative stimulatory factors and mechanical forces are thought to drive this process, but none induce physiological levels of thrombopoiesis. Intrinsic inhibitory mechanisms that maintain MKs in a refractory state in sites of thrombopoiesis are conspicuously overlooked, as well as extrinsic cues that release this brake system, allowing asymmetric platelet production to proceed toward the vascular lumen. Here we introduce the novel concept of a MK/platelet checkpoint, putative components and a working model of how it may be regulated. We postulate that the co-inhibitory receptor G6b-B and the non-transmembrane protein-tyrosine phosphatases (PTPs) Shp1 and Shp2 form an inhibitory complex that is the primary gatekeeper of this checkpoint, which is spatiotemporally regulated by the receptor-type PTP CD148 and vascular heparan sulfate proteoglycans. By advancing this alternative model of thrombopoiesis, we hope to stimulate discourse and a shift in how we conceptualize and address this fundamental question.
{"title":"Defining and Harnessing the Megakaryocyte/Platelet Checkpoint.","authors":"Alexandra Mazharian, Yotis A Senis","doi":"10.1080/10985549.2025.2451279","DOIUrl":"10.1080/10985549.2025.2451279","url":null,"abstract":"<p><p>Platelets, or thrombocytes are anucleate cell fragments of megakaryocytes (MKs) that are highly reactive to sites of vascular injury and implicated in many pathologies. However, the molecular mechanisms regulating the number and activity of platelets in the circulation remain undefined. The primary outstanding question remains what is the triggering mechanism of platelet production, or thrombopoiesis? Putative stimulatory factors and mechanical forces are thought to drive this process, but none induce physiological levels of thrombopoiesis. Intrinsic inhibitory mechanisms that maintain MKs in a refractory state in sites of thrombopoiesis are conspicuously overlooked, as well as extrinsic cues that release this brake system, allowing asymmetric platelet production to proceed toward the vascular lumen. Here we introduce the novel concept of a MK/platelet checkpoint, putative components and a working model of how it may be regulated. We postulate that the co-inhibitory receptor G6b-B and the non-transmembrane protein-tyrosine phosphatases (PTPs) Shp1 and Shp2 form an inhibitory complex that is the primary gatekeeper of this checkpoint, which is spatiotemporally regulated by the receptor-type PTP CD148 and vascular heparan sulfate proteoglycans. By advancing this alternative model of thrombopoiesis, we hope to stimulate discourse and a shift in how we conceptualize and address this fundamental question.</p>","PeriodicalId":18658,"journal":{"name":"Molecular and Cellular Biology","volume":" ","pages":"116-128"},"PeriodicalIF":3.2,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143483701","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-01Epub Date: 2025-05-26DOI: 10.1080/10985549.2025.2505730
Joanne Pui-Ting Leung, Siamak Haddadi, Michael J Geuenich, Alara Tuncer, Vivien Musiime, Chao Wang, Juan-Carlos Zúñiga-Pflücker, Kieran R Campbell, Michele K Anderson
Memory T cells are essential for maintaining long-term adaptive immunity. Memory cell precursors and short-lived effector cells emerge from undifferentiated naïve T cells directly downstream of TCR signaling but little is known about how this lineage choice is regulated at the molecular level. The transcription factor HEB is known to be an important regulator of thymic T cell development, but how it functions in peripheral T cell differentiation is poorly understood. We assessed the role of HEB in the differentiation of memory-like T cell precursors by inducing TCR signaling in CD8 T cells in the context of memory-polarizing cytokines or inflammatory conditions and found that CD8 T cells from HEB-deficient mice underwent accelerated differentiation as compared to WT cells. Transcriptomic analysis revealed aberrant upregulation of immune response genes and decreased expression of genes promoting stemness from the earliest stages of post-TCR signal activation and persisting throughout the course of differentiation. In addition, acute viral infection of HEB cKO mice resulted in enhanced memory precursor cell formation and increased effector functionality. Therefore, we have identified HEB as a central participant in the gene regulatory networks that regulate early CD8 memory T cell differentiation and effector gene expression. This study showed that naïve CD8 T cells lacking HEB exhibit increased TCR signal strength and loss of signatures of stem-ness, revealing a role for HEB in promoting immune memory.
{"title":"HEB Restrains Effector Gene Expression during Early CD8<sup>+</sup> Memory Precursor T Cell Differentiation.","authors":"Joanne Pui-Ting Leung, Siamak Haddadi, Michael J Geuenich, Alara Tuncer, Vivien Musiime, Chao Wang, Juan-Carlos Zúñiga-Pflücker, Kieran R Campbell, Michele K Anderson","doi":"10.1080/10985549.2025.2505730","DOIUrl":"10.1080/10985549.2025.2505730","url":null,"abstract":"<p><p>Memory T cells are essential for maintaining long-term adaptive immunity. Memory cell precursors and short-lived effector cells emerge from undifferentiated naïve T cells directly downstream of TCR signaling but little is known about how this lineage choice is regulated at the molecular level. The transcription factor HEB is known to be an important regulator of thymic T cell development, but how it functions in peripheral T cell differentiation is poorly understood. We assessed the role of HEB in the differentiation of memory-like T cell precursors by inducing TCR signaling in CD8 T cells in the context of memory-polarizing cytokines or inflammatory conditions and found that CD8 T cells from HEB-deficient mice underwent accelerated differentiation as compared to WT cells. Transcriptomic analysis revealed aberrant upregulation of immune response genes and decreased expression of genes promoting stemness from the earliest stages of post-TCR signal activation and persisting throughout the course of differentiation. In addition, acute viral infection of HEB cKO mice resulted in enhanced memory precursor cell formation and increased effector functionality. Therefore, we have identified HEB as a central participant in the gene regulatory networks that regulate early CD8 memory T cell differentiation and effector gene expression. This study showed that naïve CD8 T cells lacking HEB exhibit increased TCR signal strength and loss of signatures of stem-ness, revealing a role for HEB in promoting immune memory.</p>","PeriodicalId":18658,"journal":{"name":"Molecular and Cellular Biology","volume":" ","pages":"283-300"},"PeriodicalIF":2.7,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12765225/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144142911","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mammalian cell membranes contain ether lipids, which include an alkyl chain derived from a fatty alcohol that is produced by fatty acyl-CoA reductases (FARs). There are two mammalian FAR genes, FAR1 and FAR2, and mutations in FAR1 cause the peroxisomal fatty acyl-CoA reductase 1 disorder (PFCRD), which is accompanied by various symptoms, including neurological disorders. To date, the contributions of FAR1 and FAR2 to brain ether lipid production and the molecular mechanism of PFCRD have remained unknown. To investigate these, we analyzed knockout (KO) mice of Far1 and Far2. In the brain, the expression levels of Far1 were higher than those of Far2, and Far1 was widely expressed. Lipidomic analyses showed that the quantity of ether lipids ethanolamine-plasmalogens was reduced in Far1 KO mice, with a complementary increase in diacyl-type phosphatidylethanolamines, but not in Far2 KO mice. Electron microscope analysis of the corpus callosum revealed reductions in the percentage of myelinated axons and myelin thickness in Far1 KO mice relative to WT mice. In conclusion, FAR1 is the major FAR isozyme involved in ether lipid synthesis in the brain, and its deficiency causes hypomyelination. We speculate that this hypomyelination is one of the causes of the neurological symptoms of PFCRD.
{"title":"Acyl-CoA Reductase <i>Far1</i> Deficiency Impairs Ether Lipid Production and Hypomyelination in Mouse Brains.","authors":"Tenga Takahashi, Kento Otsuka, Takayuki Sassa, Akio Kihara","doi":"10.1080/10985549.2025.2548234","DOIUrl":"10.1080/10985549.2025.2548234","url":null,"abstract":"<p><p>Mammalian cell membranes contain ether lipids, which include an alkyl chain derived from a fatty alcohol that is produced by fatty acyl-CoA reductases (FARs). There are two mammalian FAR genes, <i>FAR1</i> and <i>FAR2</i>, and mutations in <i>FAR1</i> cause the peroxisomal fatty acyl-CoA reductase 1 disorder (PFCRD), which is accompanied by various symptoms, including neurological disorders. To date, the contributions of <i>FAR1</i> and <i>FAR2</i> to brain ether lipid production and the molecular mechanism of PFCRD have remained unknown. To investigate these, we analyzed knockout (KO) mice of <i>Far1</i> and <i>Far2</i>. In the brain, the expression levels of <i>Far1</i> were higher than those of <i>Far2</i>, and <i>Far1</i> was widely expressed. Lipidomic analyses showed that the quantity of ether lipids ethanolamine-plasmalogens was reduced in <i>Far1</i> KO mice, with a complementary increase in diacyl-type phosphatidylethanolamines, but not in <i>Far2</i> KO mice. Electron microscope analysis of the corpus callosum revealed reductions in the percentage of myelinated axons and myelin thickness in <i>Far1</i> KO mice relative to WT mice. In conclusion, FAR1 is the major FAR isozyme involved in ether lipid synthesis in the brain, and its deficiency causes hypomyelination. We speculate that this hypomyelination is one of the causes of the neurological symptoms of PFCRD.</p>","PeriodicalId":18658,"journal":{"name":"Molecular and Cellular Biology","volume":" ","pages":"495-510"},"PeriodicalIF":2.7,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145033738","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-01Epub Date: 2025-09-17DOI: 10.1080/10985549.2025.2555901
Emily Biernat, Mansi Verma, Matthew Werick, Uzair Khan, Sama Joseph, Chhabi K Govind
Chromatin remodelers are important for maintaining chromatin structure and regulating gene expression. In this study, we investigated the roles of histone acetyltransferases (HATs) Gcn5 and Esa1 in regulating RSC and histone occupancy on chromatin, as well as their impact on transcription across the genome. Our findings reveal distinct effects of HATs on RSC occupancy in promoters and ORFs. The lack of HATs leads to the accumulation of RSC, and it was greater in nucleosome-depleted regions (NDRs) containing fragile nucleosomes (FNs), relative to other NDRs. The increased RSC NDR-binding was greater in Esa1-deficient cells than in those lacking Gcn5. The increased RSC binding was not seen in cells lacking the H3 or H4 tails. The mutants also led to significant increases in histone occupancies around the NDRs genome-wide. Overall, the data suggest that hypoacetylated tails may recruit RSC to NDRs, especially to FN-containing NDRs, and that subsequent histone acetylation enhances histone eviction. The HAT mutants also exhibited reduced recruitment of TBP and Pol II. In contrast to the promoters, RSC occupancies were significantly reduced in transcribed ORFs in the HAT mutants. Thus, our data implicate HATs and RSC in maintaining NDRs, regulating chromatin structure, and promoting transcription.
{"title":"Histone Acetyltransferases Gcn5 and Esa1 Regulate Occupancy of RSC to Maintain Nucleosome-Depleted Regions and Promote RSC Recruitment to Coding Regions Genome-Wide in <i>Saccharomyces cerevisiae</i>.","authors":"Emily Biernat, Mansi Verma, Matthew Werick, Uzair Khan, Sama Joseph, Chhabi K Govind","doi":"10.1080/10985549.2025.2555901","DOIUrl":"10.1080/10985549.2025.2555901","url":null,"abstract":"<p><p>Chromatin remodelers are important for maintaining chromatin structure and regulating gene expression. In this study, we investigated the roles of histone acetyltransferases (HATs) Gcn5 and Esa1 in regulating RSC and histone occupancy on chromatin, as well as their impact on transcription across the genome. Our findings reveal distinct effects of HATs on RSC occupancy in promoters and ORFs. The lack of HATs leads to the accumulation of RSC, and it was greater in nucleosome-depleted regions (NDRs) containing fragile nucleosomes (FNs), relative to other NDRs. The increased RSC NDR-binding was greater in Esa1-deficient cells than in those lacking Gcn5. The increased RSC binding was not seen in cells lacking the H3 or H4 tails. The mutants also led to significant increases in histone occupancies around the NDRs genome-wide. Overall, the data suggest that hypoacetylated tails may recruit RSC to NDRs, especially to FN-containing NDRs, and that subsequent histone acetylation enhances histone eviction. The HAT mutants also exhibited reduced recruitment of TBP and Pol II. In contrast to the promoters, RSC occupancies were significantly reduced in transcribed ORFs in the HAT mutants. Thus, our data implicate HATs and RSC in maintaining NDRs, regulating chromatin structure, and promoting transcription.</p>","PeriodicalId":18658,"journal":{"name":"Molecular and Cellular Biology","volume":" ","pages":"623-645"},"PeriodicalIF":2.7,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12834339/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145075791","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-01Epub Date: 2024-12-27DOI: 10.1080/10985549.2024.2438814
Umur Keles, Nisan Ece Kalem-Yapar, Hanna Hultén, Li Na Zhao, Philipp Kaldis
Complex metabolic diseases due to overnutrition such as obesity, type 2 diabetes, and fatty liver disease are a major burden on the healthcare system worldwide. Current research primarily focuses on disease endpoints and trying to understand underlying mechanisms at relatively late stages of the diseases, when irreversible damage is already done. However, complex interactions between physiological systems during disease development create a problem regarding how to build cause-and-effect relationships. Therefore, it is essential to understand the early pathophysiological effects of overnutrition, which can help us understand the origin of the disease and to design better treatment strategies. Here, we focus on early metabolic events in response to high-fat diets (HFD) in rodents. Interestingly, insulin resistance, fatty liver, and obesity-promoting systemic inflammatory responses are evident within a week when mice are given consecutive HFD meals. However, as shown in human studies, these effects are usually not visible after a single meal. Overall, these results suggest that sustained HFD-intake within days can create a hyperlipidemic environment, globally remodeling metabolism in all affected organs and resembling some of the important disease features.
{"title":"Impact of Short-Term Lipid Overload on Whole-Body Physiology.","authors":"Umur Keles, Nisan Ece Kalem-Yapar, Hanna Hultén, Li Na Zhao, Philipp Kaldis","doi":"10.1080/10985549.2024.2438814","DOIUrl":"10.1080/10985549.2024.2438814","url":null,"abstract":"<p><p>Complex metabolic diseases due to overnutrition such as obesity, type 2 diabetes, and fatty liver disease are a major burden on the healthcare system worldwide. Current research primarily focuses on disease endpoints and trying to understand underlying mechanisms at relatively late stages of the diseases, when irreversible damage is already done. However, complex interactions between physiological systems during disease development create a problem regarding how to build cause-and-effect relationships. Therefore, it is essential to understand the early pathophysiological effects of overnutrition, which can help us understand the origin of the disease and to design better treatment strategies. Here, we focus on early metabolic events in response to high-fat diets (HFD) in rodents. Interestingly, insulin resistance, fatty liver, and obesity-promoting systemic inflammatory responses are evident within a week when mice are given consecutive HFD meals. However, as shown in human studies, these effects are usually not visible after a single meal. Overall, these results suggest that sustained HFD-intake within days can create a hyperlipidemic environment, globally remodeling metabolism in all affected organs and resembling some of the important disease features.</p>","PeriodicalId":18658,"journal":{"name":"Molecular and Cellular Biology","volume":" ","pages":"47-58"},"PeriodicalIF":3.2,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142896060","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-01Epub Date: 2025-06-23DOI: 10.1080/10985549.2025.2514529
Abby A McCann, Morgan A Sammons
p63 is a clinically relevant transcription factor heavily involved in development and disease. Mutations in the p63 DNA-binding domain cause severe developmental defects and overexpression of p63 plays a role in the progression of epithelial-associated cancers. Unraveling the specific biochemical mechanisms underlying these phenotypes is made challenging by the presence of multiple p63 isoforms and their shared and unique contributions to development and disease. Here, we explore the function of the p63 isoforms ΔNp63ɑ and ΔNp63β to determine the contribution of C-terminal splice variants on known and unique molecular and biochemical activities. Using RNA-seq and ChIP-seq on isoform-specific cell lines, we show that ΔNp63β regulates both canonical ΔNp63ɑ targets and a unique set of genes with varying biological functions. We demonstrate that most genomic binding sites are shared, however the enhancer-associated histone modification H3K27ac is highly enriched at ΔNp63β binding sites relative to ΔNp63ɑ. An array of ΔNp63β C-terminal mutants demonstrates the importance of isoform-specific C-terminal domains in regulating these unique activities. Our results provide novel insight into differential activities of p63 C-terminal isoforms and suggest future directions for dissecting the functional relevance of these and other transcription factor isoforms in development and disease.
P63是临床相关的转录因子,与发育和疾病密切相关。p63 dna结合域的突变导致严重的发育缺陷,p63的过表达在上皮相关癌症的进展中起作用。由于多种p63亚型的存在以及它们对发育和疾病的共同和独特贡献,揭示这些表型背后的特定生化机制具有挑战性。在这里,我们探索p63异构体ΔNp63和ΔNp63β的功能,以确定c端剪接变异体对已知和独特的分子和生化活性的贡献。利用RNA-seq和ChIP-seq对同种异构体特异性细胞系进行分析,我们发现ΔNp63β调控了典型的ΔNp63靶点和一组具有不同生物学功能的独特基因。我们证明了大多数基因组结合位点是共享的,然而增强子相关的组蛋白修饰H3K27ac在ΔNp63β结合位点相对于ΔNp63]高度富集。一系列ΔNp63β c -末端突变体证明了异构体特异性c -末端结构域在调节这些独特活动中的重要性。我们的研究结果为p63 c端异构体的差异活性提供了新的见解,并为解剖这些和其他转录因子异构体在发育和疾病中的功能相关性提供了未来的方向。
{"title":"Differential Transcriptional Activity of ΔNp63β Is Encoded by an Isoform-Specific C-Terminus.","authors":"Abby A McCann, Morgan A Sammons","doi":"10.1080/10985549.2025.2514529","DOIUrl":"10.1080/10985549.2025.2514529","url":null,"abstract":"<p><p>p63 is a clinically relevant transcription factor heavily involved in development and disease. Mutations in the p63 DNA-binding domain cause severe developmental defects and overexpression of p63 plays a role in the progression of epithelial-associated cancers. Unraveling the specific biochemical mechanisms underlying these phenotypes is made challenging by the presence of multiple p63 isoforms and their shared and unique contributions to development and disease. Here, we explore the function of the p63 isoforms ΔNp63ɑ and ΔNp63β to determine the contribution of C-terminal splice variants on known and unique molecular and biochemical activities. Using RNA-seq and ChIP-seq on isoform-specific cell lines, we show that ΔNp63β regulates both canonical ΔNp63ɑ targets and a unique set of genes with varying biological functions. We demonstrate that most genomic binding sites are shared, however the enhancer-associated histone modification H3K27ac is highly enriched at ΔNp63β binding sites relative to ΔNp63ɑ. An array of ΔNp63β C-terminal mutants demonstrates the importance of isoform-specific C-terminal domains in regulating these unique activities. Our results provide novel insight into differential activities of p63 C-terminal isoforms and suggest future directions for dissecting the functional relevance of these and other transcription factor isoforms in development and disease.</p>","PeriodicalId":18658,"journal":{"name":"Molecular and Cellular Biology","volume":" ","pages":"369-385"},"PeriodicalIF":2.7,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12288839/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144369066","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-01Epub Date: 2025-09-29DOI: 10.1080/10985549.2025.2560946
Xinzi Zheng, Kingsley Okechukwu Nwozor, Marnix Jonker, Marissa Wisman, Martijn C Nawijn, Irene H Heijink
COPD is characterized by airway epithelial barrier dysfunction. We hypothesized that downregulation of E-cadherin results in abnormal responses to cigarette smoke extract (CSE) with impaired repair and increased pro-inflammatory activity. We used CRISPR-Cas9-engineered 16HBE cells with 1-2 copies of the CDH1 gene encoding E-cadherin (CDH1+/+ or CDH1+/-) to study effects on tight junctional protein zonula occludens (ZO-1), CSE-induced epithelial barrier dysfunction using electric cell-substrate impedance sensing and pro-inflammatory cytokine production. In airway epithelial cells (AECs) from nine COPD stage IV transplant lungs and tracheobronchial tissue of nine non-COPD donors, we assessed E-cadherin, ZO-1 and pro-inflammatory cytokines. Lower electrical resistance in CDH1+/- 16HBE cells was accompanied by ZO-1 delocalization. CSE exposure induced transient barrier dysfunction, from which CDH1+/- cells recovered more slowly than CDH1+/+ cells. Similarly, CDH1+/- cells showed a delayed repair response upon wounding, while gene expression and secretion of pro-inflammatory cytokines were higher in unexposed cells (CXCL8, IL-1α) and/or showed a stronger CSE-induced increase (IL-1α, GM-CSF). AECs from COPD patients displayed lower E-cadherin and TJP1 levels and higher CSE-induced IL1A expression compared to control. Downregulation of E-cadherin resulted in disrupted ZO-1 expression, aggravated CSE-induced barrier dysfunction, impaired recovery from injury and a more pro-inflammatory epithelial phenotype in 16HBE cells.
{"title":"Loss of E-Cadherin Alters Cigarette Smoke Extract (CSE)-Induced Damage and Repair Responses in Human Airway Epithelial Cells; Implications for Chronic Obstructive Pulmonary Disease (COPD).","authors":"Xinzi Zheng, Kingsley Okechukwu Nwozor, Marnix Jonker, Marissa Wisman, Martijn C Nawijn, Irene H Heijink","doi":"10.1080/10985549.2025.2560946","DOIUrl":"10.1080/10985549.2025.2560946","url":null,"abstract":"<p><p>COPD is characterized by airway epithelial barrier dysfunction. We hypothesized that downregulation of E-cadherin results in abnormal responses to cigarette smoke extract (CSE) with impaired repair and increased pro-inflammatory activity. We used CRISPR-Cas9-engineered 16HBE cells with 1-2 copies of the <i>CDH1</i> gene encoding E-cadherin (<i>CDH1</i><sup>+/+</sup> or <i>CDH1</i><sup>+/-</sup>) to study effects on tight junctional protein zonula occludens (ZO-1), CSE-induced epithelial barrier dysfunction using electric cell-substrate impedance sensing and pro-inflammatory cytokine production. In airway epithelial cells (AECs) from nine COPD stage IV transplant lungs and tracheobronchial tissue of nine non-COPD donors, we assessed E-cadherin, ZO-1 and pro-inflammatory cytokines. Lower electrical resistance in <i>CDH1</i><sup>+/-</sup> 16HBE cells was accompanied by ZO-1 delocalization. CSE exposure induced transient barrier dysfunction, from which <i>CDH1</i><sup>+/-</sup> cells recovered more slowly than <i>CDH1+/+</i> cells. Similarly, <i>CDH1</i><sup>+/-</sup> cells showed a delayed repair response upon wounding, while gene expression and secretion of pro-inflammatory cytokines were higher in unexposed cells (CXCL8, IL-1α) and/or showed a stronger CSE-induced increase (IL-1α, GM-CSF). AECs from COPD patients displayed lower E-cadherin and TJP1 levels and higher CSE-induced <i>IL1A</i> expression compared to control. Downregulation of E-cadherin resulted in disrupted ZO-1 expression, aggravated CSE-induced barrier dysfunction, impaired recovery from injury and a more pro-inflammatory epithelial phenotype in 16HBE cells.</p>","PeriodicalId":18658,"journal":{"name":"Molecular and Cellular Biology","volume":" ","pages":"481-494"},"PeriodicalIF":2.7,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145186260","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}