Here, we report a novel role for the yeast lysine acetyltransferase NuA4 in regulating phospholipid availability for organelle morphology. Disruption of the NuA4 complex results in 70% of cells displaying nuclear deformations and nearly 50% of cells exhibiting vacuolar fragmentation. Cells deficient in NuA4 also show severe defects in the formation of nuclear-vacuole junctions (NJV), as well as a decrease in piecemeal microautophagy of the nucleus (PMN). To determine the cause of these defects we focused on Pah1, an enzyme that converts phosphatidic acid into diacylglycerol, favoring accumulation of lipid droplets over phospholipids that are used for membrane expansion. NuA4 subunit Eaf1 was required for Pah1 localization to the inner nuclear membrane and artificially tethering of Pah1 to the nuclear membrane rescued nuclear deformation and vacuole fragmentation defects, but not defects related to the formation of NVJs. Mutation of a NuA4-dependent acetylation site on Pah1 also resulted in aberrant Pah1 localization and defects in nuclear morphology and NVJ. Our work suggests a critical role for NuA4 in organelle morphology that is partially mediated through the regulation of Pah1 subcellular localization.
Osteoarthritis (OA) is a chronic degenerative disease characterized by subchondral osteosclerosis, mainly due to osteoblast activity. This research investigates the function of Sik1, a member of the AMP-activated protein kinase family, in OA. Proteomic analysis was conducted on clinical samples from 30 OA patients, revealing a negative correlation between Sik1 expression and OA. In vitro experiments utilized BMSCs to examine the effect of Sik1 on osteogenic differentiation. BMSCs were cultured and induced toward osteogenesis with specific media. Sik1 overexpression was achieved through lentiviral transfection, followed by analysis of osteogenesis-associated proteins using Western blotting, RT-qPCR, and alkaline phosphate staining. In vivo experiments involved destabilizing the medial meniscus in mice to establish an OA model, assessing the therapeutic potential of Sik1. The CT scans and histological staining were used to analyze subchondral bone alterations and cartilage damage. The findings show that Sik1 downregulation correlates with advanced OA and heightened osteogenic differentiation in BMSCs. Sik1 overexpression inhibits osteogenesis-related markers in vitro and reduces cartilage damage and subchondral osteosclerosis in vivo. Mechanistically, Sik1 modulates osteogenesis and subchondral bone changes through Runx2 activity regulation. The research emphasizes Sik1 as a promising target for treating OA, suggesting its involvement in controlling bone formation and changes in the subchondral osteosclerosis.
Androgen receptor inhibitors are commonly used for prostate cancer treatment, but acquired resistance is a significant problem. Codeletion of RB and p53 is common in castration resistant prostate cancers, however they are difficult to target pharmacologically. To comprehensively identify gene loss events that contribute to enzalutamide response, we performed a genome-wide CRISPR knockout screen in LNCaP prostate cancer cells. This revealed novel genes implicated in resistance that are largely unstudied. Gene loss events that confer enzalutamide sensitivity are enriched for GSEA categories related to stem cell and epigenetic regulation. We investigated the myeloid lineage stem cell factor HOXA9 as a candidate gene whose loss promotes sensitivity to enzalutamide. Cancer genomic data reveals that HOXA9 overexpression correlates with poor prognosis and characteristics of advanced prostate cancer. In cell culture, HOXA9 depletion sensitizes cells to enzalutamide, whereas overexpression drives enzalutamide resistance. Combination of the HOXA9 inhibitor DB818 with enzalutamide demonstrates synergy. This demonstrates the utility of our CRISPR screen data in discovering new approaches for treating enzalutamide resistant prostate cancer.
Mutations in the TP53 tumor suppressor gene are the most abundant genetic occurrences in cancer. Some of these mutations lead to loss of function of p53 protein, some are gain of function, and some variants are hypomorphic (partially functional). Currently, there is no clinical distinction between different p53 mutations and cancer therapy or prognosis. Mutations in the oligomerization domain of p53 appear to be quite distinct in function, compared to mutations in the DNA binding domain. Here we show that, like other p53 oligomerization domain mutants, the Ashkenazi-specific G334R mutant accumulates to very high levels in cells and is significantly impaired for the transactivation of canonical p53 target genes. Surprisingly, we find that this mutant retains the ability to bind to consensus p53 target sites. A mouse model reveals that mice containing the G334R variant show increased predisposition to cancer, but only a fraction of these mice develop late-onset cancer. We show that the G334R variant retains the ability to interact with the SP1 transcription factor and contributes to the transactivation of joint SP1-p53 target genes. The combined evidence indicates that G334R is a unique oligomerization domain mutant that retains some tumor suppressor function.
A resident vascular endothelial stem cell (VESC) population expressing CD157 has been identified recently in mice. Herein, we identified transcription factors (TFs) regulating CD157 expression in endothelial cells (ECs) that were associated with drug resistance, angiogenesis, and EC proliferation. In the first screening, we detected 20 candidate TFs through the CD157 promoter and gene expression analyses. We found that 10 of the 20 TFs induced CD157 expression in ECs. We previously reported that 70% of CD157 VESCs were side population (SP) ECs that abundantly expressed ATP-binding cassette (ABC) transporters. Here, we found that the 10 TFs increased the expression of several ABC transporters in ECs and increased the proportion of SP ECs. Of these 10 TFs, we found that six (Atf3, Bhlhe40, Egr1, Egr2, Elf3, and Klf4) were involved in the manifestation of the SP phenotype. Furthermore, the six TFs enhanced tube formation and proliferation in ECs. Single-cell RNA sequence data in liver ECs suggested that Atf3 and Klf4 contributed to the production of CD157+ VESCs in the postnatal period. We concluded that Klf4 might be important for the development and maintenance of liver VESCs. Our work suggests that a TF network is involved in the differentiation hierarchy of VESCs.
The p63 transcription factor, a member of the p53 family, plays an oncogenic role in squamous cell carcinomas, while in breast cancers its expression is often repressed. In the canonical conserved Hippo pathway, known to play a complex role in regulating growth of cancer cells, protein kinases MST1/2 and LATS1/2 act sequentially to phosphorylate and inhibit the YAP/TAZ transcription factors. We found that in MCF10A mammary epithelial cells as well as in squamous and breast cancer cell lines, expression of ΔNp63 RNA and protein is strongly repressed by inhibition of the Hippo pathway protein kinases. While MST1/2 and LATS1 are required for p63 expression, the next step of the pathway, namely phosphorylation and degradation of the YAP/TAZ transcriptional activators is not required for p63 repression. This suggests that regulation of p63 expression occurs by a noncanonical version of the Hippo pathway. We identified similarly regulated genes, suggesting the broader importance of this pathway. Interestingly, lowering p63 expression lead to increased YAP protein levels, indicating crosstalk of the YAP/TAZ-independent and -dependent branches of the Hippo pathway. These results, which reveal the intersection of the Hippo and p63 pathways, may prove useful for the control of their activities in cancer cells.
Phenylacetylglutamine (PAGln), a gut metabolite is substantially elevated in heart failure (HF). The increase of PAGln in plasma is associated with atrial fibrillation (AF), and contributes to AF pathogenesis. However, the role of PAGln in AF with HF remains uncertain. Therefore, this study aimed to determine the effect of PAGln on AF after HF. Thoracic aortic coarctation (TAC) created overpressure-induced HF mice for 4 weeks. Histopathology, biochemical, echocardiographic for assessment of cardiac function, and electrophysiological examination of several electrophysiological indexes (ERP, SNRT, and the occurrence rate of AF) were performed at the end of the HF mice model. We found that plasma PAGln levels were significantly elevated in PAGln-treated HF mice and that PAGln aggravated maladaptive structural remodeling and electrical remodeling, which aggravated the vulnerability of AF, shortened the ERP duration, prolonged the SNRT, increased the occurrence rate of AF in HF mice. Mechanistically, PAGln exacerbated ROS accumulation and increased the levels of phosphorylated PLB and CAMK II. Overall, PAGln played a vital role in promoting the occurrence of AF in HF mice by activating the CAMK II signaling pathway.