首页 > 最新文献

Metabolic Engineering Communications最新文献

英文 中文
Biosynthesis of value-added bioproducts from hemicellulose of biomass through microbial metabolic engineering 利用微生物代谢工程从生物质半纤维素中合成增值生物产品
IF 5.2 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2022-12-01 DOI: 10.1016/j.mec.2022.e00211
Biao Geng , Xiaojing Jia , Xiaowei Peng , Yejun Han

Hemicellulose is the second most abundant carbohydrate in lignocellulosic biomass and has extensive applications. In conventional biomass refinery, hemicellulose is easily converted to unwanted by-products in pretreatment and therefore can't be fully utilized. The present study aims to summarize the most recent development of lignocellulosic polysaccharide degradation and fully convert it to value-added bioproducts through microbial and enzymatic catalysis. Firstly, bioprocess and microbial metabolic engineering for enhanced utilization of lignocellulosic carbohydrates were discussed. The bioprocess for degradation and conversion of natural lignocellulose to monosaccharides and organic acids using anaerobic thermophilic bacteria and thermostable glycoside hydrolases were summarized. Xylose transmembrane transporting systems in natural microorganisms and the latest strategies for promoting the transporting capacity by metabolic engineering were summarized. The carbon catabolite repression effect restricting xylose utilization in microorganisms, and metabolic engineering strategies developed for co-utilization of glucose and xylose were discussed. Secondly, the metabolic pathways of xylose catabolism in microorganisms were comparatively analyzed. Microbial metabolic engineering for converting xylose to value-added bioproducts based on redox pathways, non-redox pathways, pentose phosphate pathway, and improving inhibitors resistance were summarized. Thirdly, strategies for degrading lignocellulosic polysaccharides and fully converting hemicellulose to value-added bioproducts through microbial metabolic engineering were proposed.

半纤维素是木质纤维素生物质中含量第二丰富的碳水化合物,具有广泛的应用。在传统的生物质精炼厂中,半纤维素在预处理过程中容易转化为不需要的副产物,不能得到充分利用。本研究旨在总结木质纤维素多糖降解的最新进展,并通过微生物和酶催化将其充分转化为增值生物产品。首先,讨论了提高木质纤维素碳水化合物利用率的生物工艺和微生物代谢工程。综述了利用厌氧嗜热细菌和耐热糖苷水解酶将天然木质纤维素降解转化为单糖和有机酸的生物过程。综述了天然微生物木糖跨膜转运系统的研究进展以及利用代谢工程提高木糖转运能力的最新策略。讨论了限制微生物利用木糖的碳分解代谢抑制效应,以及开发葡萄糖和木糖共同利用的代谢工程策略。其次,对微生物木糖分解代谢的代谢途径进行了比较分析。综述了基于氧化还原途径、非氧化还原途径、戊糖磷酸途径和提高抑制剂耐药性的木糖转化为增值生物制品的微生物代谢工程。第三,提出了通过微生物代谢工程降解木质纤维素多糖和将半纤维素充分转化为高附加值生物产品的策略。
{"title":"Biosynthesis of value-added bioproducts from hemicellulose of biomass through microbial metabolic engineering","authors":"Biao Geng ,&nbsp;Xiaojing Jia ,&nbsp;Xiaowei Peng ,&nbsp;Yejun Han","doi":"10.1016/j.mec.2022.e00211","DOIUrl":"10.1016/j.mec.2022.e00211","url":null,"abstract":"<div><p>Hemicellulose is the second most abundant carbohydrate in lignocellulosic biomass and has extensive applications. In conventional biomass refinery, hemicellulose is easily converted to unwanted by-products in pretreatment and therefore can't be fully utilized. The present study aims to summarize the most recent development of lignocellulosic polysaccharide degradation and fully convert it to value-added bioproducts through microbial and enzymatic catalysis. Firstly, bioprocess and microbial metabolic engineering for enhanced utilization of lignocellulosic carbohydrates were discussed. The bioprocess for degradation and conversion of natural lignocellulose to monosaccharides and organic acids using anaerobic thermophilic bacteria and thermostable glycoside hydrolases were summarized. Xylose transmembrane transporting systems in natural microorganisms and the latest strategies for promoting the transporting capacity by metabolic engineering were summarized. The carbon catabolite repression effect restricting xylose utilization in microorganisms, and metabolic engineering strategies developed for co-utilization of glucose and xylose were discussed. Secondly, the metabolic pathways of xylose catabolism in microorganisms were comparatively analyzed. Microbial metabolic engineering for converting xylose to value-added bioproducts based on redox pathways, non-redox pathways, pentose phosphate pathway, and improving inhibitors resistance were summarized. Thirdly, strategies for degrading lignocellulosic polysaccharides and fully converting hemicellulose to value-added bioproducts through microbial metabolic engineering were proposed.</p></div>","PeriodicalId":18695,"journal":{"name":"Metabolic Engineering Communications","volume":"15 ","pages":"Article e00211"},"PeriodicalIF":5.2,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9597109/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40443804","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Metabolic engineering of Pseudomonas taiwanensis VLB120 for rhamnolipid biosynthesis from biomass-derived aromatics 台湾假单胞菌VLB120代谢工程对生物质衍生芳烃合成鼠李糖脂的影响
IF 5.2 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2022-12-01 DOI: 10.1016/j.mec.2022.e00202
Vaishnavi Sivapuratharasan , Christoph Lenzen , Carina Michel , Anantha Barathi Muthukrishnan , Guhan Jayaraman , Lars M. Blank

Lignin is a ubiquitously available and sustainable feedstock that is underused as its depolymerization yields a range of aromatic monomers that are challenging substrates for microbes. In this study, we investigated the growth of Pseudomonas taiwanensis VLB120 on biomass-derived aromatics, namely, 4-coumarate, ferulate, 4-hydroxybenzoate, and vanillate. The wild type strain was not able to grow on 4-coumarate and ferulate. After integration of catabolic genes for breakdown of 4-coumarate and ferulate, the metabolically engineered strain was able to grow on these aromatics. Further, the specific growth rate of the strain was enhanced up to 3-fold using adaptive laboratory evolution, resulting in increased tolerance towards 4-coumarate and ferulate. Whole-genome sequencing highlighted several different mutations mainly in two genes. The first gene was actP, coding for a cation/acetate symporter, and the other gene was paaA coding for a phenyl acetyl-CoA oxygenase. The evolved strain was further engineered for rhamnolipid production. Among the biomass-derived aromatics investigated, 4-coumarate and ferulate were promising substrates for product synthesis. With 4-coumarate as the sole carbon source, a yield of 0.27 (Cmolrhl/Cmol4-coumarate) was achieved, corresponding to 28% of the theoretical yield. Ferulate enabled a yield of about 0.22 (Cmolrhl/Cmolferulate), representing 42% of the theoretical yield. Overall, this study demonstrates the use of biomass-derived aromatics as novel carbon sources for rhamnolipid biosynthesis.

木质素是一种普遍可用和可持续的原料,由于其解聚产生一系列芳香单体,这些单体对微生物来说是具有挑战性的底物,因此未得到充分利用。本研究研究台湾假单胞菌VLB120在4-香豆酸酯、阿魏酸酯、4-羟基苯甲酸酯和香草酸酯等生物质芳香烃上的生长情况。野生型菌株不能在4-香豆酸盐和阿魏酸盐上生长。在整合了分解4-香豆酸酯和阿魏酸酯的分解代谢基因后,代谢工程菌株能够在这些芳香化合物上生长。此外,通过适应性实验室进化,该菌株的特定生长速率提高了3倍,从而增加了对4-香豆酸盐和阿魏酸盐的耐受性。全基因组测序强调了主要在两个基因中的几种不同突变。第一个基因是actP,编码一个阳离子/乙酸同调子,另一个基因是paaA,编码一个苯基乙酰辅酶a加氧酶。进化后的菌株进一步用于鼠李糖脂的生产。在研究的生物质衍生芳烃中,4-香豆酸酯和阿魏酸酯是有前景的合成底物。以4-香豆酸酯为唯一碳源,产率为0.27 (Cmolrhl/ cmol4 -香豆酸酯),相当于理论产率的28%。阿魏酸盐的产率约为0.22 (Cmolrhl/Cmolferulate),占理论产率的42%。总之,本研究证明了利用生物质衍生的芳烃作为鼠李糖脂生物合成的新型碳源。
{"title":"Metabolic engineering of Pseudomonas taiwanensis VLB120 for rhamnolipid biosynthesis from biomass-derived aromatics","authors":"Vaishnavi Sivapuratharasan ,&nbsp;Christoph Lenzen ,&nbsp;Carina Michel ,&nbsp;Anantha Barathi Muthukrishnan ,&nbsp;Guhan Jayaraman ,&nbsp;Lars M. Blank","doi":"10.1016/j.mec.2022.e00202","DOIUrl":"https://doi.org/10.1016/j.mec.2022.e00202","url":null,"abstract":"<div><p>Lignin is a ubiquitously available and sustainable feedstock that is underused as its depolymerization yields a range of aromatic monomers that are challenging substrates for microbes. In this study, we investigated the growth of <em>Pseudomonas taiwanensis</em> VLB120 on biomass-derived aromatics, namely, 4-coumarate, ferulate, 4-hydroxybenzoate, and vanillate. The wild type strain was not able to grow on 4-coumarate and ferulate. After integration of catabolic genes for breakdown of 4-coumarate and ferulate, the metabolically engineered strain was able to grow on these aromatics. Further, the specific growth rate of the strain was enhanced up to 3-fold using adaptive laboratory evolution, resulting in increased tolerance towards 4-coumarate and ferulate. Whole-genome sequencing highlighted several different mutations mainly in two genes. The first gene was <em>actP</em>, coding for a cation/acetate symporter, and the other gene was <em>paaA</em> coding for a phenyl acetyl-CoA oxygenase. The evolved strain was further engineered for rhamnolipid production. Among the biomass-derived aromatics investigated, 4-coumarate and ferulate were promising substrates for product synthesis. With 4-coumarate as the sole carbon source, a yield of 0.27 (Cmol<sub>rhl</sub>/Cmol<sub>4-coumarate</sub>) was achieved, corresponding to 28% of the theoretical yield. Ferulate enabled a yield of about 0.22 (Cmol<sub>rhl</sub>/Cmol<sub>ferulate</sub>), representing 42% of the theoretical yield. Overall, this study demonstrates the use of biomass-derived aromatics as novel carbon sources for rhamnolipid biosynthesis.</p></div>","PeriodicalId":18695,"journal":{"name":"Metabolic Engineering Communications","volume":"15 ","pages":"Article e00202"},"PeriodicalIF":5.2,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2214030122000116/pdfft?md5=29575c540fc6b7e0e6bf633a82266d60&pid=1-s2.0-S2214030122000116-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89989006","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Heterologous phasin expression in Rhodopseudomonas palustris CGA009 for bioplastic production from lignocellulosic biomass 异源phasin在palustris红假单胞菌CGA009中的表达,用于木质纤维素生物质的生物塑料生产
IF 5.2 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2022-06-01 DOI: 10.1016/j.mec.2021.e00191
Brandi Brown , Cheryl Immethun , Adil Alsiyabi , Dianna Long , Mark Wilkins , Rajib Saha

Rhodopseudomonas palustris CGA009 is a metabolically robust microbe that can utilize lignin breakdown products to produce polyhydroxyalkanoates (PHAs), biopolymers with the potential to replace conventional plastics. Our recent efforts suggest PHA granule formation is a limiting factor for maximum production of the bioplastic poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) by R. palustris. The Phap1 phasin (phaP1) from the PHB-producing model bacterium Cupriavidus necator H16 was expressed in R. palustris with the aim of overproducing PHBV from the lignin breakdown product p-coumarate by fostering smaller and more abundant granules. Expression of phaP1 yielded PHBV production from R. palustris aerobically (0.7 g/L), which does not occur in the wild-type strain, and led to a significantly higher PHBV titer than wild-type anaerobic production (0.41 g/L). The 3HV fractions were also significantly increased under both anaerobic and aerobic conditions, which boosts thermomechanical properties and potential for application. Thus, heterologous phasin expression in R. palustris provides flexibility for industrial processing and could foster compositional changes in copolymers with better thermomechanical properties compared to PHB alone.

palustris红假单胞菌CGA009是一种代谢强大的微生物,可以利用木质素分解产物生产聚羟基烷酸酯(PHAs),这是一种具有替代传统塑料潜力的生物聚合物。我们最近的研究表明,PHA颗粒的形成是R. palustris最大限度地生产生物塑料聚(3-羟基丁酸酯-co-3-羟基戊酸酯)(PHBV)的限制因素。产phb模式细菌Cupriavidus necator H16中的Phap1 phasin (Phap1)在palustris中表达,目的是通过培养更小、更丰富的颗粒,从木质素分解产物p-coumarate中过量生产PHBV。phaP1的表达使palustris菌株产生PHBV (0.7 g/L),这在野生型菌株中没有发生,并且导致PHBV滴度显著高于野生型菌株(0.41 g/L)。在厌氧和好氧条件下,3HV组分也显著增加,这提高了热机械性能和应用潜力。因此,与单独PHB相比,异源phasin在R. palustris中的表达为工业加工提供了灵活性,并且可以促进共聚物的组成变化,从而具有更好的热机械性能。
{"title":"Heterologous phasin expression in Rhodopseudomonas palustris CGA009 for bioplastic production from lignocellulosic biomass","authors":"Brandi Brown ,&nbsp;Cheryl Immethun ,&nbsp;Adil Alsiyabi ,&nbsp;Dianna Long ,&nbsp;Mark Wilkins ,&nbsp;Rajib Saha","doi":"10.1016/j.mec.2021.e00191","DOIUrl":"https://doi.org/10.1016/j.mec.2021.e00191","url":null,"abstract":"<div><p><em>Rhodopseudomonas palustris</em> CGA009 is a metabolically robust microbe that can utilize lignin breakdown products to produce polyhydroxyalkanoates (PHAs), biopolymers with the potential to replace conventional plastics. Our recent efforts suggest PHA granule formation is a limiting factor for maximum production of the bioplastic poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) by <em>R. palustris.</em> The Phap1 phasin (<em>phaP1</em>) from the PHB-producing model bacterium <em>Cupriavidus necator</em> H16 was expressed in <em>R. palustris</em> with the aim of overproducing PHBV from the lignin breakdown product <em>p-</em>coumarate by fostering smaller and more abundant granules. Expression of <em>phaP1</em> yielded PHBV production from <em>R. palustris</em> aerobically (0.7 g/L), which does not occur in the wild-type strain, and led to a significantly higher PHBV titer than wild-type anaerobic production (0.41 g/L). The 3HV fractions were also significantly increased under both anaerobic and aerobic conditions, which boosts thermomechanical properties and potential for application. Thus, heterologous phasin expression in <em>R. palustris</em> provides flexibility for industrial processing and could foster compositional changes in copolymers with better thermomechanical properties compared to PHB alone.</p></div>","PeriodicalId":18695,"journal":{"name":"Metabolic Engineering Communications","volume":"14 ","pages":"Article e00191"},"PeriodicalIF":5.2,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2214030121000316/pdfft?md5=ff323c34605bef32932c28358858dc3e&pid=1-s2.0-S2214030121000316-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"92014806","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 11
Application of metabolic engineering to enhance the content of alkaloids in medicinal plants 应用代谢工程技术提高药用植物中生物碱含量
IF 5.2 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2022-06-01 DOI: 10.1016/j.mec.2022.e00194
Soledad Mora-Vásquez , Guillermo Gael Wells-Abascal , Claudia Espinosa-Leal , Guy A. Cardineau , Silverio García-Lara

Plants are a rich source of bioactive compounds, many of which have been exploited for cosmetic, nutritional, and medicinal purposes. Through the characterization of metabolic pathways, as well as the mechanisms responsible for the accumulation of secondary metabolites, researchers have been able to increase the production of bioactive compounds in different plant species for research and commercial applications. The intent of the current review is to describe the metabolic engineering methods that have been used to transform in vitro or field-grown medicinal plants over the last decade and to identify the most effective approaches to increase the production of alkaloids. The articles summarized were categorized into six groups: endogenous enzyme overexpression, foreign enzyme overexpression, transcription factor overexpression, gene silencing, genome editing, and co-overexpression. We conclude that, because of the complex and multi-step nature of biosynthetic pathways, the approach that has been most commonly used to increase the biosynthesis of alkaloids, and the most effective in terms of fold increase, is the co-overexpression of two or more rate-limiting enzymes followed by the manipulation of regulatory genes.

植物是生物活性化合物的丰富来源,其中许多已被用于化妆品,营养和药用目的。通过对代谢途径的表征,以及次生代谢物积累的机制,研究人员已经能够在不同的植物物种中增加生物活性化合物的生产,用于研究和商业应用。本综述的目的是描述在过去十年中用于转化体外或田间种植药用植物的代谢工程方法,并确定增加生物碱产量的最有效方法。综述的文章可分为6类:内源性酶过表达、外源性酶过表达、转录因子过表达、基因沉默、基因组编辑和共过表达。我们得出的结论是,由于生物合成途径的复杂性和多步骤性,最常用的增加生物碱生物合成的方法,以及最有效的倍增方法,是两种或两种以上限速酶的共同过表达,然后操纵调节基因。
{"title":"Application of metabolic engineering to enhance the content of alkaloids in medicinal plants","authors":"Soledad Mora-Vásquez ,&nbsp;Guillermo Gael Wells-Abascal ,&nbsp;Claudia Espinosa-Leal ,&nbsp;Guy A. Cardineau ,&nbsp;Silverio García-Lara","doi":"10.1016/j.mec.2022.e00194","DOIUrl":"10.1016/j.mec.2022.e00194","url":null,"abstract":"<div><p>Plants are a rich source of bioactive compounds, many of which have been exploited for cosmetic, nutritional, and medicinal purposes. Through the characterization of metabolic pathways, as well as the mechanisms responsible for the accumulation of secondary metabolites, researchers have been able to increase the production of bioactive compounds in different plant species for research and commercial applications. The intent of the current review is to describe the metabolic engineering methods that have been used to transform in vitro or field-grown medicinal plants over the last decade and to identify the most effective approaches to increase the production of alkaloids. The articles summarized were categorized into six groups: endogenous enzyme overexpression, foreign enzyme overexpression, transcription factor overexpression, gene silencing, genome editing, and co-overexpression. We conclude that, because of the complex and multi-step nature of biosynthetic pathways, the approach that has been most commonly used to increase the biosynthesis of alkaloids, and the most effective in terms of fold increase, is the co-overexpression of two or more rate-limiting enzymes followed by the manipulation of regulatory genes.</p></div>","PeriodicalId":18695,"journal":{"name":"Metabolic Engineering Communications","volume":"14 ","pages":"Article e00194"},"PeriodicalIF":5.2,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8881666/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46036667","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 16
Control of D-lactic acid content in P(LA-3HB) copolymer in the yeast Saccharomyces cerevisiae using a synthetic gene expression system 合成基因表达系统控制酿酒酵母P(LA-3HB)共聚物中d -乳酸含量
IF 5.2 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2022-06-01 DOI: 10.1016/j.mec.2022.e00199
Anna Ylinen , Laura Salusjärvi , Mervi Toivari , Merja Penttilä

The fully biobased polyhydroxyalkanoate (PHA) polymers provide interesting alternatives for petrochemical derived plastic materials. The mechanical properties of some PHAs, including the common poly(3-hydroxybutyrate) (PHB), are limited, but tunable by addition of other monomers into the polymer chain. In this study we present a precise synthetic biology method to adjust lactate monomer fraction of a polymer by controlling the monomer formation in vivo at gene expression level, independent of cultivation conditions. We used the modified doxycycline-based Tet-On approach to adjust the expression of the stereospecific D-lactate dehydrogenase gene (ldhA) from Leuconostoc mesenteroides to control D-lactic acid formation in yeast Saccharomyces cerevisiae. The synthetic Tet-On transcription factor with a VP16 activation domain was continuously expressed and its binding to a synthetic promoter with eight transcription factor specific binding sites upstream of the ldhA gene was controlled with the doxycycline concentration in the media. The increase in doxycycline concentration correlated positively with ldhA expression, D-lactic acid production, poly(D-lactic acid) (PDLA) accumulation in vivo, and D-lactic acid content in the poly(D-lactate-co-3-hydroxybutyrate) P(LA-3HB) copolymer. We demonstrated that the D-lactic acid content of the P(LA-3HB) copolymer can be adjusted linearly from 6 mol% to 93 mol% in vivo in S. cerevisiae. These results highlight the power of controlling gene expression and monomer formation in the tuning of the polymer composition. In addition, we obtained 5.6% PDLA and 19% P(LA-3HB) of the cell dry weight (CDW), which are over two- and five-fold higher accumulation levels, respectively, than reported in the previous studies with yeast. We also compared two engineered PHA synthases and discovered that in S. cerevisiae the PHA synthase PhaC1437Ps6-19 produced P(LA-3HB) copolymers with lower D-lactic acid content, but with higher molecular weight, in comparison to the PHA synthase PhaC1Pre.

全生物基聚羟基烷酸酯(PHA)聚合物为石油化工衍生塑料材料提供了有趣的替代品。包括常见的聚(3-羟基丁酸酯)(PHB)在内的一些pha的机械性能是有限的,但可以通过在聚合物链中加入其他单体来调节。在这项研究中,我们提出了一种精确的合成生物学方法,通过在基因表达水平上控制单体的形成来调节聚合物的乳酸单体比例,而不依赖于培养条件。我们采用改良的基于多西环素的Tet-On方法调节mesenterostoc中立体特异性d -乳酸脱氢酶基因(ldhA)的表达,以控制酿酒酵母(Saccharomyces cerevisiae)中d -乳酸的形成。具有VP16活化结构域的合成Tet-On转录因子连续表达,其与ldhA基因上游具有8个转录因子特异性结合位点的合成启动子的结合受到培养基中强力霉素浓度的控制。多西环素浓度的升高与ldhA表达、d -乳酸生成、体内聚d -乳酸(PDLA)积累以及聚d -乳酸-co-3-羟基丁酸)P(LA-3HB)共聚物中d -乳酸含量呈正相关。我们证明了P(LA-3HB)共聚物的d -乳酸含量可以在酿酒酵母体内从6 mol%到93 mol%的范围内线性调节。这些结果突出了控制基因表达和单体形成在聚合物组成调节中的作用。此外,我们获得了细胞干重(CDW)的5.6%的PDLA和19%的P(LA-3HB),分别比以前用酵母研究报道的积累水平高出2倍和5倍。我们还比较了两种工程PHA合成酶,发现在酿酒酵母中,PHA合成酶PhaC1437Ps6-19产生的P(LA-3HB)共聚物与PHA合成酶PhaC1Pre相比,d -乳酸含量更低,但分子量更高。
{"title":"Control of D-lactic acid content in P(LA-3HB) copolymer in the yeast Saccharomyces cerevisiae using a synthetic gene expression system","authors":"Anna Ylinen ,&nbsp;Laura Salusjärvi ,&nbsp;Mervi Toivari ,&nbsp;Merja Penttilä","doi":"10.1016/j.mec.2022.e00199","DOIUrl":"10.1016/j.mec.2022.e00199","url":null,"abstract":"<div><p>The fully biobased polyhydroxyalkanoate (PHA) polymers provide interesting alternatives for petrochemical derived plastic materials. The mechanical properties of some PHAs, including the common poly(3-hydroxybutyrate) (PHB), are limited, but tunable by addition of other monomers into the polymer chain. In this study we present a precise synthetic biology method to adjust lactate monomer fraction of a polymer by controlling the monomer formation <em>in vivo</em> at gene expression level, independent of cultivation conditions. We used the modified doxycycline-based Tet-On approach to adjust the expression of the stereospecific D-lactate dehydrogenase gene (<em>ldhA</em>) from <em>Leuconostoc mesenteroides</em> to control D-lactic acid formation in yeast <em>Saccharomyces cerevisiae</em>. The synthetic Tet-On transcription factor with a VP16 activation domain was continuously expressed and its binding to a synthetic promoter with eight transcription factor specific binding sites upstream of the <em>ldhA</em> gene was controlled with the doxycycline concentration in the media. The increase in doxycycline concentration correlated positively with <em>ldhA</em> expression, D-lactic acid production, poly(D-lactic acid) (PDLA) accumulation <em>in vivo</em>, and D-lactic acid content in the poly(D-lactate-<em>co</em>-3-hydroxybutyrate) P(LA-3HB) copolymer. We demonstrated that the D-lactic acid content of the P(LA-3HB) copolymer can be adjusted linearly from 6 mol% to 93 mol% <em>in vivo</em> in <em>S. cerevisiae</em>. These results highlight the power of controlling gene expression and monomer formation in the tuning of the polymer composition. In addition, we obtained 5.6% PDLA and 19% P(LA-3HB) of the cell dry weight (CDW), which are over two- and five-fold higher accumulation levels, respectively, than reported in the previous studies with yeast. We also compared two engineered PHA synthases and discovered that in <em>S. cerevisiae</em> the PHA synthase PhaC1437<sub>Ps6-19</sub> produced P(LA-3HB) copolymers with lower D-lactic acid content, but with higher molecular weight, in comparison to the PHA synthase PhaC1Pre.</p></div>","PeriodicalId":18695,"journal":{"name":"Metabolic Engineering Communications","volume":"14 ","pages":"Article e00199"},"PeriodicalIF":5.2,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2214030122000086/pdfft?md5=46cba499ea94cf885917415684ffaf00&pid=1-s2.0-S2214030122000086-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46506594","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Engineering of Yarrowia lipolytica for the production of plant triterpenoids: Asiatic, madecassic, and arjunolic acids 生产植物三萜:亚洲酸、马来酸和arjunolic酸的解脂耶氏菌工程
IF 5.2 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2022-06-01 DOI: 10.1016/j.mec.2022.e00197
Jonathan Asmund Arnesen , Arian Belmonte Del Ama , Sidharth Jayachandran , Jonathan Dahlin , Daniela Rago , Aaron John Christian Andersen , Irina Borodina

Several plant triterpenoids have valuable pharmaceutical properties, but their production and usage is limited since extraction from plants can burden natural resources, and result in low yields and purity. Here, we engineered oleaginous yeast Yarrowia lipolytica to produce three valuable plant triterpenoids (asiatic, madecassic, and arjunolic acids) by fermentation. First, we established the recombinant production of precursors, ursolic and oleanolic acids, by expressing plant enzymes in free or fused versions in a Y. lipolytica strain previously optimized for squalene production. Engineered strains produced up to 11.6 mg/g DCW ursolic acid or 10.2 mg/g DCW oleanolic acid. The biosynthetic pathway from ursolic acid was extended by expressing the Centella asiatica cytochrome P450 monoxygenases CaCYP716C11p, CaCYP714E19p, and CaCYP716E41p, resulting in the production of trace amounts of asiatic acid and 0.12 mg/g DCW madecassic acid. Expressing the same C. asiatica cytochromes P450 in oleanolic acid-producing strain resulted in the production of oleanane triterpenoids. Expression of CaCYP716C11p in the oleanolic acid-producing strain yielded 8.9 mg/g DCW maslinic acid. Further expression of a codon-optimized CaCYP714E19p resulted in 4.4 mg/g DCW arjunolic acid. Lastly, arjunolic acid production was increased to 9.1 mg/g DCW by swapping the N-terminal domain of CaCYP714E19p with the N-terminal domain from a Kalopanax septemlobus cytochrome P450. In summary, we have demonstrated the production of asiatic, madecassic, and arjunolic acids in a microbial cell factory. The strains and fermentation processes need to be further improved before the production of these molecules by fermentation can be industrialized.

几种植物三萜具有宝贵的药用特性,但由于从植物中提取会给自然资源造成负担,而且产量和纯度都很低,因此它们的生产和使用受到限制。在这里,我们设计了产油酵母解脂耶氏酵母,通过发酵生产三种有价值的植物三萜(亚洲酸、马来酸和arjunolic酸)。首先,我们建立了重组生产的前体,熊果酸和齐墩果酸,通过表达植物酶的游离或融合版本的脂肪瘤菌株之前优化为角鲨烯生产。工程菌株产生高达11.6 mg/g熊果酸或10.2 mg/g齐墩果酸。通过表达积雪草细胞色素P450单加氧酶CaCYP716C11p、CaCYP714E19p和CaCYP716E41p,延长了熊果酸的生物合成途径,产生了微量的积雪酸和0.12 mg/g DCW的合成酸。在齐墩果酸产生菌株中表达相同的亚洲木曲细胞色素P450,产生齐墩果酸三萜。在齐墩果酸产生菌株中,CaCYP716C11p的表达产生8.9 mg/g DCW的山楂酸。进一步表达经过密码子优化的CaCYP714E19p可产生4.4 mg/g DCW的arjunolic acid。最后,通过将CaCYP714E19p的n -末端结构域与Kalopanax septemlobus细胞色素P450的n -末端结构域交换,将arjunolic acid的产量提高到9.1 mg/g DCW。总之,我们已经证明了在微生物细胞工厂生产亚细亚酸、马来酸和arjunolic酸。在工业化生产这些分子之前,菌株和发酵工艺需要进一步改进。
{"title":"Engineering of Yarrowia lipolytica for the production of plant triterpenoids: Asiatic, madecassic, and arjunolic acids","authors":"Jonathan Asmund Arnesen ,&nbsp;Arian Belmonte Del Ama ,&nbsp;Sidharth Jayachandran ,&nbsp;Jonathan Dahlin ,&nbsp;Daniela Rago ,&nbsp;Aaron John Christian Andersen ,&nbsp;Irina Borodina","doi":"10.1016/j.mec.2022.e00197","DOIUrl":"10.1016/j.mec.2022.e00197","url":null,"abstract":"<div><p>Several plant triterpenoids have valuable pharmaceutical properties, but their production and usage is limited since extraction from plants can burden natural resources, and result in low yields and purity. Here, we engineered oleaginous yeast <em>Yarrowia lipolytica</em> to produce three valuable plant triterpenoids (asiatic, madecassic, and arjunolic acids) by fermentation. First, we established the recombinant production of precursors, ursolic and oleanolic acids, by expressing plant enzymes in free or fused versions in a <em>Y. lipolytica</em> strain previously optimized for squalene production. Engineered strains produced up to 11.6 mg/g DCW ursolic acid or 10.2 mg/g DCW oleanolic acid. The biosynthetic pathway from ursolic acid was extended by expressing the <em>Centella asiatica</em> cytochrome P450 monoxygenases CaCYP716C11p, CaCYP714E19p, and CaCYP716E41p, resulting in the production of trace amounts of asiatic acid and 0.12 mg/g DCW madecassic acid. Expressing the same <em>C. asiatica</em> cytochromes P450 in oleanolic acid-producing strain resulted in the production of oleanane triterpenoids. Expression of CaCYP716C11p in the oleanolic acid-producing strain yielded 8.9 mg/g DCW maslinic acid. Further expression of a codon-optimized CaCYP714E19p resulted in 4.4 mg/g DCW arjunolic acid. Lastly, arjunolic acid production was increased to 9.1 mg/g DCW by swapping the N-terminal domain of CaCYP714E19p with the N-terminal domain from a <em>Kalopanax septemlobus</em> cytochrome P450. In summary, we have demonstrated the production of asiatic, madecassic, and arjunolic acids in a microbial cell factory. The strains and fermentation processes need to be further improved before the production of these molecules by fermentation can be industrialized.</p></div>","PeriodicalId":18695,"journal":{"name":"Metabolic Engineering Communications","volume":"14 ","pages":"Article e00197"},"PeriodicalIF":5.2,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2214030122000062/pdfft?md5=b0e2d3e79a3561fa2b0e6e7978810d74&pid=1-s2.0-S2214030122000062-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43852633","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 7
In vivo production of pederin by labrenzin pathway expansion labrenzin通路扩张在体内产生pederin
IF 5.2 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2022-06-01 DOI: 10.1016/j.mec.2022.e00198
Dina Kačar , Carmen Schleissner , Librada M. Cañedo , Pilar Rodríguez , Fernando de la Calle , Carmen Cuevas , Beatriz Galán , José Luis García

Pederin is a potent polyketide toxin that causes severe skin lesions in humans after contact with insects of genus Paederus. Due to its potent anticancer activities, pederin family compounds have raised the interest of pharmaceutical industry. Despite the extensive studies on the cluster of biosynthetic genes responsible for the production of pederin, it has not yet been possible to isolate and cultivate its bacterial endosymbiont producer. However, the marine bacterium Labrenzia sp. PHM005 was recently reported to produce labrenzin, the closest pederin analog. By cloning a synthetic pedO gene encoding one of the three O-methyltraferase of the pederin cluster into Labrenzia sp. PHM005 we have been able to produce pederin for the first time by fermentation in the new recombinant strain.

Pederin是一种强效的聚酮毒素,在与pepederus属昆虫接触后会引起严重的皮肤损伤。由于其强大的抗癌活性,菊酯类化合物已引起了医药行业的广泛关注。尽管对产生pederin的生物合成基因簇进行了广泛的研究,但尚未能够分离和培养其细菌内共生生产者。然而,海洋细菌Labrenzia sp. PHM005最近被报道产生labrenzin,这是最接近的同性恋类似物。通过将一个合成的pedO基因克隆到Labrenzia sp. PHM005中,首次在重组菌株中发酵生产了pederin。
{"title":"In vivo production of pederin by labrenzin pathway expansion","authors":"Dina Kačar ,&nbsp;Carmen Schleissner ,&nbsp;Librada M. Cañedo ,&nbsp;Pilar Rodríguez ,&nbsp;Fernando de la Calle ,&nbsp;Carmen Cuevas ,&nbsp;Beatriz Galán ,&nbsp;José Luis García","doi":"10.1016/j.mec.2022.e00198","DOIUrl":"https://doi.org/10.1016/j.mec.2022.e00198","url":null,"abstract":"<div><p>Pederin is a potent polyketide toxin that causes severe skin lesions in humans after contact with insects of genus <em>Paederus.</em> Due to its potent anticancer activities, pederin family compounds have raised the interest of pharmaceutical industry. Despite the extensive studies on the cluster of biosynthetic genes responsible for the production of pederin, it has not yet been possible to isolate and cultivate its bacterial endosymbiont producer. However, the marine bacterium <em>Labrenzia</em> sp. PHM005 was recently reported to produce labrenzin, the closest pederin analog. By cloning a synthetic <em>pedO</em> gene encoding one of the three <em>O</em>-methyltraferase of the pederin cluster into <em>Labrenzia</em> sp. PHM005 we have been able to produce pederin for the first time by fermentation in the new recombinant strain.</p></div>","PeriodicalId":18695,"journal":{"name":"Metabolic Engineering Communications","volume":"14 ","pages":"Article e00198"},"PeriodicalIF":5.2,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2214030122000074/pdfft?md5=5dd8f3cd4cbadeb5d281286c91f9e536&pid=1-s2.0-S2214030122000074-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91985337","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Development of an E. coli-based norbaeocystin production platform and evaluation of behavioral effects in rats 基于大肠杆菌的去baeocystin生产平台的建立及其对大鼠行为影响的评价
IF 5.2 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2022-06-01 DOI: 10.1016/j.mec.2022.e00196
Alexandra M. Adams , Nicholas A. Anas , Abhishek K. Sen , Jordan D. Hinegardner-Hendricks , Philip J. O’Dell , William J. Gibbons Jr. , Jessica E. Flower , Matthew S. McMurray , J. Andrew Jones

Interest in the potential therapeutic efficacy of psilocybin and other psychedelic compounds has escalated significantly in recent years. To date, little is known regarding the biological activity of the psilocybin pathway intermediate, norbaeocystin, due to limitations around sourcing the phosphorylated tryptamine metabolite for in vivo testing. To address this limitation, we first developed a novel E. coli platform for the rapid and scalable production of gram-scale amounts of norbaeocystin. Through this process we compare the genetic and fermentation optimization strategies to that of a similarly constructed and previously reported psilocybin producing strain, uncovering the need for reoptimization and balancing upon even minor genetic modifications to the production host. We then perform in vivo measurements of head twitch response to both biosynthesized psilocybin and norbaeocystin using both a cell broth and water vehicle in Long-Evans rats. The data show a dose response to psilocybin while norbaeocystin does not elicit any pharmacological response, suggesting that norbaeocystin and its metabolites may not have a strong affinity for the serotonin 2A receptor. The findings presented here provide a mechanism to source norbaeocystin for future studies to evaluate its disease efficacy in animal models, both individually and in combination with psilocybin, and support the safety of cell broth as a drug delivery vehicle.

近年来,对裸盖菇素和其他致幻剂的潜在治疗效果的兴趣显著增加。迄今为止,关于裸盖菇素途径中间体去甲盖菇素的生物活性知之甚少,这是由于体内试验中磷酸化色胺代谢物来源的限制。为了解决这一限制,我们首先开发了一种新的大肠杆菌平台,用于快速和可扩展地生产克级量的去甲黄囊素。通过这一过程,我们将遗传和发酵优化策略与类似构建和先前报道的裸盖菇素生产菌株进行比较,发现即使对生产宿主进行微小的遗传修饰也需要重新优化和平衡。然后,我们在Long-Evans大鼠体内使用细胞培养液和水载体对生物合成的裸盖菇素和去甲盖菇素进行了头抽搐反应的测量。数据显示裸盖菇素有剂量反应,而去甲毛囊素没有引起任何药理反应,提示去甲毛囊素及其代谢物可能对5 -羟色胺2A受体没有很强的亲和力。本文的研究结果为未来的动物模型研究提供了去甲盖菇素来源的机制,以评估其疾病疗效,无论是单独还是与裸盖菇素联合,并支持细胞汤作为药物递送载体的安全性。
{"title":"Development of an E. coli-based norbaeocystin production platform and evaluation of behavioral effects in rats","authors":"Alexandra M. Adams ,&nbsp;Nicholas A. Anas ,&nbsp;Abhishek K. Sen ,&nbsp;Jordan D. Hinegardner-Hendricks ,&nbsp;Philip J. O’Dell ,&nbsp;William J. Gibbons Jr. ,&nbsp;Jessica E. Flower ,&nbsp;Matthew S. McMurray ,&nbsp;J. Andrew Jones","doi":"10.1016/j.mec.2022.e00196","DOIUrl":"https://doi.org/10.1016/j.mec.2022.e00196","url":null,"abstract":"<div><p>Interest in the potential therapeutic efficacy of psilocybin and other psychedelic compounds has escalated significantly in recent years. To date, little is known regarding the biological activity of the psilocybin pathway intermediate, norbaeocystin, due to limitations around sourcing the phosphorylated tryptamine metabolite for <em>in vivo</em> testing. To address this limitation, we first developed a novel <em>E. coli</em> platform for the rapid and scalable production of gram-scale amounts of norbaeocystin. Through this process we compare the genetic and fermentation optimization strategies to that of a similarly constructed and previously reported psilocybin producing strain, uncovering the need for reoptimization and balancing upon even minor genetic modifications to the production host. We then perform <em>in vivo</em> measurements of head twitch response to both biosynthesized psilocybin and norbaeocystin using both a cell broth and water vehicle in Long-Evans rats. The data show a dose response to psilocybin while norbaeocystin does not elicit any pharmacological response, suggesting that norbaeocystin and its metabolites may not have a strong affinity for the serotonin 2A receptor. The findings presented here provide a mechanism to source norbaeocystin for future studies to evaluate its disease efficacy in animal models, both individually and in combination with psilocybin, and support the safety of cell broth as a drug delivery vehicle.</p></div>","PeriodicalId":18695,"journal":{"name":"Metabolic Engineering Communications","volume":"14 ","pages":"Article e00196"},"PeriodicalIF":5.2,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2214030122000050/pdfft?md5=9e357069270222eb1ebc39ece357e30f&pid=1-s2.0-S2214030122000050-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"92108344","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 9
Production of human milk fat substitute by engineered strains of Yarrowia lipolytica 溶脂耶氏菌工程菌株生产人乳脂代用品
IF 5.2 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2022-06-01 DOI: 10.1016/j.mec.2022.e00192
Govindprasad Bhutada , Guillaume Menard , Rupam Kumar Bhunia , Piotr P. Hapeta , Rodrigo Ledesma-Amaro , Peter J. Eastmond

Human milk fat has a distinctive stereoisomeric structure where palmitic acid is esterified to the middle (sn-2) position on the glycerol backbone of the triacylglycerol and unsaturated fatty acids to the outer (sn-1/3) positions. This configuration allows for more efficient nutrient absorption in the infant gut. However, the fat used in most infant formulas originates from plants, which exclude palmitic acid from the sn-2 position. Oleaginous yeasts provide an alternative source of lipids for human nutrition. However, these yeasts also exclude palmitic acid from the sn-2 position of their triacylglycerol. Here we show that Yarrowia lipolytica can be engineered to produce triacylglycerol with more than 60% of the palmitic acid in the sn-2 position, by expression of lysophosphatidic acid acyltransferases with palmitoyl-Coenzyme A specificity. The engineered Y. lipolytica strains can be cultured on glycerol, glucose, palm oil or a mixture of substrates, under nitrogen limited condition, to produce triacylglycerol with a fatty acid composition that resembles human milk fat, in terms of the major molecular species (palmitic, oleic and linoleic acids). Culture on palm oil or a mixture of glucose and palm oil produced the highest lipid titre and a triacylglycerol composition that is most similar with human milk fat. Our data show that an oleaginous yeast can be engineered to produce a human milk fat substitute (β-palmitate), that could be used as an ingredient in infant formulas.

人乳脂具有独特的立体异构体结构,其中棕榈酸被酯化到三酰基甘油骨架上的中间(sn-2)位置,不饱和脂肪酸被酯化到外侧(sn-1/3)位置。这种结构允许婴儿肠道更有效地吸收营养。然而,大多数婴儿配方奶粉中使用的脂肪来自植物,这就排除了sn-2位置的棕榈酸。产油酵母为人类营养提供了另一种脂质来源。然而,这些酵母也从其三酰甘油的sn-2位置排除棕榈酸。本研究表明,通过表达具有棕榈酰基辅酶A特异性的溶血磷脂酸酰基转移酶,可以对聚脂耶氏菌进行工程改造,使其以超过60%的棕榈酸在n-2位置产生三酰基甘油。在氮限制条件下,在甘油、葡萄糖、棕榈油或混合底物上培养的工程解脂芽孢杆菌菌株可以产生三酰基甘油,其脂肪酸组成类似于主要分子种类(棕榈酸、油酸和亚油酸)的人乳脂肪。在棕榈油或葡萄糖和棕榈油混合物上培养产生最高的脂质滴度和与人乳脂最相似的三酰基甘油组成。我们的数据表明,一种产油酵母可以被改造成一种人类乳脂替代品(β-棕榈酸酯),可以用作婴儿配方奶粉的一种成分。
{"title":"Production of human milk fat substitute by engineered strains of Yarrowia lipolytica","authors":"Govindprasad Bhutada ,&nbsp;Guillaume Menard ,&nbsp;Rupam Kumar Bhunia ,&nbsp;Piotr P. Hapeta ,&nbsp;Rodrigo Ledesma-Amaro ,&nbsp;Peter J. Eastmond","doi":"10.1016/j.mec.2022.e00192","DOIUrl":"https://doi.org/10.1016/j.mec.2022.e00192","url":null,"abstract":"<div><p>Human milk fat has a distinctive stereoisomeric structure where palmitic acid is esterified to the middle (sn-2) position on the glycerol backbone of the triacylglycerol and unsaturated fatty acids to the outer (sn-1/3) positions. This configuration allows for more efficient nutrient absorption in the infant gut. However, the fat used in most infant formulas originates from plants, which exclude palmitic acid from the sn-2 position. Oleaginous yeasts provide an alternative source of lipids for human nutrition. However, these yeasts also exclude palmitic acid from the sn-2 position of their triacylglycerol. Here we show that <em>Yarrowia lipolytica</em> can be engineered to produce triacylglycerol with more than 60% of the palmitic acid in the sn-2 position, by expression of lysophosphatidic acid acyltransferases with palmitoyl-Coenzyme A specificity. The engineered <em>Y. lipolytica</em> strains can be cultured on glycerol, glucose, palm oil or a mixture of substrates, under nitrogen limited condition, to produce triacylglycerol with a fatty acid composition that resembles human milk fat, in terms of the major molecular species (palmitic, oleic and linoleic acids). Culture on palm oil or a mixture of glucose and palm oil produced the highest lipid titre and a triacylglycerol composition that is most similar with human milk fat. Our data show that an oleaginous yeast can be engineered to produce a human milk fat substitute (β-palmitate), that could be used as an ingredient in infant formulas.</p></div>","PeriodicalId":18695,"journal":{"name":"Metabolic Engineering Communications","volume":"14 ","pages":"Article e00192"},"PeriodicalIF":5.2,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2214030122000013/pdfft?md5=b439d333179d8ed71d63845cd095cde2&pid=1-s2.0-S2214030122000013-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"92014805","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 7
Thermodynamics contributes to high limonene productivity in cyanobacteria 热力学有助于蓝藻的高柠檬烯生产率
IF 5.2 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2022-06-01 DOI: 10.1016/j.mec.2022.e00193
Shrameeta Shinde , Sonali Singapuri , Zhenxiong Jiang , Bin Long , Danielle Wilcox , Camille Klatt , J. Andrew Jones , Joshua S. Yuan , Xin Wang

Terpenoids are a large group of secondary metabolites with broad industrial applications. Engineering cyanobacteria is an attractive route for the sustainable production of commodity terpenoids. Currently, a major obstacle lies in the low productivity attained in engineered cyanobacterial strains. Traditional metabolic engineering to improve pathway kinetics has led to limited success in enhancing terpenoid productivity. In this study, we reveal thermodynamics as the main determinant for high limonene productivity in cyanobacteria. Through overexpressing the primary sigma factor, a higher photosynthetic rate was achieved in an engineered strain of Synechococcus elongatus PCC 7942. Computational modeling and wet lab analyses showed an increased flux toward both native carbon sink glycogen synthesis and the non-native limonene synthesis from photosynthate output. On the other hand, comparative proteomics showed decreased expression of terpene pathway enzymes, revealing their limited role in determining terpene flux. Lastly, growth optimization by enhancing photosynthesis has led to a limonene titer of 19 mg/L in 7 days with a maximum productivity of 4.3 mg/L/day. This study highlights the importance of enhancing photosynthesis and substrate input for the high productivity of secondary metabolic pathways, providing a new strategy for future terpenoid engineering in phototrophs.

萜类化合物是一类具有广泛工业应用的次生代谢物。工程蓝藻是可持续生产商品萜类化合物的一条有吸引力的途径。目前,一个主要的障碍在于低生产力达到工程蓝藻菌株。传统的代谢工程,以改善途径动力学导致有限的成功,在提高萜类化合物的生产力。在这项研究中,我们揭示了热力学作为蓝藻中高柠檬烯生产力的主要决定因素。通过过表达初级sigma因子,长聚球菌工程菌株PCC 7942获得了较高的光合速率。计算模型和湿实验室分析表明,天然碳汇糖原合成和光合产物输出的非天然柠檬烯合成的通量都增加了。另一方面,比较蛋白质组学显示萜烯途径酶的表达减少,揭示了它们在决定萜烯通量方面的作用有限。最后,通过加强光合作用进行生长优化,使柠檬烯在7天内滴度达到19 mg/L,最大产量为4.3 mg/L/d。该研究强调了加强光合作用和底物输入对于提高次生代谢途径的生产力的重要性,为未来光养生物萜类工程提供了新的策略。
{"title":"Thermodynamics contributes to high limonene productivity in cyanobacteria","authors":"Shrameeta Shinde ,&nbsp;Sonali Singapuri ,&nbsp;Zhenxiong Jiang ,&nbsp;Bin Long ,&nbsp;Danielle Wilcox ,&nbsp;Camille Klatt ,&nbsp;J. Andrew Jones ,&nbsp;Joshua S. Yuan ,&nbsp;Xin Wang","doi":"10.1016/j.mec.2022.e00193","DOIUrl":"10.1016/j.mec.2022.e00193","url":null,"abstract":"<div><p>Terpenoids are a large group of secondary metabolites with broad industrial applications. Engineering cyanobacteria is an attractive route for the sustainable production of commodity terpenoids. Currently, a major obstacle lies in the low productivity attained in engineered cyanobacterial strains. Traditional metabolic engineering to improve pathway kinetics has led to limited success in enhancing terpenoid productivity. In this study, we reveal thermodynamics as the main determinant for high limonene productivity in cyanobacteria. Through overexpressing the primary sigma factor, a higher photosynthetic rate was achieved in an engineered strain of S<em>ynechococcus elongatus</em> PCC 7942. Computational modeling and wet lab analyses showed an increased flux toward both native carbon sink glycogen synthesis and the non-native limonene synthesis from photosynthate output. On the other hand, comparative proteomics showed decreased expression of terpene pathway enzymes, revealing their limited role in determining terpene flux. Lastly, growth optimization by enhancing photosynthesis has led to a limonene titer of 19 mg/L in 7 days with a maximum productivity of 4.3 mg/L/day. This study highlights the importance of enhancing photosynthesis and substrate input for the high productivity of secondary metabolic pathways, providing a new strategy for future terpenoid engineering in phototrophs.</p></div>","PeriodicalId":18695,"journal":{"name":"Metabolic Engineering Communications","volume":"14 ","pages":"Article e00193"},"PeriodicalIF":5.2,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/6c/fd/main.PMC8801761.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39908234","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 7
期刊
Metabolic Engineering Communications
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1