首页 > 最新文献

Metabolic Engineering Communications最新文献

英文 中文
Cell-free metabolic engineering enables selective biotransformation of fatty acids to value-added chemicals 无细胞代谢工程使脂肪酸能够选择性生物转化为增值化学品
IF 5.2 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2023-06-01 DOI: 10.1016/j.mec.2022.e00217
Yushi Liu , Wan-Qiu Liu , Shuhui Huang , Huiling Xu , Haofan Lu , Changzhu Wu , Jian Li

Fatty acid-derived products such as alkanes, fatty aldehydes, and fatty alcohols have many applications in the chemical industry. These products are predominately produced from fossil resources, but their production processes are often not environmentally friendly. While microbes like Escherichia coli have been engineered to convert fatty acids to corresponding products, the design and optimization of metabolic pathways in cells for high productivity is challenging due to low mass transfer, heavy metabolic burden, and intermediate/product toxicity. Here, we describe an E. coli-based cell-free protein synthesis (CFPS) platform for in vitro conversion of long-chain fatty acids to value-added chemicals with product selectivity, which can also avoid the above issues when using microbial production systems. We achieve the selective biotransformation by cell-free expression of different enzymes and the use of different conditions (e.g., light and heating) to drive the biocatalysis toward different final products. Specifically, in response to blue light, cell-free expressed fatty acid photodecarboxylase (CvFAP, a photoenzyme) was able to convert fatty acids to alkanes with approximately 90% conversion. When the expressed enzyme was switched to carboxylic acid reductase (CAR), fatty acids were reduced to corresponding fatty aldehydes, which, however, could be further reduced to fatty alcohols by endogenous reductases in the cell-free system. By using a thermostable CAR and a heating treatment, the endogenous reductases were deactivated and fatty aldehydes could be selectively accumulated (>97% in the product mixture) without over-reduction to alcohols. Overall, our cell-free platform provides a new strategy to convert fatty acids to valuable chemicals with notable properties of operation flexibility, reaction controllability, and product selectivity.

脂肪酸衍生产品,如烷烃、脂肪醛和脂肪醇,在化学工业中有许多应用。这些产品主要由化石资源生产,但其生产过程往往不环保。虽然像大肠杆菌这样的微生物已经被改造成可以将脂肪酸转化为相应的产物,但由于低传质、重代谢负担和中间体/产物毒性,设计和优化细胞中的代谢途径以获得高产率是具有挑战性的。在这里,我们描述了一种基于大肠杆菌的无细胞蛋白质合成(CFPS)平台,用于体外将长链脂肪酸转化为具有产品选择性的增值化学品,在使用微生物生产系统时也可以避免上述问题。我们通过无细胞表达不同的酶和使用不同的条件(如光照和加热)来实现选择性的生物转化,以驱动生物催化产生不同的最终产物。具体而言,响应蓝光,无细胞表达的脂肪酸光羧化酶(CvFAP,一种光酶)能够以大约90%的转化率将脂肪酸转化为烷烃。当表达的酶转换为羧酸还原酶(CAR)时,脂肪酸被还原为相应的脂肪醛,然而,在无细胞系统中,脂肪醛可以通过内源性还原酶进一步还原为脂肪醇。通过使用热稳定的CAR和加热处理,内源性还原酶被失活,并且脂肪醛可以选择性地积累(在产物混合物中>97%)而不会过度还原为醇。总的来说,我们的无细胞平台提供了一种将脂肪酸转化为有价值化学物质的新策略,具有显著的操作灵活性、反应可控性和产物选择性。
{"title":"Cell-free metabolic engineering enables selective biotransformation of fatty acids to value-added chemicals","authors":"Yushi Liu ,&nbsp;Wan-Qiu Liu ,&nbsp;Shuhui Huang ,&nbsp;Huiling Xu ,&nbsp;Haofan Lu ,&nbsp;Changzhu Wu ,&nbsp;Jian Li","doi":"10.1016/j.mec.2022.e00217","DOIUrl":"10.1016/j.mec.2022.e00217","url":null,"abstract":"<div><p>Fatty acid-derived products such as alkanes, fatty aldehydes, and fatty alcohols have many applications in the chemical industry. These products are predominately produced from fossil resources, but their production processes are often not environmentally friendly. While microbes like <em>Escherichia coli</em> have been engineered to convert fatty acids to corresponding products, the design and optimization of metabolic pathways in cells for high productivity is challenging due to low mass transfer, heavy metabolic burden, and intermediate/product toxicity. Here, we describe an <em>E. coli</em>-based cell-free protein synthesis (CFPS) platform for <em>in vitro</em> conversion of long-chain fatty acids to value-added chemicals with product selectivity, which can also avoid the above issues when using microbial production systems. We achieve the selective biotransformation by cell-free expression of different enzymes and the use of different conditions (e.g., light and heating) to drive the biocatalysis toward different final products. Specifically, in response to blue light, cell-free expressed fatty acid photodecarboxylase (CvFAP, a photoenzyme) was able to convert fatty acids to alkanes with approximately 90% conversion. When the expressed enzyme was switched to carboxylic acid reductase (CAR), fatty acids were reduced to corresponding fatty aldehydes, which, however, could be further reduced to fatty alcohols by endogenous reductases in the cell-free system. By using a thermostable CAR and a heating treatment, the endogenous reductases were deactivated and fatty aldehydes could be selectively accumulated (&gt;97% in the product mixture) without over-reduction to alcohols. Overall, our cell-free platform provides a new strategy to convert fatty acids to valuable chemicals with notable properties of operation flexibility, reaction controllability, and product selectivity.</p></div>","PeriodicalId":18695,"journal":{"name":"Metabolic Engineering Communications","volume":"16 ","pages":"Article e00217"},"PeriodicalIF":5.2,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/f3/36/main.PMC9791597.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10509847","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Engineered production of isoprene from the model green microalga Chlamydomonas reinhardtii 利用莱茵衣藻工程化生产异戊二烯
IF 5.2 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2023-06-01 DOI: 10.1016/j.mec.2023.e00221
Razan Z. Yahya, Gordon B. Wellman, Sebastian Overmans, Kyle J. Lauersen

Isoprene is a clear, colorless, volatile 5-carbon hydrocarbon that is one monomer of all cellular isoprenoids and a platform chemical with multiple applications in industry. Many plants have evolved isoprene synthases (IspSs) with the capacity to liberate isoprene from dimethylallyl diphosphate (DMADP) as part of cellular thermotolerance mechanisms. Isoprene is hydrophobic and volatile, rapidly leaves plant tissues and is one of the main carbon emission sources from vegetation globally. The universality of isoprenoid metabolism allows volatile isoprene production from microbes expressing heterologous IspSs. Here, we compared heterologous overexpression from the nuclear genome and localization into the plastid of four plant terpene synthases (TPs) in the green microalga Chlamydomonas reinhardtii. Using sealed vial mixotrophic cultivation, direct quantification of isoprene production was achieved from the headspace of living cultures, with the highest isoprene production observed in algae expressing the Ipomoea batatas IspS. Perturbations of the downstream carotenoid pathway through keto carotenoid biosynthesis enhanced isoprene titers, which could be further enhanced by increasing flux towards DMADP through heterologous co-expression of a yeast isopentenyl-DP delta isomerase. Multiplexed controlled-environment testing revealed that cultivation temperature, rather than illumination intensity, was the main factor affecting isoprene yield from the engineered alga. This is the first report of heterologous isoprene production from a eukaryotic alga and sets a foundation for further exploration of carbon conversion to this commodity chemical.

异戊二烯是一种透明、无色、挥发性的5碳碳氢化合物,是所有细胞类异戊二烯中的一种单体,也是一种在工业中具有多种应用的平台化学品。作为细胞耐热机制的一部分,许多植物已经进化出具有从二甲基烯丙基二磷酸(DMADP)中释放异戊二烯的能力的异戊二烯合成酶(IspSs)。异戊二烯具有疏水性和挥发性,能迅速离开植物组织,是全球植被的主要碳排放源之一。类异戊二烯代谢的普遍性允许表达异源IspSs的微生物产生挥发性异戊二烯。在这里,我们比较了来自核基因组的异源过表达和绿色微藻莱茵衣藻中四种植物萜烯合成酶(TP)在质体中的定位。使用密封小瓶混合营养培养,从活培养物的顶部空间实现了异戊二烯生产的直接定量,在表达Ipomoea batatas IspS的藻类中观察到最高的异戊二烯生产。通过酮类胡萝卜素生物合成对下游类胡萝卜素途径的干扰增强了异戊二烯滴度,通过异源共表达酵母异戊烯基DPδ异构酶增加向DMADP的流量可以进一步增强异戊二烯滴度。多重控制环境试验表明,影响工程藻类异戊二烯产量的主要因素是培养温度,而不是光照强度。这是第一份由真核藻类生产异源异戊二烯的报告,为进一步探索碳转化为这种商品化学品奠定了基础。
{"title":"Engineered production of isoprene from the model green microalga Chlamydomonas reinhardtii","authors":"Razan Z. Yahya,&nbsp;Gordon B. Wellman,&nbsp;Sebastian Overmans,&nbsp;Kyle J. Lauersen","doi":"10.1016/j.mec.2023.e00221","DOIUrl":"https://doi.org/10.1016/j.mec.2023.e00221","url":null,"abstract":"<div><p>Isoprene is a clear, colorless, volatile 5-carbon hydrocarbon that is one monomer of all cellular isoprenoids and a platform chemical with multiple applications in industry. Many plants have evolved isoprene synthases (IspSs) with the capacity to liberate isoprene from dimethylallyl diphosphate (DMADP) as part of cellular thermotolerance mechanisms. Isoprene is hydrophobic and volatile, rapidly leaves plant tissues and is one of the main carbon emission sources from vegetation globally. The universality of isoprenoid metabolism allows volatile isoprene production from microbes expressing heterologous IspSs. Here, we compared heterologous overexpression from the nuclear genome and localization into the plastid of four plant terpene synthases (TPs) in the green microalga <em>Chlamydomonas reinhardtii</em>. Using sealed vial mixotrophic cultivation, direct quantification of isoprene production was achieved from the headspace of living cultures, with the highest isoprene production observed in algae expressing the <em>Ipomoea batatas</em> IspS. Perturbations of the downstream carotenoid pathway through keto carotenoid biosynthesis enhanced isoprene titers, which could be further enhanced by increasing flux towards DMADP through heterologous co-expression of a yeast isopentenyl-DP delta isomerase. Multiplexed controlled-environment testing revealed that cultivation temperature, rather than illumination intensity, was the main factor affecting isoprene yield from the engineered alga. This is the first report of heterologous isoprene production from a eukaryotic alga and sets a foundation for further exploration of carbon conversion to this commodity chemical.</p></div>","PeriodicalId":18695,"journal":{"name":"Metabolic Engineering Communications","volume":"16 ","pages":"Article e00221"},"PeriodicalIF":5.2,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50170513","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Improved protein glycosylation enabled heterologous biosynthesis of monoterpenoid indole alkaloids and their unnatural derivatives in yeast 改进的蛋白质糖基化使单萜吲哚生物碱及其非天然衍生物在酵母中异源生物合成成为可能
IF 5.2 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2023-06-01 DOI: 10.1016/j.mec.2022.e00215
Mohammadamin Shahsavarani , Joseph Christian Utomo , Rahul Kumar , Melina Paz-Galeano , Jorge Jonathan Oswaldo Garza-García , Zhan Mai , Dae-Kyun Ro , Yang Qu

With over 3000 reported structures, monoterpenoid indole alkaloids (MIAs) constitute one of the largest alkaloid groups in nature, including the clinically important anticancer drug vinblastine and its semi-synthetic derivatives from Catharanthus roseus (Madagascar’s periwinkle). With the elucidation of the complete 28-step biosynthesis for anhydrovinblastine, it is possible to investigate the heterologous production of vinblastine and other medicinal MIAs. In this study, we successfully expressed the flavoenzyme O-acetylstemmadenine oxidase in Saccharomyces cerevisiae (baker’s yeast) by signal peptide modification, which is a vinblastine biosynthetic gene that has not been functionally expressed in this system. We also reported the simultaneous integration of ∼18 kb MIA biosynthetic gene cassettes as single copies into four genomic loci of baker’s yeast by CRISPR-Cas9, which enabled the biosynthesis of vinblastine precursors catharanthine and tabersonine from the feedstocks secologanin and tryptamine. We further demonstrated the biosynthesis of fluorinated and hydroxylated catharanthine and tabersonine derivatives using our yeasts, which showed that the MIA biosynthesis accommodates unnatural substrates, and the system can be further explored to produce other complex MIAs.

单萜类吲哚生物碱(MIAs)具有3000多种已报道的结构,是自然界中最大的生物碱类之一,包括临床上重要的抗癌药物长春碱及其来自长春花(马达加斯加长春花)的半合成衍生物。随着脱水长春碱完整的28步生物合成的阐明,有可能研究长春碱和其他药用MIA的异源生产。在本研究中,我们通过信号肽修饰成功地在酿酒酵母(面包酵母)中表达了风味酶O-乙酰基茎胺氧化酶,这是一种尚未在该系统中功能表达的长春碱生物合成基因。我们还报道了通过CRISPR-Cas9将~18kb MIA生物合成基因盒以单拷贝形式同时整合到面包酵母的四个基因组位点中,这使得长春碱前体长春花碱和色胺能够从饲料中生物合成。我们使用我们的酵母进一步证明了氟化和羟基化的长春花碱和tabersonine衍生物的生物合成,这表明MIA生物合成适应非天然底物,该系统可以进一步探索产生其他复杂的MIA。
{"title":"Improved protein glycosylation enabled heterologous biosynthesis of monoterpenoid indole alkaloids and their unnatural derivatives in yeast","authors":"Mohammadamin Shahsavarani ,&nbsp;Joseph Christian Utomo ,&nbsp;Rahul Kumar ,&nbsp;Melina Paz-Galeano ,&nbsp;Jorge Jonathan Oswaldo Garza-García ,&nbsp;Zhan Mai ,&nbsp;Dae-Kyun Ro ,&nbsp;Yang Qu","doi":"10.1016/j.mec.2022.e00215","DOIUrl":"10.1016/j.mec.2022.e00215","url":null,"abstract":"<div><p>With over 3000 reported structures, monoterpenoid indole alkaloids (MIAs) constitute one of the largest alkaloid groups in nature, including the clinically important anticancer drug vinblastine and its semi-synthetic derivatives from <em>Catharanthus roseus</em> (Madagascar’s periwinkle). With the elucidation of the complete 28-step biosynthesis for anhydrovinblastine, it is possible to investigate the heterologous production of vinblastine and other medicinal MIAs. In this study, we successfully expressed the flavoenzyme <em>O</em>-acetylstemmadenine oxidase in <em>Saccharomyces cerevisiae</em> (baker’s yeast) by signal peptide modification, which is a vinblastine biosynthetic gene that has not been functionally expressed in this system. We also reported the simultaneous integration of ∼18 kb MIA biosynthetic gene cassettes as single copies into four genomic loci of baker’s yeast by CRISPR-Cas9, which enabled the biosynthesis of vinblastine precursors catharanthine and tabersonine from the feedstocks secologanin and tryptamine. We further demonstrated the biosynthesis of fluorinated and hydroxylated catharanthine and tabersonine derivatives using our yeasts, which showed that the MIA biosynthesis accommodates unnatural substrates, and the system can be further explored to produce other complex MIAs.</p></div>","PeriodicalId":18695,"journal":{"name":"Metabolic Engineering Communications","volume":"16 ","pages":"Article e00215"},"PeriodicalIF":5.2,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/b6/12/main.PMC9772838.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10804046","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 7
Metabolic engineering of low-pH-tolerant non-model yeast, Issatchenkia orientalis, for production of citramalate 用于生产柠檬酸盐的低pH耐受性非模式酵母Issatchenkia orientalis的代谢工程
IF 5.2 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2023-06-01 DOI: 10.1016/j.mec.2023.e00220
Zong-Yen Wu , Wan Sun , Yihui Shen , Jimmy Pratas , Patrick F. Suthers , Ping-Hung Hsieh , Sudharsan Dwaraknath , Joshua D. Rabinowitz , Costas D. Maranas , Zengyi Shao , Yasuo Yoshikuni

Methyl methacrylate (MMA) is an important petrochemical with many applications. However, its manufacture has a large environmental footprint. Combined biological and chemical synthesis (semisynthesis) may be a promising alternative to reduce both cost and environmental impact, but strains that can produce the MMA precursor (citramalate) at low pH are required. A non-conventional yeast, Issatchenkia orientalis, may prove ideal, as it can survive extremely low pH. Here, we demonstrate the engineering of I. orientalis for citramalate production. Using sequence similarity network analysis and subsequent DNA synthesis, we selected a more active citramalate synthase gene (cimA) variant for expression in I. orientalis. We then adapted a piggyBac transposon system for I. orientalis that allowed us to simultaneously explore the effects of different cimA gene copy numbers and integration locations. A batch fermentation showed the genome-integrated-cimA strains produced 2.0 g/L citramalate in 48 h and a yield of up to 7% mol citramalate/mol consumed glucose. These results demonstrate the potential of I. orientalis as a chassis for citramalate production.

甲基丙烯酸甲酯(MMA)是一种重要的石油化工产品,有着广泛的应用。然而,它的制造有很大的环境足迹。生物和化学合成(半合成)可能是降低成本和环境影响的一种很有前途的替代方法,但需要能够在低pH下生产MMA前体(柠檬酸盐)的菌株。非传统酵母Issatchenkia orientalis可能被证明是理想的,因为它可以在极低的pH值下存活。在这里,我们展示了I.orientalis用于柠檬酸盐生产的工程。通过序列相似性网络分析和随后的DNA合成,我们选择了一种更具活性的柠檬酸合成酶基因(cimA)变体在东方I.orientalis中表达。然后,我们将piggyBac转座子系统用于东方I.orientalis,使我们能够同时探索不同cimA基因拷贝数和整合位置的影响。分批发酵表明,基因组整合的cimA菌株在48小时内产生2.0g/L的柠檬酸盐,并且产量高达7%摩尔柠檬酸盐/mol消耗的葡萄糖。这些结果证明了东方乳杆菌作为柠檬酸盐生产底盘的潜力。
{"title":"Metabolic engineering of low-pH-tolerant non-model yeast, Issatchenkia orientalis, for production of citramalate","authors":"Zong-Yen Wu ,&nbsp;Wan Sun ,&nbsp;Yihui Shen ,&nbsp;Jimmy Pratas ,&nbsp;Patrick F. Suthers ,&nbsp;Ping-Hung Hsieh ,&nbsp;Sudharsan Dwaraknath ,&nbsp;Joshua D. Rabinowitz ,&nbsp;Costas D. Maranas ,&nbsp;Zengyi Shao ,&nbsp;Yasuo Yoshikuni","doi":"10.1016/j.mec.2023.e00220","DOIUrl":"https://doi.org/10.1016/j.mec.2023.e00220","url":null,"abstract":"<div><p>Methyl methacrylate (MMA) is an important petrochemical with many applications. However, its manufacture has a large environmental footprint. Combined biological and chemical synthesis (semisynthesis) may be a promising alternative to reduce both cost and environmental impact, but strains that can produce the MMA precursor (citramalate) at low pH are required. A non-conventional yeast, <em>Issatchenkia orientalis</em>, may prove ideal, as it can survive extremely low pH. Here, we demonstrate the engineering of <em>I. orientalis</em> for citramalate production. Using sequence similarity network analysis and subsequent DNA synthesis, we selected a more active citramalate synthase gene (<em>cimA</em>) variant for expression in <em>I. orientalis</em>. We then adapted a piggyBac transposon system for <em>I. orientalis</em> that allowed us to simultaneously explore the effects of different <em>cimA</em> gene copy numbers and integration locations. A batch fermentation showed the genome-integrated-<em>cimA</em> strains produced 2.0 g/L citramalate in 48 h and a yield of up to 7% mol citramalate/mol consumed glucose. These results demonstrate the potential of <em>I. orientalis</em> as a chassis for citramalate production.</p></div>","PeriodicalId":18695,"journal":{"name":"Metabolic Engineering Communications","volume":"16 ","pages":"Article e00220"},"PeriodicalIF":5.2,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50170512","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Novel insights into construct toxicity, strain optimization, and primary sequence design for producing recombinant silk fibroin and elastin-like peptide in E. coli 在大肠杆菌中生产重组丝素蛋白和弹性蛋白样肽的构建毒性、菌株优化和一级序列设计的新见解
IF 5.2 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2023-06-01 DOI: 10.1016/j.mec.2023.e00219
Alexander Connor , Caleb Wigham , Yang Bai , Manish Rai , Sebastian Nassif , Mattheos Koffas , R. Helen Zha

Spider silk proteins (spidroins) are a remarkable class of biomaterials that exhibit a unique combination of high-value attributes and can be processed into numerous morphologies for targeted applications in diverse fields. Recombinant production of spidroins represents the most promising route towards establishing the industrial production of the material, however, recombinant spider silk production suffers from fundamental difficulties that includes low titers, plasmid instability, and translational inefficiencies. In this work, we sought to gain a deeper understanding of upstream bottlenecks that exist in the field through the production of a panel of systematically varied spidroin sequences in multiple E. coli strains. A restriction on basal expression and specific genetic mutations related to stress responses were identified as primary factors that facilitated higher titers of the recombinant silk constructs. Using these findings, a novel strain of E. coli was created that produces recombinant silk constructs at levels 4–33 times higher than standard BL21(DE3). However, these findings did not extend to a similar recombinant protein, an elastin-like peptide. It was found that the recombinant silk proteins, but not the elastin-like peptide, exert toxicity on the E. coli host system, possibly through their high degree of intrinsic disorder. Along with strain engineering, a bioprocess design that utilizes longer culturing times and attenuated induction was found to raise recombinant silk titers by seven-fold and mitigate toxicity. Targeted alteration to the primary sequence of the recombinant silk constructs was also found to mitigate toxicity. These findings identify multiple points of focus for future work seeking to further optimize the recombinant production of silk proteins and is the first work to identify the intrinsic disorder and subsequent toxicity of certain spidroin constructs as a primary factor related to the difficulties of production.

蜘蛛丝蛋白(spidroins)是一类引人注目的生物材料,表现出高价值属性的独特组合,可以加工成多种形态,用于不同领域的靶向应用。蜘蛛蛋白的重组生产代表了建立该材料工业生产的最有前途的途径,然而,重组蜘蛛丝的生产存在根本困难,包括低滴度、质粒不稳定和翻译效率低下。在这项工作中,我们试图通过在多个大肠杆菌菌株中生产一组系统变化的蜘蛛蛋白序列,来更深入地了解该领域存在的上游瓶颈。对基础表达的限制和与应激反应相关的特异性遗传突变被确定为促进重组丝构建体更高滴度的主要因素。利用这些发现,产生了一种新的大肠杆菌菌株,其产生的重组丝构建体的水平是标准BL21(DE3)的4-33倍。然而,这些发现并没有延伸到类似的重组蛋白,一种弹性蛋白样肽。研究发现,重组丝蛋白,而不是弹性蛋白样肽,可能通过其高度的内在紊乱对大肠杆菌宿主系统产生毒性。与菌株工程一起,发现利用较长培养时间和减弱诱导的生物工艺设计可以将重组丝滴度提高7倍并减轻毒性。还发现对重组丝构建体的一级序列的靶向改变可以减轻毒性。这些发现为未来寻求进一步优化丝蛋白重组生产的工作确定了多个重点,也是第一项将某些蜘蛛蛋白构建体的内在紊乱和随后的毒性确定为与生产困难相关的主要因素的工作。
{"title":"Novel insights into construct toxicity, strain optimization, and primary sequence design for producing recombinant silk fibroin and elastin-like peptide in E. coli","authors":"Alexander Connor ,&nbsp;Caleb Wigham ,&nbsp;Yang Bai ,&nbsp;Manish Rai ,&nbsp;Sebastian Nassif ,&nbsp;Mattheos Koffas ,&nbsp;R. Helen Zha","doi":"10.1016/j.mec.2023.e00219","DOIUrl":"https://doi.org/10.1016/j.mec.2023.e00219","url":null,"abstract":"<div><p>Spider silk proteins (spidroins) are a remarkable class of biomaterials that exhibit a unique combination of high-value attributes and can be processed into numerous morphologies for targeted applications in diverse fields. Recombinant production of spidroins represents the most promising route towards establishing the industrial production of the material, however, recombinant spider silk production suffers from fundamental difficulties that includes low titers, plasmid instability, and translational inefficiencies. In this work, we sought to gain a deeper understanding of upstream bottlenecks that exist in the field through the production of a panel of systematically varied spidroin sequences in multiple <em>E. coli</em> strains. A restriction on basal expression and specific genetic mutations related to stress responses were identified as primary factors that facilitated higher titers of the recombinant silk constructs. Using these findings, a novel strain of <em>E. coli</em> was created that produces recombinant silk constructs at levels 4–33 times higher than standard BL21(DE3). However, these findings did not extend to a similar recombinant protein, an elastin-like peptide. It was found that the recombinant silk proteins, but not the elastin-like peptide, exert toxicity on the <em>E. coli</em> host system, possibly through their high degree of intrinsic disorder. Along with strain engineering, a bioprocess design that utilizes longer culturing times and attenuated induction was found to raise recombinant silk titers by seven-fold and mitigate toxicity. Targeted alteration to the primary sequence of the recombinant silk constructs was also found to mitigate toxicity. These findings identify multiple points of focus for future work seeking to further optimize the recombinant production of silk proteins and is the first work to identify the intrinsic disorder and subsequent toxicity of certain spidroin constructs as a primary factor related to the difficulties of production.</p></div>","PeriodicalId":18695,"journal":{"name":"Metabolic Engineering Communications","volume":"16 ","pages":"Article e00219"},"PeriodicalIF":5.2,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50170510","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Re-evaluation of the impact of BUD21 deletion on xylose utilization by Saccharomyces cerevisiae BUD21缺失对酿酒酵母木糖利用影响的再评价
IF 5.2 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2023-06-01 DOI: 10.1016/j.mec.2023.e00218
Venkatachalam Narayanan , Anders G. Sandström , Marie F. Gorwa-Grauslund

Various rational metabolic engineering and random approaches have been applied to introduce and improve xylose utilization and ethanol productivity by Saccharomyces cerevisiae. Among them, the BUD21 gene was identified as an interesting candidate for enhancing xylose consumption as its deletion appeared to be sufficient to improve growth, substrate utilization and ethanol productivity on xylose, even in a laboratory strain lacking a heterologous xylose pathway. The present study aimed at studying the influence of BUD21 deletion in recombinant strains carrying heterologous oxido-reductive xylose utilization pathway. The positive effect of BUD21 gene deletion on aerobic growth and xylose utilization could not be confirmed in two non-engineered laboratory strains (BY4741 and CEN.PK 113-7D) that were grown in YP rich medium with 20 g/L xylose as sole carbon source, despite the fact that effective deletion of BUD21 gene was confirmed using both genotypic (colony PCR) and phenotypic (heat sensitive phenotype of the BUD21 deletion mutant) control experiments. Therefore, the effect of BUD21 deletion on xylose fermentation might be strain- or medium-dependent.

各种合理的代谢工程和随机方法已被应用于引入和提高酿酒酵母对木糖的利用率和乙醇产量。其中,BUD21基因被鉴定为增强木糖消耗的有趣候选者,因为其缺失似乎足以提高木糖的生长、底物利用率和乙醇生产率,即使在缺乏异源木糖途径的实验室菌株中也是如此。本研究旨在研究BUD21缺失对携带异源氧化还原木糖利用途径的重组菌株的影响。BUD21基因缺失对需氧生长和木糖利用的积极作用在两个非工程实验室菌株(BY4741和CEN.PK 113-7D)中不能得到证实,这两个菌株生长在以20g/L木糖作为唯一碳源的富含YP的培养基中,尽管使用基因型(菌落PCR)和表型(BUD21缺失突变体的热敏表型)对照实验证实了BUD21基因的有效缺失。因此,BUD21缺失对木糖发酵的影响可能是菌株或培养基依赖性的。
{"title":"Re-evaluation of the impact of BUD21 deletion on xylose utilization by Saccharomyces cerevisiae","authors":"Venkatachalam Narayanan ,&nbsp;Anders G. Sandström ,&nbsp;Marie F. Gorwa-Grauslund","doi":"10.1016/j.mec.2023.e00218","DOIUrl":"https://doi.org/10.1016/j.mec.2023.e00218","url":null,"abstract":"<div><p>Various rational metabolic engineering and random approaches have been applied to introduce and improve xylose utilization and ethanol productivity by <em>Saccharomyces cerevisiae</em>. Among them, the <em>BUD21</em> gene was identified as an interesting candidate for enhancing xylose consumption as its deletion appeared to be sufficient to improve growth, substrate utilization and ethanol productivity on xylose, even in a laboratory strain lacking a heterologous xylose pathway. The present study aimed at studying the influence of <em>BUD21</em> deletion in recombinant strains carrying heterologous oxido-reductive xylose utilization pathway. The positive effect of <em>BUD21</em> gene deletion on aerobic growth and xylose utilization could not be confirmed in two non-engineered laboratory strains (BY4741 and CEN.PK 113-7D) that were grown in YP rich medium with 20 g/L xylose as sole carbon source, despite the fact that effective deletion of <em>BUD21</em> gene was confirmed using both genotypic (colony PCR) and phenotypic (heat sensitive phenotype of the <em>BUD21</em> deletion mutant) control experiments. Therefore, the effect of <em>BUD21</em> deletion on xylose fermentation might be strain- or medium-dependent.</p></div>","PeriodicalId":18695,"journal":{"name":"Metabolic Engineering Communications","volume":"16 ","pages":"Article e00218"},"PeriodicalIF":5.2,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50170515","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exploring linker's sequence diversity to fuse carotene cyclase and hydroxylase for zeaxanthin biosynthesis 利用连接子序列多样性融合胡萝卜素环化酶和羟化酶合成玉米黄质
IF 5.2 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2023-06-01 DOI: 10.1016/j.mec.2023.e00222
Aurélie Bouin , Congqiang Zhang , Nic D. Lindley , Gilles Truan , Thomas Lautier

Fusion of catalytic domains can accelerate cascade reactions by bringing enzymes in close proximity. However, the design of a protein fusion and the choice of a linker are often challenging and lack of guidance. To determine the impact of linker parameters on fusion proteins, a library of linkers featuring various lengths, secondary structures, extensions and hydrophobicities was designed. Linkers were used to fuse the lycopene cyclase (crtY) and β-carotene hydroxylase (crtZ) from Pantoea ananatis to create fusion proteins to produce zeaxanthin. The fusion efficiency was assessed by comparing the carotenoids content in a carotenoid-producer Escherichia coli strain. It was shown that in addition to the orientation of the enzymes and the size of the linker, the first amino acid of the linker is also a key factor in determining the efficiency of a protein fusion. The wide range of sequence diversity in our linker library enables the fine tuning of protein fusion and this approach can be easily transferred to other enzyme couples.

催化结构域的融合可以通过使酶接近来加速级联反应。然而,蛋白质融合体的设计和连接体的选择往往具有挑战性,并且缺乏指导。为了确定连接体参数对融合蛋白的影响,设计了一个具有不同长度、二级结构、延伸和疏水性的连接体库。连接子用于融合来自Pantea ananatis的番茄红素环化酶(crtY)和β-胡萝卜素羟化酶(crtZ),以产生融合蛋白来生产玉米黄质。通过比较类胡萝卜素产生菌大肠杆菌菌株中的类胡萝卜素含量来评估融合效率。研究表明,除了酶的取向和连接体的大小外,连接体的第一个氨基酸也是决定蛋白质融合效率的关键因素。我们的接头库中广泛的序列多样性使得能够对蛋白质融合进行微调,并且这种方法可以很容易地转移到其他酶对中。
{"title":"Exploring linker's sequence diversity to fuse carotene cyclase and hydroxylase for zeaxanthin biosynthesis","authors":"Aurélie Bouin ,&nbsp;Congqiang Zhang ,&nbsp;Nic D. Lindley ,&nbsp;Gilles Truan ,&nbsp;Thomas Lautier","doi":"10.1016/j.mec.2023.e00222","DOIUrl":"10.1016/j.mec.2023.e00222","url":null,"abstract":"<div><p>Fusion of catalytic domains can accelerate cascade reactions by bringing enzymes in close proximity. However, the design of a protein fusion and the choice of a linker are often challenging and lack of guidance. To determine the impact of linker parameters on fusion proteins, a library of linkers featuring various lengths, secondary structures, extensions and hydrophobicities was designed. Linkers were used to fuse the lycopene cyclase (crtY) and β-carotene hydroxylase (crtZ) from <em>Pantoea ananatis</em> to create fusion proteins to produce zeaxanthin. The fusion efficiency was assessed by comparing the carotenoids content in a carotenoid-producer <em>Escherichia coli</em> strain. It was shown that in addition to the orientation of the enzymes and the size of the linker, the first amino acid of the linker is also a key factor in determining the efficiency of a protein fusion. The wide range of sequence diversity in our linker library enables the fine tuning of protein fusion and this approach can be easily transferred to other enzyme couples.</p></div>","PeriodicalId":18695,"journal":{"name":"Metabolic Engineering Communications","volume":"16 ","pages":"Article e00222"},"PeriodicalIF":5.2,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/bc/34/main.PMC10165439.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9452847","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Adaptive laboratory evolution of Bacillus subtilis to overcome toxicity of lignocellulosic hydrolysate derived from Distiller's dried grains with solubles (DDGS) 枯草芽孢杆菌的适应性实验室进化以克服蒸馏器干燥谷物中木质纤维素水解物的毒性(DDGS)
IF 5.2 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2023-06-01 DOI: 10.1016/j.mec.2023.e00223
Jasper L.S.P. Driessen , Josefin Johnsen , Ivan Pogrebnyakov , Elsayed T.T. Mohamed , Solange I. Mussatto , Adam M. Feist , Sheila I. Jensen , Alex T. Nielsen

Microbial tolerance to toxic compounds formed during biomass pretreatment is a significant challenge to produce bio-based products from lignocellulose cost effectively. Rational engineering can be problematic due to insufficient prerequisite knowledge of tolerance mechanisms. Therefore, adaptive laboratory evolution was applied to obtain 20 tolerant lineages of Bacillus subtilis strains able to utilize Distiller's Dried Grains with Solubles-derived (DDGS) hydrolysate. Evolved strains showed both improved growth performance and retained heterologous enzyme production using 100% hydrolysate-based medium, whereas growth of the starting strains was essentially absent. Whole-genome resequencing revealed that evolved isolates acquired mutations in the global regulator codY in 15 of the 19 sequenced isolates. Furthermore, mutations in genes related to oxidative stress (katA, perR) and flagella function appeared in both tolerance and control evolution experiments without toxic compounds. Overall, tolerance adaptive laboratory evolution yielded strains able to utilize DDGS-hydrolysate to produce enzymes and hence proved to be a valuable tool for the valorization of lignocellulose.

微生物对生物质预处理过程中形成的有毒化合物的耐受性是从木质纤维素生产生物基产品的一个重大挑战。由于对公差机制的先决条件知识不足,理性工程可能会出现问题。因此,应用适应性实验室进化获得了20个枯草芽孢杆菌菌株的耐受谱系,这些菌株能够利用具有可溶物衍生(DDGS)水解物的Distiller’s Dried Grains。使用100%基于水解产物的培养基,进化菌株显示出提高的生长性能和保留的异源酶产量,而起始菌株基本上没有生长。全基因组重测序显示,进化的分离株在19个测序的分离株中的15个中获得了全球调节因子codY的突变。此外,在没有有毒化合物的耐受和控制进化实验中,都出现了与氧化应激(katA、perR)和鞭毛功能相关的基因突变。总体而言,耐受性适应性实验室进化产生了能够利用DDGS水解物生产酶的菌株,因此被证明是木质纤维素增值的有价值工具。
{"title":"Adaptive laboratory evolution of Bacillus subtilis to overcome toxicity of lignocellulosic hydrolysate derived from Distiller's dried grains with solubles (DDGS)","authors":"Jasper L.S.P. Driessen ,&nbsp;Josefin Johnsen ,&nbsp;Ivan Pogrebnyakov ,&nbsp;Elsayed T.T. Mohamed ,&nbsp;Solange I. Mussatto ,&nbsp;Adam M. Feist ,&nbsp;Sheila I. Jensen ,&nbsp;Alex T. Nielsen","doi":"10.1016/j.mec.2023.e00223","DOIUrl":"https://doi.org/10.1016/j.mec.2023.e00223","url":null,"abstract":"<div><p>Microbial tolerance to toxic compounds formed during biomass pretreatment is a significant challenge to produce bio-based products from lignocellulose cost effectively. Rational engineering can be problematic due to insufficient prerequisite knowledge of tolerance mechanisms. Therefore, adaptive laboratory evolution was applied to obtain 20 tolerant lineages of <em>Bacillus subtilis</em> strains able to utilize Distiller's Dried Grains with Solubles-derived (DDGS) hydrolysate. Evolved strains showed both improved growth performance and retained heterologous enzyme production using 100% hydrolysate-based medium, whereas growth of the starting strains was essentially absent. Whole-genome resequencing revealed that evolved isolates acquired mutations in the global regulator c<em>odY</em> in 15 of the 19 sequenced isolates. Furthermore, mutations in genes related to oxidative stress (<em>katA</em>, <em>perR</em>) and flagella function appeared in both tolerance and control evolution experiments without toxic compounds. Overall, tolerance adaptive laboratory evolution yielded strains able to utilize DDGS-hydrolysate to produce enzymes and hence proved to be a valuable tool for the valorization of lignocellulose.</p></div>","PeriodicalId":18695,"journal":{"name":"Metabolic Engineering Communications","volume":"16 ","pages":"Article e00223"},"PeriodicalIF":5.2,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50170514","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Engineering sorghum for higher 4-hydroxybenzoic acid content 工程高粱具有较高的4-羟基苯甲酸含量
IF 5.2 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2022-12-01 DOI: 10.1016/j.mec.2022.e00207
Chien-Yuan Lin , Yang Tian , Kimberly Nelson-Vasilchik , Joel Hague , Ramu Kakumanu , Mi Yeon Lee , Venkataramana R. Pidatala , Jessica Trinh , Christopher M. De Ben , Jutta Dalton , Trent R. Northen , Edward E.K. Baidoo , Blake A. Simmons , John M. Gladden , Corinne D. Scown , Daniel H. Putnam , Albert P. Kausch , Henrik V. Scheller , Aymerick Eudes

Engineering bioenergy crops to accumulate coproducts in planta can increase the value of lignocellulosic biomass and enable a sustainable bioeconomy. In this study, we engineered sorghum with a bacterial gene encoding a chorismate pyruvate-lyase (ubiC) to reroute the plastidial pool of chorismate from the shikimate pathway into the valuable compound 4-hydroxybenzoic acid (4-HBA). A gene encoding a feedback-resistant version of 3-deoxy-d-arabino-heptulonate-7-phosphate synthase (aroG) was also introduced in an attempt to increase the carbon flux through the shikimate pathway. At the full maturity and senesced stage, two independent lines that co-express ubiC and aroG produced 1.5 and 1.7 dw% of 4-HBA in biomass, which represents 36- and 40-fold increases compared to the titer measured in wildtype. The two transgenic lines showed no obvious phenotypes, growth defects, nor alteration of cell wall polysaccharide content when cultivated under controlled conditions. In the field, when harvested before grain maturity, transgenic lines contained 0.8 and 1.2 dw% of 4-HBA, which represent economically relevant titers based on recent technoeconomic analysis. Only a slight reduction (11–15%) in biomass yield was observed in transgenics grown under natural environment. This work provides the first metabolic engineering steps toward 4-HBA overproduction in the bioenergy crop sorghum to improve the economics of biorefineries by accumulating a value-added coproduct that can be recovered from biomass and provide an additional revenue stream.

改造生物能源作物,在植物中积累副产品,可以增加木质纤维素生物质的价值,实现可持续的生物经济。在这项研究中,我们用一种编码choris酸丙酮酸裂解酶(ubiC)的细菌基因改造高粱,将choris酸的质体池从莽草酸途径转变为有价值的化合物4-羟基苯甲酸(4-HBA)。一个编码3-脱氧-d-阿拉伯-庚二酸-7-磷酸合成酶(aroG)的抗反馈基因也被引入,试图通过莽草酸途径增加碳通量。在完全成熟和衰老阶段,两个共同表达ubiC和aroG的独立品系在生物量中产生了1.5和1.7 dw%的4-HBA,与野生型相比,分别增加了36倍和40倍。在控制条件下培养时,两种转基因系均无明显表型、生长缺陷和细胞壁多糖含量变化。在田间,当在籽粒成熟前收获时,转基因品系含有0.8和1.2 dw%的4-HBA,根据最近的技术经济分析,这代表了经济上相关的滴度。在自然环境下生长的转基因作物的生物量产量仅略有下降(11-15%)。这项工作为生物能源作物高粱中4-HBA过量生产提供了第一个代谢工程步骤,通过积累可从生物质中回收的增值副产品来提高生物精炼厂的经济效益,并提供额外的收入来源。
{"title":"Engineering sorghum for higher 4-hydroxybenzoic acid content","authors":"Chien-Yuan Lin ,&nbsp;Yang Tian ,&nbsp;Kimberly Nelson-Vasilchik ,&nbsp;Joel Hague ,&nbsp;Ramu Kakumanu ,&nbsp;Mi Yeon Lee ,&nbsp;Venkataramana R. Pidatala ,&nbsp;Jessica Trinh ,&nbsp;Christopher M. De Ben ,&nbsp;Jutta Dalton ,&nbsp;Trent R. Northen ,&nbsp;Edward E.K. Baidoo ,&nbsp;Blake A. Simmons ,&nbsp;John M. Gladden ,&nbsp;Corinne D. Scown ,&nbsp;Daniel H. Putnam ,&nbsp;Albert P. Kausch ,&nbsp;Henrik V. Scheller ,&nbsp;Aymerick Eudes","doi":"10.1016/j.mec.2022.e00207","DOIUrl":"10.1016/j.mec.2022.e00207","url":null,"abstract":"<div><p>Engineering bioenergy crops to accumulate coproducts <em>in planta</em> can increase the value of lignocellulosic biomass and enable a sustainable bioeconomy. In this study, we engineered sorghum with a bacterial gene encoding a chorismate pyruvate-lyase (<em>ubiC</em>) to reroute the plastidial pool of chorismate from the shikimate pathway into the valuable compound 4-hydroxybenzoic acid (4-HBA). A gene encoding a feedback-resistant version of 3-deoxy-<span>d</span>-arabino-heptulonate-7-phosphate synthase (<em>aroG</em>) was also introduced in an attempt to increase the carbon flux through the shikimate pathway. At the full maturity and senesced stage, two independent lines that co-express <em>ubiC</em> and <em>aroG</em> produced 1.5 and 1.7 dw% of 4-HBA in biomass, which represents 36- and 40-fold increases compared to the titer measured in wildtype. The two transgenic lines showed no obvious phenotypes, growth defects, nor alteration of cell wall polysaccharide content when cultivated under controlled conditions. In the field, when harvested before grain maturity, transgenic lines contained 0.8 and 1.2 dw% of 4-HBA, which represent economically relevant titers based on recent technoeconomic analysis. Only a slight reduction (11–15%) in biomass yield was observed in transgenics grown under natural environment. This work provides the first metabolic engineering steps toward 4-HBA overproduction in the bioenergy crop sorghum to improve the economics of biorefineries by accumulating a value-added coproduct that can be recovered from biomass and provide an additional revenue stream.</p></div>","PeriodicalId":18695,"journal":{"name":"Metabolic Engineering Communications","volume":"15 ","pages":"Article e00207"},"PeriodicalIF":5.2,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9519784/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40393831","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Engineering of Yarrowia lipolytica for terpenoid production 产萜类化合物的聚脂耶氏菌工程
IF 5.2 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2022-12-01 DOI: 10.1016/j.mec.2022.e00213
Jonathan Asmund Arnesen, Irina Borodina

Terpenoids are a group of chemicals of great importance for human health and prosperity. Terpenoids can be used for human and animal nutrition, treating diseases, enhancing agricultural output, biofuels, fragrances, cosmetics, and flavouring. However, due to the rapid depletion of global natural resources and manufacturing practices relying on unsustainable petrochemical synthesis, there is a need for economic alternatives to supply the world's demand for these essential chemicals. Microbial biosynthesis offers the means to develop scalable and sustainable bioprocesses for terpenoid production. In particular, the non-conventional yeast Yarrowia lipolytica demonstrates excellent potential as a chassis for terpenoid production due to its amenability to industrial production scale-up, genetic engineering, and high accumulation of terpenoid precursors. This review aims to illustrate the scientific progress in developing Y. lipolytica terpenoid cell factories, focusing on metabolic engineering approaches for strain improvement and cultivation optimization.

萜类化合物是一组对人类健康和繁荣非常重要的化学物质。萜类化合物可用于人类和动物营养、治疗疾病、提高农业产量、生物燃料、香料、化妆品和调味剂。然而,由于全球自然资源的迅速枯竭和依赖于不可持续的石化合成的制造实践,需要经济的替代品来满足世界对这些基本化学品的需求。微生物生物合成为开发可扩展和可持续的萜类化合物生产生物工艺提供了手段。特别是,由于其易于工业化生产规模扩大、基因工程和萜类前体的高积累,非常规酵母解脂耶氏酵母表现出作为萜类生产的良好潜力。本文综述了脂肪瘤萜类细胞工厂的科学进展,重点介绍了代谢工程方法在菌株改良和培养优化方面的应用。
{"title":"Engineering of Yarrowia lipolytica for terpenoid production","authors":"Jonathan Asmund Arnesen,&nbsp;Irina Borodina","doi":"10.1016/j.mec.2022.e00213","DOIUrl":"10.1016/j.mec.2022.e00213","url":null,"abstract":"<div><p>Terpenoids are a group of chemicals of great importance for human health and prosperity. Terpenoids can be used for human and animal nutrition, treating diseases, enhancing agricultural output, biofuels, fragrances, cosmetics, and flavouring. However, due to the rapid depletion of global natural resources and manufacturing practices relying on unsustainable petrochemical synthesis, there is a need for economic alternatives to supply the world's demand for these essential chemicals. Microbial biosynthesis offers the means to develop scalable and sustainable bioprocesses for terpenoid production. In particular, the non-conventional yeast <em>Yarrowia lipolytica</em> demonstrates excellent potential as a chassis for terpenoid production due to its amenability to industrial production scale-up, genetic engineering, and high accumulation of terpenoid precursors. This review aims to illustrate the scientific progress in developing <em>Y. lipolytica</em> terpenoid cell factories, focusing on metabolic engineering approaches for strain improvement and cultivation optimization.</p></div>","PeriodicalId":18695,"journal":{"name":"Metabolic Engineering Communications","volume":"15 ","pages":"Article e00213"},"PeriodicalIF":5.2,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9663531/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40691333","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
期刊
Metabolic Engineering Communications
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1